Assessment of Socio-Environmental Vulnerability Due to Tropical Cyclones in La Paz, Baja California Sur, Mexico
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Methods
3. Results
3.1. Descriptive Statistics: Analysis of Demographic Aspects and Damage Perception
3.2. Socio-Environmental Vulnerability Index due to the Impact of Tropical Cyclones
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Questionnaire to Measure Vulnerability in Households
- 1.
- What material is most of the floor of this house made of?
- (1) Earth, (2) Cement, (3) Mosaic (4) Ceramics (5) Wood or marble
- 2.
- What material is most of the roof of this house made of?
- (1) Waste material, (2) Sheets (cardboard, metal, asbestos, fiber cement) (3) Wood, (4) Tile, (5) Concrete.
- 3.
- What material are most of the walls of this house made of?
- (1) Waste material, (2) Bamboo or palm reed, (3) Cardboard, asbestos, metal sheets (4) Wood, adobe or muddy, (5) Partition, brick, block, quarry stone, cement or concrete.
- 4.
- How would you rate the degree of damage caused to your home due to flooding in your street, block, or neighborhood?
- Scale = (1 No Damage …. 5 High Damage)
- 5.
- How would you rate the degree of damage caused to your home due to storm surge in your home, street, or block?
- 6.
- How would you rate the degree of damage caused to your home or property due to landslides?
- 7.
- How would you rate the degree of damage caused to your home because of the increase in streams near your home, street, or block?
- 8.
- How would you rate your level of knowledge about the tropical hurricane formation process?
- Scale = (1 No Knowledge …. 5 High Knowledge)
- 9.
- How would you rate your level of knowledge about the phases of the Early Warning System of Tropical Cyclones (SAT-CT 2003) approach-distance?
- 10.
- How would you rate your level of knowledge about the Saffir–Simpson hurricane scale and potential wind, precipitation, and storm surge damage?
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- McGranahan, G. The Rising Tide: Assessing the Risks of Climate Change and Human Settlements in Low Elevation Coastal Zones. Available online: http://journals.sagepub.com/doi/abs/10.1177/0956247807076960 (accessed on 8 October 2019).
- Klein, R.J.T.; Nicholls, R.J.; Mimura, N. Coastal adaptation to climate change: Can the IPCC Technical Guidelines be applied? Mitig. Adapt. Strateg. Glob. Chang. 1999, 4, 239–252. [Google Scholar] [CrossRef]
- Kerry, E. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar]
- Magaña, V.O. (Ed.) Los Impactos de El Niño en México; Dirección General de Protección Civil, Secretaría de Gobernación: Ciudad de México, México, 1999. [Google Scholar]
- Segob. Programa Nacional de Protección Civil 2001–2006; Sistema Nacional de Protección Civil, Secretaria de Gobernación: Ciudad de México, México, 2001; p. 92. [Google Scholar]
- Akter, S.; Mallick, B. The poverty-vulnerability-resilience nexus: Evidence from Bangladesh. Ecol. Econ. 2013, 96, 114–124. [Google Scholar] [CrossRef]
- Tapia, C.; Abajo, B.; Feliu, E.; Fernández, J.G.; Pedró, A.; Castaño, J. Análisis DE Vulnerabilidad Ante El Cambio Climático en El Municipio DE Madrid; Ayuntamiento de Madrid: Madrid, Spain, 2015. [Google Scholar]
- Madu, I. Spatial vulnerability of rural households to climate change in Nigeria: Implications for internal security. Working Paper No.2. Climate Change ans African Political Stability; CAAPS: Austin, TX, USA, 2012. [Google Scholar]
