Protection of Cultural Heritage Buildings and Artistic Assets from Seismic Hazard: A Hierarchical Approach
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Method: The Analytic Hierarchy Process
3. Model
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Valluzzi, M.R. On the vulnerability of historical masonry structures: Analysis and mitigation. Mater. Struct. 2007, 40, 723–743. [Google Scholar] [CrossRef]
- Binda, L.; Cardani, G.; Saisi, A.; Valluzzi, M.R.; Munari, M.; Modena, C. Multilevel approach to the vulnerability analysis of historic buildings in seismic areas—Part 1: Detection of parameters for the vulnerability analysis through on site and laboratory investigations. Int. J. Restor. Build. Monum./Internationale Zeitschrift für Bauinstandsetzen und Baudenkmalpflege 2007, 13, 413–426. [Google Scholar]
- D’Ayala, D.; Speranza, E. Definition of collapse mechanisms and seismic vulnerability of historic masonry buildings. Earthq. Spectra 2003, 19, 479–509. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Podesta, S. Seismic Vulnerability of Ancient Churches: I. Damage Assessment and Emergency Planning. Earthq. Spectra 2004, 20, 377–394. [Google Scholar] [CrossRef]
- Valluzzi, M.R.; Munari, M.; Modena, C.; Binda, L.; Cardani, G.; Saisi, A. Multilevel approach to the vulnerability analysis of historic buildings in seismic areas—Part 2: Analytical interpretation of mechanisms for the vulnerability analysis and the structural improvement. Int. J. Restor. Build. Monum./Internationale Zeitschrift für Bauinstandsetzen und Baudenkmalpflege 2007, 13, 427–441. [Google Scholar]
- da Porto, F.; Silva, S.; Costa, C.; Modena, C. Macro-Scale Analysis of Damage to Churches after Earthquake in Abruzzo (Italy) on April 6, 2009. J. Earthq. Eng. 2012, 16, 739–758. [Google Scholar] [CrossRef]
- Modena, C.; Valluzzi, M.R.; da Porto, F.; Casarin, F. Structural aspects of the conservation of historic stone masonry constructions in seismic areas. Int. J. Archit. Herit. 2011, 5, 539–558. [Google Scholar] [CrossRef]
- Della Spina, L.; Calabrò, F. Decision Support Model for Conservation, Reuse and Valorization of the Historic Cultural Heritage. In Computational Science and Its Applications, Proceedings of the ICCSA 2018, Melbourne, Australia, 2–5 July 2018; Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y., Eds.; Springer: Cham, Switzerland, 2018; Volume 10962, pp. 3–17. [Google Scholar]
- Bottero, M.; D’Alpaos, C.; Oppio, A. Ranking of adaptive reuse strategies for abandoned industrial heritage in vulnerable contexts: A multiple criteria decision aiding approach. Sustainability 2019, 11, 785. [Google Scholar] [CrossRef] [Green Version]
- Ribera, F.; Nesticò, A.; Cucco, P.; Maselli, G. A multicriteria approach to identify the Highest and Best Use for historical buildings. J. Cult. Herit. 2019, 41, 166–177. [Google Scholar] [CrossRef]
- Bottero, M.; D’Alpaos, C.; Marello, A. An Application of the A’WOT Analysis for the Management of Cultural Heritage Assets: The Case of the Historical Farmhouses in the Aglié Castle (Turin). Sustainability 2020, 12, 1071. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Bhushan, N.; Rai, K. Strategic Decision Making Applying the Analytic Hierarchy Process; Springer: London, UK, 2004. [Google Scholar]
- Yau, Y. Multi-criteria decision making for urban built heritage conservation: Application of the analytic hierarchy process. J. Build. Apprais. 2008, 4, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Kutut, V.; Zavadskas, E.K.; Lazauskas, M. Assessment of priority alternatives for preservation of historic buildings using model based on ARAS and AHP methods. Arch. Civ. Mech. Eng. 2014, 14, 287–294. [Google Scholar] [CrossRef]
- Aliabadi, S.F.; Sarsangi, A.; Modiri, E. The social and physical vulnerability assessment of old texture against earthquake (case study: Fahadan district in Yazd City). Arab. J. Geosci. 2015, 8, 10775–10787. [Google Scholar] [CrossRef]
- Vodopivec, B.; Žarnića, R.; Tamošaitienė, J.; Lazauskas, M.; Šelih, J. Renovation priority ranking by multi-criteria assessment of architectural heritage: The case of castles. Int. J. Strateg. Prop. Manag. 2014, 18, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Valluzzi, M.R.; Calò, S.; Giacometti, G. Correlation of vulnerability and damage between artistic assets and structural elements: The DataBAES archive for the conservation planning of CH masonry buildings in seismic areas. Sustainability 2020, 12, 653. [Google Scholar] [CrossRef] [Green Version]
- Technologies for the Seismic Protection and Valorization of Cultural Heritage. Available online: https://databaes.dicea.unipd.it/ (accessed on 18 November 2019).
