Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques
Abstract
:1. Introduction
Life Cycle Assessment of Food Waste
2. Materials and Methods
2.1. Goal and Scope Definition
2.2. Functional Unit
2.3. Assumptions
2.4. Life Cycle Inventory
2.4.1. Scenario 1: Windrow Composting Inventories
- Distribute materials more evenly throughout the composting mass;
- Mix materials;
- Rebuild the porosity of the windrow;
- Release trapped heat, water vapor and gases;
- Replenish oxygen levels.
- Influent: water, wastewater or other liquid flowing into a reservoir, basin or treatment plant;
- Effluent: an outflowing of water or gas to a natural body of water;
- Removal efficiencies: mean influent/effluent loading, the following equation was used to calculate this index:
2.4.2. Scenario 2: Anaerobic Digestion with Composting
2.5. Life Cycle Impact Assessment (LCIA)
- Classification;
- Characterization;
- Valuation.
3. Results
4. Sensitivity Analysis
4.1. Electricity Use in Processes
4.1.1. Windrow Composting
4.1.2. Anaerobic Digestion with Composting
4.2. Electricity and Heat Avoidance in Anaerobic Digestion Combined Composting System
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. The State of Food Insecurity in the World: The Multiple Dimensions of Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Adema, S. EcoMENA—Ecoing Sustainability. 2016. Available online: www.ecomena.org/food-waste-in-qatar/ (accessed on 17 April 2018).
- Al-Ansari, T.; Korre, A.; Nie, Z.; Shah, N. Development of a life cycle assessment tool for the assessment of food production systems within the energy, water and food nexus. Sustain. Prod. Consum. 2015, 2, 52–66. [Google Scholar] [CrossRef]
- Elkhalifa, A.; Al-Ansari, T.; Mackey, H.; Mckay, G. Food waste to biochars through pyrolysis: A review. Resour. Conserv. Recycl. 2019, 144, 310–320. [Google Scholar] [CrossRef]
- AlNouss, A.; Mckay, G.; Al-Ansari, T. A techno-economic-environmental study evaluating the potential of oxygen-steam biomass gasification for the generation of value-added products. Energy Convers. Manag. 2019, 196, 664–676. [Google Scholar] [CrossRef]
- Niutanen, V.; Korhonen, J. Industrial ecology flows of agriculture and food industry in Finland: Utilizing by-products and wastes. Int. J. Sustain. Dev. World Ecol. 2003, 10, 133–147. [Google Scholar] [CrossRef]
- Banar, M.; Cokaygil, Z.; Ozkan, A. Life cycle assessment of solid waste management options for Eskisehir, Turkey. Waste Manag. 2009, 29, 54–62. [Google Scholar] [CrossRef]
- Martinez-Blanco, J.; Colón, J.; Gabarrell, X.; Font, X.; Sánchez, A.; Artola, A.; Rieradevall, J. The use of life cycle assessment for the comparison of biowaste composting at home and full scale. Waste Manag. 2010, 30, 983–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saer, A.; Lansing, S.; Davitt, N. Life cycle assessment of a food waste composting system: Environmental impact hotpots. J. Clean. Prod. 2013, 52, 234–244. [Google Scholar] [CrossRef]
- Elmore, D. Why Should I Compost. 2011. Available online: https://greenactioncentre.ca/reduce-your-waste/why-should-i-compost/ (accessed on 17 April 2018).
- Duveskog, D.; Nyagaka, D.; Mweri, B.; Shiribwa, M.; Kaumbutho, P. Soil and water conservation: With a focus on water harvesting and soil moisture retention. In A Study Guide for Farmer Field Schools and Community-Based Study Groups; The Farm Level Applied Research Methods for East and Southern Africa (FARMESA): Harare, Zimbabwe, 2003. [Google Scholar]
- Zhang, C.; Zeng, G.; Yuan, L.; Yu, J.; Li, J.; Huang, G.; Xi, B.; Liu, H. Aerobic degradation of bisphenol A by Achromobacter xylosoxidans strain B-16 isolated from compost leachate of municipal solid waste. Chemosphere 2007, 68, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Hirai, Y.; Murata, M.; Sakai, S.; Takatsuki, H. Life Cycle Assessment for Food Waste Recycling and Management. In Proceedings of the 4th International Conference on EcoBalance Methodologies for Decision Making in a Sustainable 21st Century, Tsukuba, Japan, 31 October–2 November 2000. [Google Scholar]
- Baky, A.; Eriksson, O. Systems Analysis of Organic Waste Management in Denmark. Environmental Project; No. 822; Danish Environmental Protection Agency: Copenhagen, Denmark, 2003.