- Park, D.S.R.; Ho, C.H.; Nam, C.C.; Kim, H.S. Evidence of reduced vulnerability to tropical cyclones in the Republic of Korea. Environ. Res. Lett. 2015, 10, 054003. [Google Scholar] [CrossRef] [Green Version]
- Romero, E. Ciclones tropicales: Tendencias y potencial de afectación en Baja California Sur. In Baja California Sur ante el Cambio Climático; Vulnerabilidad Adaptación y Mitigación; Universidad Autónoma de Baja California Sur: La Paz, México, 2013; pp. 69–92. [Google Scholar]
- Freeman, A.C.; Ashley, W.S. Changes in the US hurricane disaster landscape: The relationship between risk and exposure. Nat. Hazards 2017, 88, 659–682. [Google Scholar] [CrossRef]
- Li, Z.X.; Shahsavar, A.; Al-Rashed, A.A.; Kalbasi, R.; Afrand, M.; Talebizadehsardari, P. Multi-objective energy and exergy optimization of different configurations of hybrid earth-air heat exchanger and building integrated photovoltaic/thermal system. Energy Convers. Manag. 2019, 195, 1098–1110. [Google Scholar] [CrossRef]
- Sadineni, S.B.; Madala, S.; Boehm, R.F. Passive building energy savings: A review of building envelope components. Renew. Sustain. Energy Rev. 2011, 15, 3617–3631. [Google Scholar] [CrossRef]
- Fraser, E.D.G.; Dougill, A.J.; Hubacek, K.; Quinn, C.H.; Sendzimir, J.; Termansen, M. Assessing vulnerability to climate change in dryland livelihood systems: Conceptual challenges and interdisciplinary solutions. Ecol. Soc. 2011, 16, 3. [Google Scholar] [CrossRef] [Green Version]
- Notenbaert, A.; Karanja, S.N.; Herrero, M.; Felisberto, M.; Moyo, S. Derivation of a household-level vulnerability index for empirically testing measures of adaptative capacity and vulnerability. Reg. Environ. Chang. 2013, 13, 459. [Google Scholar] [CrossRef]
- Romero Vadillo, E.; y Romero Vadillo, I.G. Estimación del riesgo en las viviendas de Baja California Sur ante el impacto de ciclones tropicales. In Teoría y Praxis; Universidad de Quintana Roo: Cozumel, México, 2016; pp. 50–73. Available online: http://www.redalyc.org/articulo.oa?id=456147940004 (accessed on 14 October 2019).
- Instituto Nacional de Estadística y Geografía. Conteo de Población y Vivienda; Instituto Nacional de Estadística y Geografía: Ciudad de México, México, 2015; Available online: www.inegi.org.mx/app/indicadores/ (accessed on 16 October 2019).
- McIntosh, R.D.; Becker, A. Expert evaluation of open-data indicators of seaport vulnerability to climate and extreme weather impacts for U.S. North Atlantic ports. Ocean Coast. Manag. 2019, 180, 104911. [Google Scholar] [CrossRef]
- Oo, A.T.; Van Huylenbroeck, G.; Speelman, S. Assessment of climate change vulnerability of farm households in Pyapon District, a delta region in Myanmar. Int. J. Disaster Risk Reduct. 2018, 28, 10–21. [Google Scholar] [CrossRef]
- Dzogaac, M.; Simateleab, D.; Mungac, C. Assessment of ecological vulnerability to climate variability on coastal fishing communities: A study of Ungwana Bay and Lower Tana Estuary, Kenya. Ocean Coast. Manag. 2018, 163, 437–444. [Google Scholar] [CrossRef]
- AlQahtany, A.M.; Abubakar, I.R. Public perception and attitudes to disaster risks in a coastal metropolis of Saudi Arabia. Int. J. Disaster Risk Reduct. 2020, 44, 101422. [Google Scholar] [CrossRef]