- D.P.C (Italian Department of Civil Protection); Work Group for Protection of Cultural Heritage against Natural Risks. Scheda per il Rilievo dei Beni Culturali—Danno alle Chiese—Modello A-DC (in Italian). 2001. Available online: http://www.beniculturali.it (accessed on 18 November 2019).
- Grünthal, G. European Macroseismic Scale 1998. Cahiers du Centre Européen de Géodynamique et de Séismologie 1998, 15, 1–97. [Google Scholar]
- CNR-ICR. Raccomandazioni NorMaL—1/88. Alterazioni Macroscopiche Dei Materiali Lapidei: Lessico. Roma (in Italian). 1990. Available online: https://www.unirc.it/documentazione/materiale_didattico/597_2011_287_13564.pdf (accessed on 10 January 2020).
- Saaty, T.L. Decision making, new information, ranking and structure. Math. Model. 1987, 8, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.A.; Santos, S.P.; Dias, V.M. An AHP-based approach to credit risk evaluation of mortgage loans. Int. J. Strateg. Prop. Manag. 2014, 18, 38–55. [Google Scholar] [CrossRef]
- De Felice, F.; Petrillo, A. Absolute measurement with analytic hierarchy process: A case study for Italian racecourse. Int. J. Appl. Decis. Sci. 2013, 6, 209–227. [Google Scholar] [CrossRef]
- Abastante, F.; Lami, I.M. An analytical model to evaluate a large scale urban design competition. Geoingegneria Ambientale e Mineraria 2013, 139, 27–36. [Google Scholar]
- Nicu, I.C. Cultural heritage assessment and vulnerability using Analytic Hierarchy Process and Geographic Information Systems (Valea Oii catchment, North-eastern Romania). An approach to historical maps. Int. J. Disaster Risk Reduct. 2016, 20, 103–111. [Google Scholar] [CrossRef]
- Ma, H.; Li, S.; Chan, C.-S. Analytic Hierarchy Process (AHP)-based assessment of the value of non-World Heritage Tulou: A case study of Pinghe County, Fujian Province. Tour. Manag. Perspect. 2018, 26, 67–77. [Google Scholar] [CrossRef]
- Vargas, L.G. An overview of the analytic hierarchy process and its applications. Eur. J. Oper. Res. 1990, 48, 2–8. [Google Scholar] [CrossRef]
- Banzato, D.; Canesi, R.; D’Alpaos, C. Biogas and biomethane technologies: An AHP model to support the policy maker in incentive design in Italy. In Smart and Sustainable Planning for Cities and Regions; SSPCR 2017. Green Energy and Technology; Bisello, A., Vettorato, D., Laconte, P., Costa, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 223–231. [Google Scholar] [CrossRef]
- D’Alpaos, C.; Bragolusi, P. Multicriteria prioritization of policy instruments in buildings energy retrofit. Valori e Valutazioni 2018, 21, 15–25. [Google Scholar]
- D’Alpaos, C.; Bragolusi, P. Prioritization of energy retrofit strategies in public housing: An AHP model. In New Metropolitan Perspectives; ISHT 2018. Smart Innovation, Systems and Technologies; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2019; Volume 101, pp. 534–541. [Google Scholar] [CrossRef]
- Roy, B. Métodologie Multicritère d’Aide à la Decision; Economica: Paris, France, 1985. [Google Scholar]
- Vincke, P. Multicriteria Decision-Aid; John Wiley & Sons: New York, NY, USA, 1992. [Google Scholar]
- Saaty, T.L. Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process; RWS Publications: Pittsburgh, PA, USA, 2000. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process in Conflict Management. Int. J. Confl. Manag. 1990, 1, 47–68. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Review of the main developments in the analytic hierarchy process. Expert Syst. Appl. 2011, 38, 14336–14345. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Alonso, A.J.; Lamata, M.T. Consistency in the Analytic Hierarchy Process: A New Approach. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2006, 14, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Perez-Gladish, B.; M’Zali, B. An AHP-based approach to mutual funds’ social performance measurement. Int. J. Multicriteria Decis. Mak. 2010, 1, 103–127. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G.; Dellmann, K. The allocation of intangible resources: The analytic hierarchy process and linear programming. Socio-Econ. Plan. Sci. 2003, 37, 169–184. [Google Scholar] [CrossRef]