- Diggelman, C.; Ham, R. Household food waste to wastewater or to solid waste? That is the question. Waste Manag. Res. 2003, 21, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Aye, L.; Widjaya, E.R. Environmental and economic analyses of waste disposal options for traditional markets in Indonesia. Waste Manag. 2005, 26, 1180–1191. [Google Scholar] [CrossRef]
- Karrman, E.; Baky, A.; Edström, M.; Magnusson, Y.; Malmqvist, P.-A.; Palm, O.; Rogsrand, G. Systems Study of Collection and Treatment of Organic Waste in Malmö; ECOLOOP: Stockholm, Sweden, 2005. (In Swedish) [Google Scholar]
- Guereca, L.P.; Gassó, S.; Baldasano, J.M.; Jimenez-Guerrero, P. Life cycle assessment of two biowaste management systems for Barcelona, Spain. Resour. Conserv. Recycl. 2006, 49, 32–48. [Google Scholar] [CrossRef]
- Borjesson, P.; Berglund, M. Environmental systems analysis of biogas systems—Part II: The environmental impact of replacing various reference systems. Biomass Bioenergy 2007, 31, 326–344. [Google Scholar] [CrossRef]
- Lee, S.-H.; Choi, K.-I.; Osako, M.; Dong, J.-I. Evaluation of environmental burdens caused by changes of food waste management systems in Seoul, Korea. Sci. Total Environ. 2007, 387, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Boldrin, A.; Andersen, J.K.; Moller, J.; Christensen, T.H.; Favoino, E. Composting and compost utilisation: Accounting of greenhouse gases and global warming contributions. Waste Manag. Res. 2009, 27, 800–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moller, J.; Boldrin, A.; Christensen, T.H. Anaerobic digestion and digestate use: Accounting of greenhouse gases and global warming contribution. Waste Manag. Res. 2009, 27, 813–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoo, H.H.; Lim, T.Z.; Tan, R.B.H. Food waste conversion options in Singapore: Environmental impacts based on an LCA perspective. Sci. Total Environ. 2010, 408, 1367–1373. [Google Scholar] [CrossRef]
- Kim, M.-H.; Kim, J.-W. Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery. Sci. Total Environ. 2010, 408, 3998–4006. [Google Scholar] [CrossRef]
- Izumi, K.; Okishio, Y.K.; Niwa, C.; Yamamoto, S.; Toda, T. Effects of particle size on anaerobic digestion of food waste. Int. Biodeterior. Biodegrad. 2010, 64, 601–608. [Google Scholar] [CrossRef]
- Fruergaard, T.; Astrup, T. Optimal utilisation of waste-to-energy in an LCA perspective. Waste Manag. 2011, 31, 572–582. [Google Scholar] [CrossRef]
- Elbeshbishy, E.; Nakhla, G.; Hafez, H. Biochemical methane potential (BMP) of food waste and primary sludge: Influence of inoculum pre-incubation and inoculum source. Bioresour. Technol. 2012, 110, 18–25. [Google Scholar] [CrossRef]
- Ma, J.; Duong, T.H.; Smits, M.; Verstraete, W.; Carballa, M. Enhanced biomethanation of kitchen waste by different pretreatments. Bioresour. Technol. 2011, 102, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Vandermeersch, T.; Alvarenga, R.A.F.; Ragaert, P.; Dewulf, J. Environmental sustainability assessment of food waste valorization options. Resour. Conserv. Recycl. 2014, 87, 57–64. [Google Scholar] [CrossRef]
- Yong, Z.; Dong, Y.; Zhang, X.; Tan, T. Anaerobic co-digestion of food waste and straw for biogas production. Renew. Energy 2015, 78, 527–530. [Google Scholar] [CrossRef]