- Myers, M.R.; Barnard, P.L.; Beighley, E.; Cayan, D.R.; Dugan, J.E.; Feng, D.; Hubbar, D.M.; Lacobellis, S.F.; Melack, J.M.; Page, H.M. A multidisciplinary coastal vulnerability assessment for local government focused on ecosystems, Santa Barbara area, California. Ocean Coast. Manag. 2019, 182, 104921. [Google Scholar] [CrossRef] [Green Version]
- Hoque, M.A.A.; Ahmed, N.; Pradhan, B.; Roy, S. Assessment of coastal vulnerability to multi-hazardous events using geospatial techniques along the eastern coast of Bangladesh. Ocean Coast. Manag. 2019, 181, 104898. [Google Scholar] [CrossRef]
- Koroglu, A.; Ranasinghe, R.; Jiménez, J.A.; Dastgheib, A. Comparison of Coastal Vulnerability Index applications for Barcelona Province. Ocean Coast. Manag. 2019, 178, 104799. [Google Scholar] [CrossRef]
- Rabby, Y.W.; Hossain, M.D.B.; Hasan, M.U.I. Social vulnerability in the coastal region of Bangladesh: An investigation of social vulnerability index and scalar change effects. Int. J. Disaster Risk Reduct. 2019, 41, 101329. [Google Scholar] [CrossRef]
- Pérez-Montero, O.; Milanés-Batista, C. Social perception of coastal risk in the face of hurricanes in the southeastern region of Cuba. Ocean Coast. Manag. 2019. [Google Scholar] [CrossRef]
- Vázquez-González, C.; Moreno-Casasola, P.; Peralta-Peláez, L.A.; Monroy, R.; Espejel, I. The value of coastal wetland flood prevention lost to urbanization on the coastal plain of the Gulf of Mexico: An analysis of flood damage by hurricane impacts. Int. J. Disaster Risk Reduct. 2019, 37, 101180. [Google Scholar] [CrossRef]
- Hernández, M.L.; Carreño, M.L.; Castillo, L. Methodologies and tools of risk management: Hurricane risk index (HRi). Int. J. Disaster Risk Reduct. 2018, 31, 926–937. [Google Scholar] [CrossRef]
- Gibb, C. A critical analysis of vulnerability. Int. J. Disaster Risk Reduct. 2018, 28, 327–334. [Google Scholar] [CrossRef]
- Opiyo, F.E.O.; Wasonga, O.R.; Nyangito, M.N. Measuring household vulnerability to climate-induced stresses in pastoral rangeland of Kenya: Implications for resilience programming. Pastor. Res. Policy Pract. 2014, 4, 10. Available online: http://www.pastoralismjournal.com/content/4/1/10 (accessed on 8 September 2019). [CrossRef] [Green Version]
- Deressa, T.; Hassan, R.M.; Ringler, C. Measuring Ethiopian Farmers’ Vulnerability to Climate Change Across Regional States; Discussion Paper 00806; International Food Policy Research Institute: Washington, DC, USA, 2008. [Google Scholar]
- Dalenius, T.; Hodges, J. Minimum Variance Stratification. J. Am. Stat. Assoc. 1959, 54, 88–101. [Google Scholar] [CrossRef]
- Cutter, S.L.; Finch, C. Temporal and spatial changes in social vulnerability to natural hazards. Proc. Natl. Acad. Sci. USA 2008, 107, 2301–2306. [Google Scholar] [CrossRef] [Green Version]
- Bohórquez, J.E.T. Evaluación de la vulnerabilidad social ante amenazas naturales en Manzanillo (Colima) Un aporte de método. Investig. Geográficas Boletín del Inst. de Geogr. UNAM 2013, 81, 79–93. [Google Scholar] [CrossRef]
- IPCC. 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of theIntergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; p. 881. [Google Scholar]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Sistema de Alarma Temprana para Ciclones Tropicales; Secretaría de Gobernación, Gobierno de México: Ciudad de México, México, 2019. Available online: http://proteccioncivil.gob.mx/work/models/ProteccionCivil/Resource/62/1/images/siatctnueva.pdf (accessed on 14 October 2019).