- Saaty, T.L. Absolute and relative measurement with the AHP. The most livable cities in the United States. Socio-Econ. Plan. Sci. 1986, 20, 327–331. [Google Scholar] [CrossRef]
- Saaty, T.L. Rank from comparisons and from ratings in the analytic hierarchy/network processes. Eur. J. Oper. Res. 2006, 168, 557–570. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision-making with the Analytic Hierarchy Process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Rafikul, I.; Mohd Rasad, S. Employee performance evaluation by AHP: A case study. In Proceedings of the ISAHP 2005, Honolulu, HI, USA, 8–10 July 2005. [Google Scholar]
- Saaty, T.L.; Odzemir, M.S. Why the magic number seven plus or minus two. Math. Comput. Model. 2003, 38, 233–244. [Google Scholar] [CrossRef]
- Tramarico, C.L.; Marins, F.A.; Urbina, L.M.; Salomon, V.A.P. Benefit assessment of training on supply chain management. Int. J. Anal. Hierarchy Process. 2015, 7, 240–255. [Google Scholar] [CrossRef]
- Saaty, T.L.; Wei, L. Should the UK have brexited the European Union? Int. J. Anal. Hierarchy Process 2016, 8, 206–223. [Google Scholar] [CrossRef]
- Salomon, V.A.P. Absolute measurement and ideal synthesis on AHP. Int. J. Anal. Hierarchy Process. 2016, 8, 538–545. [Google Scholar] [CrossRef]
- Saaty, T.L.; Peniwati, K. Group Decision Making: Drawing Out and Reconciling Differences; RWS Publications: Pittsburgh, PA, USA, 2012. [Google Scholar]
- Dias, L.C.; Antunes, C.H.; Dantas, G.; de Castro, N.; Zamboni, L. A multi-criteria approach to sort and rank policies based on Delphi qualitative assessments and ELECTRE TRI: The case of smart grids in Brazil. Omega 2018, 76, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Kintarso, H.; Peniwati, K. Developing and selecting business strategy, and prioritizing strategic actions for a tool steel company with the analytic hierarchy process’. In Proceedings of the 7th Asia Pacific Management Conference, Kuala Lumpur, Malaysia, 27–31 January 2001. [Google Scholar]
- Senge, P.M. The Fifth Discipline: The Art & Practice of the Learning Organization; Currency Doubleday: New York, NY, USA, 2006. [Google Scholar]
- Xu, Z. On consistency of the weighted geometric mean complex judgement matrix in AHP. Eur. J. Oper. Res. 2000, 126, 683–687. [Google Scholar] [CrossRef]
- Grošelj, P.; Zadnik Stirn, L. Acceptable consistency of aggregated comparison matrices in analytic hierarchy process. Eur. J. Oper. Res. 2012, 223, 417–4201. [Google Scholar] [CrossRef]
Church | Localization (Province) | Reference Earthquake |
---|---|---|
Chiesa di Sant’Antonio | San Polito Ultra (AV) | 1980 |
Complesso di Santa Maria ai Monti | Tricarico (MT) | 1980 |
Chiesa dell’Annunziata | Laurino (SA) | 1980 |
Chiesa di Santa Maria delle Grazie | Cassano Irpino (AV) | 1980 |
Complesso della Madonna del Carmine | Tricarico (MT) | 1980 |
Chiesa di San Michele Arcangelo | Saviano (NA) | 1980 |
Cappella degli Scrovegni | Padova | - |
Chiesa di San Marco | L’Aquila | 2009 |
Chiesa di San Silvestro | L’Aquila | 2009 |
Chiesa del Santo Rosario | Finale Emilia (MO) | 2012 |
Chiesa di S. Egidio | Cavezzo (MO) | 2012 |
Chiesa dei Santi Senesio e Teopompo | Medolla (MO) | 2012 |
Chiesa di San Luca Evangelista | Medolla (MO) | 2012 |
Chiesa dell’Immacolata Concezione | Crevalcore (BO) | 2012 |
Importance | Definition |
---|---|
1 | Equal importance |
3 | Moderate dominance |
5 | Strong dominance |
7 | Demonstrated dominance |
9 | Extreme dominance |
2,4,6,8 | Intermediate values |
Criteria | Description |
D1–Foundation | Structure composing foundations |
D2–Above-ground structure | Structural elements composing the surface structure |
D3–Horizontal components | Floors and roof |
Sub-criterion D2 | Description |
D2.1–triumphal arch | Wall archway opposite to façade |
D2.2–apse | Semicircular or polygonal recess, arched or with a domed roof |
D2.3–nave | Main body of a church between façade and triumphal arch enclosed either between aisles or lateral walls |
D2.4–bell-tower | Tower with a belfry containing bells, included, adjacent or detached from the church |
D2.5–lateral chapel | Small room adjacent to the main walls of the church |
D2.6–façade | External main face of the church |
D2.7–transept | Transverse portion lying across the main body of the church |