- Eriksson, M.; Strid, I.; Hansson, P. Carbon footprint of food waste management options in the waste hierarchy—A Swedish case study. J. Clean. Prod. 2015, 93, 115–125. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Y. Effects of thermal pre-treatment on acidification phase during two-phase batch anaerobic digestion of kitchen waste. Renew. Energy 2015, 77, 550–557. [Google Scholar] [CrossRef]
- Levis, J.W.; Barlaz, M.A. What is the most environmentally beneficial way to treat commercial food waste? Environ. Sci. Technol. 2011, 45, 7438–7444. [Google Scholar] [CrossRef]
- US Composting Council. USCC Factsheet: Composting, Global Climate Change and Carbon Trading; The United States Composting Council: Bethesda, MD, USA; US Composting Council: Raleigh, NC, USA, 2008. [Google Scholar]
- Intergovernmental Panel on Climate Change. Report of Nineteenth Session of the Intergovernmental Panel on Climate Change (IPCC); IPCC: Geneva, Switzerland, 2002. [Google Scholar]
- USA Environmental Protection Angency. Turning a liability into an asset: A landfill gas-to-energy project development handbook. In Landfill Methane Outreach Program; United States Environmental Protection Agency: Washington, DC, USA, 2002. [Google Scholar]
- United States Environmental Protection Agency. Waste Reduction Model (WARM); United States Environmental Protection Agency: Washington, DC, USA, 2015.
- Kraemer, T.; Gamble, S. Integrating anaerobic digestion with composting. BioCycle 2014, 55, 32. [Google Scholar]
- Schumacher, L.G.; Borgelt, S.C.; Fosseen, D.; Goetz, W.; Hires, W.G. Heavy-duty engine exhaust emission tests using methyl ester soybean oil/diesel fuel blends. Bioresour. Technol. 1996, 57, 31–36. [Google Scholar] [CrossRef]
- Diaz, A.C. Energy Life Cycle Assessment (LCA) of Silicon-Based Photovoltaic Technologies and the Influence of Where It Is Manufactured and Installed. Master’s Thesis, University of Bacelona, Barcelona, Spain, 2014. Available online: http://diposit.ub.edu/dspace/bitstream/2445/57523/1/TFM_MERSE_AlejandroCalderon.pdf (accessed on 27 April 2018).
- BP. Statistical Review of World Energy; BP: London, UK, 2002; Available online: http://www.bp.com/centres/energy2002 (accessed on 17 April 2018).
- Sánchez, Ó.J.; Ospina, D.A.; Montoya, S. Compost supplementation with nutrients and microorganisms in composting process. Waste Manag. 2017, 69, 136–153. [Google Scholar] [CrossRef]
- Sharma, G.; Campbell, A. Life Cycle Inventory and Life Cycle Assessment for Windrow Composting Systems; Recycled Organics Unit, Department of Environment and Conservation, The University of New South Wales for the New South Wales: Sydney, Australia, 2003. [Google Scholar]
- Skowronska, M.; Filipek, T. Life cycle assessment of fertilisers: A review. Int. Agrophys. 2014, 28, 101–110. [Google Scholar] [CrossRef]
- Boldrin, A.; Christensen, T.H.; Körner, I.; Krogmann, U. Composting: Mass balances and product quality. Solid Waste Technol. Manag. 2010, 1–2, 569–582. [Google Scholar]
- Sanscartier, D.; MacLean, H.L.; Saville, B. Electricity production from anaerobic digestion of household organic waste in Ontario: Techno-economic and GHG emission analyses. Environ. Sci. Technol. 2012, 46, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Goedkoop, M.; De Schryver, A.; Oele, M.; Durksz, S.; de Roest, D. Introduction to LCA with SimaPro 7; PRé Consultants: Amersfoort, The Netherlands, 2008. [Google Scholar]