- Landa, R.; Magaña, V.; Neri, C. Agua Y Clima: Elementos Para La Adaptación Al Cambio Climático; Secretaría del Medio Ambiente y Recursos Naturales, Centro de Ciencias Atmosféricas, UNAM: Ciudad de México, México, 2008. [Google Scholar]
- Avilés-Polanco, G.; Beltrán-Morales, L.F.; Almendarez-Hernández, M.A. Vulnerabilidad Socio-Ambiental Por Impacto DE Ciclones Tropicales en Un áRea Natural Protegida: Loreto, Baja California Sur, México; UABCS, Universidad Autónoma Chapingo: Ediciones de la Noche, Mexico, 2019. [Google Scholar]
- Constantino, T.; Roberto, M.; Dávila, I.; Hilda, R. Una aproximación a la vulnerabilidad y resiliencia ante eventos hidrometeorológicos extremos en México. Política y Cultura 2011, 36, 15–44. [Google Scholar]
- Obasi, G.O.P. Climate Change: Expectation and reality. In Proceedings of the World Renewable Energy Congress VI, Brighton, UK, 1–7 July 2000; pp. 4–9. [Google Scholar] [CrossRef]
Component | Eigen Values | Initial Solution. | Rotate Solution. | ||||||
---|---|---|---|---|---|---|---|---|---|
Loads Square Sum | Loads Square Sum | ||||||||
Total | % of Variance | % Cumulative | Total | % of Variance | % Cumulative | Total | % of Variance | % Cumulative | |
1 | 2.792 | 27.924 | 27.924 | 2.792 | 27.924 | 27.924 | 2.715 | 21.152 | 27.152 |
2 | 2.39 | 23.09 | 51.014 | 2.39 | 23.09 | 51.014 | 2.037 | 23.066 | 50.218 |
3 | 1.452 | 14.518 | 65.532 | 1.452 | 14.518 | 65.532 | 1.531 | 15.315 | 65.532 |
4 | 0.909 | 9.087 | 74.62 | ||||||
5 | 0.635 | 6.349 | 80.968 | ||||||
6 | 0.56 | 5.601 | 86.569 | ||||||
7 | 0.437 | 4.37 | 90.94 | ||||||
8 | 0.379 | 3.786 | 94.725 | ||||||
9 | 0.289 | 2.892 | 97.617 | ||||||
10 | 0.238 | 2.383 | 100 |
Num. | Question | 1 | 2 | 3 |
---|---|---|---|---|
1 | What kind of material is most of the roof of your house made of? | 0.165 | −0.091 | 0.769 |
2 | What kind of material is most of the floor of your house made of? | −0.143 | −0.033 | 0.56 |
3 | What kind of material are the walls of your house made of? | −0.092 | 0.015 | 0.727 |
4 | How would you rank the damage done to your house due to floods in your street, block, or neighborhood? | 0.754 | −0.019 | 0.022 |
5 | How would you rank the damage done to your house due to landslides or collapse in your street, block, or neighborhood? | 0.841 | −0.03 | −0.052 |
6 | How would you rank the damage done to your house due to storm surge in your street, block, or neighborhood? | 0.836 | 0.044 | −0.173 |
7 | How would you rank the damage done to your house due to creek stream flood in your street, block, or neighborhood? | 0.823 | −0.108 | 0.024 |
8 | How would you rank your knowledge about tropical cyclone formation? | −0.076 | 0.819 | −0.216 |
9 | How would you rank your knowledge about the hurricane Saffir–Simpson scale and the potential damage due to wind, rain and storm surge? | −0.031 | 0.9 | 0.034 |
10 | How would you rank your knowledge about the Early Warning System? | 0.006 | 0.895 | 0.035 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Monroy, E.A.; Hernández Trejo, V.; Ojeda Ruiz de la Pena, M.A.; Avilés Polanco, G.; Barbara, N.L. Assessment of Socio-Environmental Vulnerability Due to Tropical Cyclones in La Paz, Baja California Sur, Mexico. Sustainability 2020, 12, 1575. https://doi.org/10.3390/su12041575
Marín-Monroy EA, Hernández Trejo V, Ojeda Ruiz de la Pena MA, Avilés Polanco G, Barbara NL. Assessment of Socio-Environmental Vulnerability Due to Tropical Cyclones in La Paz, Baja California Sur, Mexico. Sustainability. 2020; 12(4):1575. https://doi.org/10.3390/su12041575
Chicago/Turabian StyleMarín-Monroy, Elvia Aida, Víctor Hernández Trejo, Miguel Angel Ojeda Ruiz de la Pena, Gerzain Avilés Polanco, and Nuñez León Barbara. 2020. "Assessment of Socio-Environmental Vulnerability Due to Tropical Cyclones in La Paz, Baja California Sur, Mexico" Sustainability 12, no. 4: 1575. https://doi.org/10.3390/su12041575
APA StyleMarín-Monroy, E. A., Hernández Trejo, V., Ojeda Ruiz de la Pena, M. A., Avilés Polanco, G., & Barbara, N. L. (2020). Assessment of Socio-Environmental Vulnerability Due to Tropical Cyclones in La Paz, Baja California Sur, Mexico. Sustainability, 12(4), 1575. https://doi.org/10.3390/su12041575