- Von Sperling, M. Introduction to Water Quality and Sewage Treatment; Publisher UFMG: Belo Horizonte, Brazil, 1996; Volume 1. [Google Scholar]
- Rodriguez-Iglesias, J.; Marañón, E.; Castrillón, L.; Riestra, P.; Sastre, H. Life cycle analysis of municipal solid waste management possibilities in Asturias. Waste Manag. Res. 2003, 21, 535–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leite, V.D.; de Sousa, J.T.; Lopes, W.S.; de Oliveira, E.G.; Campos, A.R.C.; de Oliveira, A.G. Conjugate treatment of leachate from landfill and sewage in domestic stabilization ponds. J. Urban. Environ. Eng. 2016, 10, 155–161. [Google Scholar] [CrossRef]
- Punzi, F. Production of Renewable Energy and Recovery of Waste Material by Anaerobic Digestion of the Organic Fraction. LCA Analysis of Some Treatment Scenarios. Master’s Thesis, Polytechnic of Milan, Milan, Italy, 2009. (In Italian). [Google Scholar]
- Finnveden, G.; Johansson, J.; Lind, P.; Moberg, A. Life cycle assessment of energy from solid waste—Part 1: General methodology and results. J. Clean. Prod. 2005, 13, 213–229. [Google Scholar] [CrossRef]
- Berglund, M.; Borjesson, P. Assessment of energy performance in the lifecycle of biogas production. Biomass Bioenergy 2006, 30, 254–266. [Google Scholar] [CrossRef]
- Gomez, A.; Zubizarreta, J.; Rodrigues, M.; Dopazo, C.; Fueyo, N. Potential and cost of electricity generation from human and animal waste in Spain. Renew. Energy 2010, 35, 498–505. [Google Scholar] [CrossRef]
- Schlegelmilch, M.; Streese, J.; Biedermann, W.; Herold, T.; Stegmann, R. Odour control at biowaste composting facilities. Waste Manag. 2005, 25, 917–927. [Google Scholar] [CrossRef]
- Eatom, A.; Clesceri, L.; Rice, E.; Greenberg, A.; Franson, M.A. Standard Methods for Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Carnevale, E.; Lombardi, L. Comparison of different possibilities for biogas use by Life Cycle Assessment. Energy Procedia 2015, 81, 215–226. [Google Scholar] [CrossRef] [Green Version]
- ISO. 14040: Environmental Management-Life Cycle Assessment-Principles and Framework; British Standards Institution: London, UK, 2006. [Google Scholar]
- Walsh, J.L.; Ross, C.C.; Smith, M.; Harper, S.; Wilkins, A. Biogas Utilisation Hanbook; Environment, Health and Safety Division, Giorgia Tech Research Institute: Atlanta, GA, USA, 1988. [Google Scholar]
- Standards Australia; Standards New Zealand. Australian/New Zealand Standard: Environmental management—Life Cycle Assessment—Principles and Framework; AS/NZS ISO 14040:1998; 1998; Available online: https://www.saiglobal.com/PDFTemp/Previews/OSH/As/as10000/14000/14040.pdf (accessed on 17 April 2018).
- Karim, A.I.M. Life Cycle Analysis and Life Cycle Impact Assessment Methodologies: A State of the Art. Ph.D. Thesis, University of Lleida, Lleida, Spain, 2011. [Google Scholar]
- Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 2016, 79, 214–232. [Google Scholar] [CrossRef]
- Hamby, D.M. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 1994, 32, 135–154. [Google Scholar] [CrossRef] [PubMed]
- Bywater, A. A Review of Anaerobic Digestion Plants on UK Farms-Barriers, Benefits and Case Studies; Royal Agricultural Society of England: Stoneleigh, UK, 2014; Available online: https://www.fre-energy.co.uk/pdf/RASE-On-Farm-AD-Review.pdf (accessed on 19 April 2018).
- Cooper, C.D.; Alley, F.C. Air Pollution Control: A Design Approach; Waveland Press: Long Grove, IL, USA, 2002. [Google Scholar]
- Amlinger, F.; Peyr, S.; Cuhls, C. Greenhouse gas emissions from composting and mechanical biological treatment. Waste Manag. Res. 2008, 26, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, A.; Bortone, I.; Chianese, S.; Di Natale, M.; Erto, A.; Santonastaso, G.F.; Musmarra, D. Odorous emission reduction from a waste landfill with an optimal protection system based on fuzzy logic. Environ. Sci. Pollut. Res. 2019, 26, 14755–14765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Source | Year | Study Area | Technologies Considered (C = Composting; AD = Anaerobic digestion; L = Landfill; I = Incineration, AF = Animal feed) | Impact Categories Studied |
---|---|---|---|---|
[12] | 2000 | Japan | C/AD/I | GWP, EP, AP, HTP, LU |
[13] | 2003 | Denmark | I/AD/C | GWP, EP, AP |
[14] | 2003 | United States | I/C/AD | GWP, EU, AP |
[15] | 2005 | Indonesia | L/AD/C | POF, GWP, EP, AP |
[16] | 2005 | Sweden | C/AD/I | GWP, Nutrient Recovery, EU |
[17] | 2006 | Spain | I/C/AD/L | GWP, AP, ODP, WU, HTP, HH, LU, ETP, POF |
[18] | 2007 | Sweden | I/C/AD | GWP, POF EP, AP |
[19] | 2007 | South Korea | C/AF/I/L | GWP, EP, AP, ET, HTP |
[20] | 2009 | Denmark | C | GWP |
[21] | 2009 | Denmark | AD | GWP |
[22] | 2010 | Singapore | C/AD/I | GWP, EP, AP, POF, EU |
[23] | 2010 | South Korea | C/AF/I | GWP |
[24] | 2010 | Spain | C | GWP, AP, ODP, EU, EP, POF |
[25] | 2010 | Japan | AD | GWP |
[26] | 2011 | Denmark | I/AD | GWP, EP, AP, ETP, POF, water HTP, Soil HTP, Air HTP |
[27] | 2011 | United States | AD | GWP |
[28] | 2011 | Belgium | AD | GWP |
[29] | 2014 | Belgium | AD/AF/L | GWP, EU |
[30] | 2015 | China | AD | GWP |
[31] | 2015 | Sweden | C/AD/I/L/Food donations, AF | GWP |
[32] | 2015 | China | AD | GWP |
Collection Point | Destination | Distance (km) | Truck Consumption (L) | Truck Consumption (kg) |
---|---|---|---|---|
Doha | Mesaieed | 55 | 15.43 | 12.57 |
Mesaieed | Farm | 20 | 5.6 | 4.5 |
Process | Input | Amount | Unit | Output | Unit |
---|---|---|---|---|---|
Collection and transportation | Food waste | 1 | tonne | Diesel emissions: CO2, CO, NOx, SO2, CH4, N2O, PM10, Hydrocarbons | kg |
Diesel | 90 | kg | |||
Loading | Food waste | 1 | tonne | Diesel emissions: CO2, CO, NOx, SO2, CH4, N2O, PM10, Hydrocarbons | kg |
Diesel | 0.46 | kg | |||
Pre-screening | Food waste | 1 | tonne | Electricity emissions: CO2, CO, NOx, N2O, PM, PM10, PM2.5, SO2, SO3, CH4, TOC, VOC, N2, Ar, O2, H2O, 1,3–Butadiened, Acetaldehyde, Acrolein, Benzene, Ethylbenzene, Formaldehyde, Naphthalene, PAH, Propylene, PAH, Toluene, Xylenes | kg |
Electricity | 1.8 | kWh | |||
Grinding | Food waste | 940 | kg | Diesel emissions: CO2, CO, NOx, SO2, CH4, N2O, PM10, Hydrocarbons | kg |
Diesel | 0.15 | kg | |||
Composting | Food waste | 940 | kg | Diesel emission: CO2, CO, NOx, SO2, CH4, N2O, PM10, Hydrocarbons | kg |
Diesel | 1.07 | kg | Composting emissions: CH4, N2O, NH3 | ||
Curing windrow turners | Compost | 330 | kg | Diesel emission: CO2, CO, NOx, SO2, CH4, N2O, PM10, Hydrocarbons | kg |
Diesel | 0.11 | kg | |||
Post-screening + removal of contaminants | Compost | 330 | kg | Electricity emissions: CO2, CO, NOx, N2O, PM, PM10, PM2.5, SO2, SO3, CH4, TOC, VOC, N2, Ar, O2, H2O, 1,3–Butadiene, Acetaldehyde, Acrolein, Benzene, Ethylbenzene, Formaldehyde, Naphthalene, PAH, Propylene, PAH, Propylene, Toluene, Xylene | kg |
Electricity | 0.9 | kWh | |||
Transportation of product | Compost | 330 | kg | Diesel emissions: CO2, CO, NOx, SO2, CH4, N2O, PM10, Hydrocarbons | kg |
Diesel | 0.46 | kg | |||
Windrow composting Final use | Compost | 330 | kg | 300 kg Compost consisting of nitrogen, phosphorus, and potassium | kg |
Artificial fertilizer (avoided) |
Feedstock | Waste Source | % | CH4 | N2O | NH3 |
---|---|---|---|---|---|
Food waste | Household organic wastes | 49.6 | 9.08 × 10−1 | 3.72 × 10−2 | 2.01 × 10−1 |
Leaves | Household organic wastes with leaves and branches | 27.8 | 5.28 × 10−2 | 1.95 × 10−2 | 0.00 |
Manure + lab animal cage waste | Bio-waste compost | 16 | 4.24 × 10−2 | 1.14 × 10−2 | 5.02 × 10−2 |
Pallet chips | Household organic wastes mixed with coarsely chopped branches and bush trimmings | 3.8 | 4.52 × 10−1 | 3.80 × 10−3 | 0.00 |
Switch grass | Household organic wastes with leaves, grass clippings and bush trimmings | 2 | 3.44 × 10−3 | 4.44 × 10−4 | 0.00 |
Straw + paper | Green waste | 0.8 | 2.61 × 10−3 | 8.12 × 10−4 | 1.52 × 10−3 |
Nutrient | Nutrient Content (mg Nutrient/kg Dry Compound) | Replacement of Inorganic Fertilizers (mg/kg) |
---|---|---|
N | 5.58 | 1.12 |
P | 43.3 | 43.3 |
K | 51.2 | 51.2 |
Impact Category | Unit | Compost | Inorganic Fertilizer |
---|---|---|---|
Abiotic depletion Potential (ADP) | kg Sb eq. | 2.87 × 10−7 | −1.31 × 10−6 |
Abiotic depletion Potential (fossil fuel) (ADP-FF) | MJ | 0 | 0 |
Global warming potential (GWP 100a) | kg CO2 eq. | 0 | −0.0427 |
Ozone layer depletion (ODP) | kg CFC − 11 eq. | 0 | 0 |
Human toxicity (HT) | kg 1,4 − DB eq. | 0 | −0.000801 |
Photochemical oxidation Potential (POP) | kg C2H4 eq. | 0 | −1.69 × 10−5 |
Acidification Potential (AP) | kg SO2 eq. | 0 | −0.000491 |
Eutrophication Potential (EP) | kg PO4 eq. | 0 | −3.377 × 10−5 |
Emission | Concentration (mg/L) | Source | Efficiency of Removal | Source | Processed Effluent |
---|---|---|---|---|---|
BOD | 2231 | [48] | 85 | [49] | 446 |
COD | 11,245 | [50] | 80 | [51] | 2249 |
TSS | 1407 | [48] | 80 | [51] | 281 |
N total | 1310 | [48] | 60 | [51] | 524 |
Phosphate | 58 | [48] | 84 | [51] | 9.3 |
Biogas | % |
---|---|
Methane | 60 |
Carbon dioxide | 35 |
Hydrogen Sulfide | 1.67 |
Ammonia | 1.67 |
Water | 1.67 |
Process | Input | Amount | Unit | Output | Amount | Unit | Source |
---|---|---|---|---|---|---|---|
Collection and transportation | Food waste | 1 | tonne | Diesel emissions: CO2, CO, NOx, SO2, CH4, N2O, PM10, Hydrocarbons | kg | [56] | |
Diesel | 14.57 | kg | g | ||||
Anaerobic digestion | Food waste | 1 | tonne | Biogas | 150 | m3 | [39] |
Energy for feedstock preparation | 11.25 | kWh | Digestate | 0.85 | tonne | ||
Heat for digester | 19.25 | kWh | Effluent | 0.57 | tonne | ||
Water | 0.5 | tonne | |||||
Biogas utilization | Biogas | 148 | m3 | Emissions from biogas use: NMVOCs, NOx, CO, PM, SOx, HCL, HF | Kg | [39] | |
Electricity | 178.1 | kWh | |||||
Heat | 120.9 | kWh | |||||
Composting | Energy from biogas utilization | 9.52 | kWh | Compost | 225 | kWh | [39] |
Air | 0.9 | tonne | kg | ||||
Digestate | 0.85 | tonne | Emissions from composting: CH4, N2O, NH3 | kg | |||
Effluent | 0.57 | tonne | kg | ||||
Transport of compost (product) | Compost | 255 | tonne | Diesel emissions: CO2, CO, NOx, SO2, CH4, N2O, PM10, Hydrocarbons | kg | ||
Diesel | 4.56 | kg | kg | ||||
Final use of compost | Avoided product (inorganic fertilizer) | Compost consisting of nitrogen, phosphorus and potassium | 225 | kg | [39] |
Parameter | AD (g/kg) |
---|---|
NH3 | 0.20 |
CO2 | 0 |
Biogenic CO2 * | 579.20 |
CO | 2.15 |
N2O | 0.069 |
H2S | 0.17 |
CH4 | 0.59 |
NOx | 0 |
Emissions to Air | (g/m3 Biogas) |
---|---|
NOx | 6.96 |
CO | 5.076 |
PM | 0.139 |
SOx | 0.953 |
HCl | 0.085 |
HF | 0.095 |
NMVOCs | 95.15 |
Percentage of Variation | Total (Kg CO2 eq.) | % |
---|---|---|
30% | 128.083 | 0.250% |
10% | 127.866 | 0.085% |
Reference | 127.758 | – |
−10% | 127.649 | −0.850% |
−30% | 127.432 | −0.250% |
Percentage of Variation % | Total (CO2 eq) | % |
---|---|---|
30% | 28.267 | 6.75% |
10% | 27.074 | 2.25% |
Reference | 26.478 | – |
−10% | 25.882 | −6.25% |
−30% | 24.690 | −2.25% |
Percentage of Variation | Total (CO2eq) | % of Change from Baseline Study |
---|---|---|
30% | −2.457 | −109.28% |
10% | 16.833 | −36.43% |
Reference | 26.478 | – |
−10% | 36.123 | 36.43% |
−30% | 55.414 | 109.28% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rumaihi, A.; McKay, G.; Mackey, H.R.; Al-Ansari, T. Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques. Sustainability 2020, 12, 1595. https://doi.org/10.3390/su12041595
Al-Rumaihi A, McKay G, Mackey HR, Al-Ansari T. Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques. Sustainability. 2020; 12(4):1595. https://doi.org/10.3390/su12041595
Chicago/Turabian StyleAl-Rumaihi, Aisha, Gordon McKay, Hamish R. Mackey, and Tareq Al-Ansari. 2020. "Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques" Sustainability 12, no. 4: 1595. https://doi.org/10.3390/su12041595
APA StyleAl-Rumaihi, A., McKay, G., Mackey, H. R., & Al-Ansari, T. (2020). Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques. Sustainability, 12(4), 1595. https://doi.org/10.3390/su12041595