Sub-criterion D2.1 | Description |
D2.1.1–mural painting | Decorative painting applied to immovable substrate |
D2.1.2–mosaic | Patterned surface composed of tesserae |
D2.1.3–none | Absence of decoration on substrate |
D2.1.4–stucco | Decorative plasterwork |
Sub-criterion D2.2 | Description |
D2.2.1–apse overturning | Out-of-plane rotation |
D2.2.2–shear mechanism | Shear deformation/cracking of masonry walls |
D2.2.3–presbytery/vaults of apse | Shear deformation/cracking of masonry vaults |
Sub-criterion D2.3 | Description |
D2.3.1–transverse response | Out-of-plane displacement of one or more lateral walls |
D2.3.2–shear mechanism | Shear deformation/cracking of masonry walls |
D2.3.3–response of colonnade | Shear deformation/cracking due to in-plane actions in colonnade |
D2.3.4–vaults of nave | Shear deformation/cracking of vaults of central nave |
D2.3.5–vaults of side aisle | Shear deformation/cracking of vaults of side aisles |
Sub-criterion D2.4 | Description |
D2.4.1–belfry | In-plane deformation of arches or pier ends |
D2.4.2–bell tower | Rotation of tower or in-plane deformation of walls |
D2.4.3–projections | Out-of-plane rotation or displacement of projections |
Sub-criterion D2.5 | Description |
D2.5.1–overturning | Out-of plane rotation of lateral chapels |
D2.5.2–shear mechanisms | In-plane shear deformation/cracking |
D2.5.3–vaults of chapels | Shear deformation/cracking on vaults of chapels |
D2.5.4–irregularities on plan and elevation | Deformations due to interaction with adjiacent structures |
Sub-criterion D2.6 | Description |
D2.6.1–overturning | Out-of-plane overturning of façade |
D2.6.2–in-plane mechanisms | In-plane shear deformation or tensile cracking of façade |
D2.6.3–mechanisms at top part | Out-of-plane flexural displacement at top |
D2.6.4–prothyrum or narthex | Out-of-plane flexural displacement of prothyrum or narthex |
Sub-criterion D2.7 | Description |
D2.7.1–overturning of end wall | Out-of-plane overturning of end walls of transept |
D2.7.2–shear mechanisms | Shear deformation/cracking |
D2.7.3–vaults of transept | Shear deformation/cracking of vaults |
Sub-criterio D2.i.j where 2 < i < 7 e 1 < j < 5 | Description |
D2.i.j.1–mural painting | Decorative painting applied to immovable substrate |
D2.i.j.2–mosaic | Patterned surface composed of tesserae |
D2.i.j.3–none | Absence of decoration on substrate |
D2.i.j.4–stucco | Decorative plasterwork |
Sub-criterion D3 | Description |
D3.1–roofing | Roof structure of the church |
D3.2–matroneum (floors) | Balcony or porch for women; horizontal floor |
Sub-criterion D3.1 | Description |
D3.1.1–dome | Roofing cap covering squared, circular or poligonal rooms di vani a pianta quadrata, circolare o poligonale |
D2.1.2–roof of building | Main roof structure made of timber trusses covered by secondary wooden framework and roof tiles |
Sub-criterion D3.1.1 | Description |
D3.1.1.1–lantern | Shear deformation/cracking of cap or torsional rupture of base of pillars |
D3.1.1.2–lantern tower/drum | Shear deformation/cracking of dome with extension to drum |
Sub-criterio D3.1.i.j where 1 < i < 2 e 1 < j < 2 | Description |
D2.i.j.1–mural painting | Decorative painting applied to immovable substrate |
D2.i.j.2–mosaic | Patterned surface composed of tesserae |
D2.i.j.3–none | Absence of decoration on substrate |
D2.i.j.4–stucco | Decorative plasterwork |
Goal | Priority Vector |
---|---|
foundations | 0.3196 |
above-ground structure | 0.5584 |
horizontal components | 0.1220 |
CI | 0.01759 |
Criterion D2 | Priority vector |
triumphal arch | 0.1375 |
apse | 0.0609 |
nave | 0.2507 |
bell tower | 0.0222 |
lateral chapel | 0.0270 |
façade | 0.4170 |
transept | 0.0845 |
CI | 0.07515 |
Sub-criterion D2.1 | Priority vector |
mural painting | 0.4673 |
mosaic | 0.2772 |
none | 0.0954 |
stucco | 0.1601 |
CI | 0.01160 |
Sub-criterion D2.2 | Priority vector |
apse overturning | 0.6483 |
shear mechanisms | 0.2297 |
presbytery/vaults of apse | 0.1220 |
CI | 0.00355 |
Sub-criterion D2.3 | Priority vector |
transverse response | 0.5360 |
shear mechanisms | 0.0533 |
response of colonnade | 0.2246 |
vaults of nave | 0.1166 |
vaults of side aisle | 0.0696 |
CI | 0.05971 |
Sub-criterion D2.4 | Priority vector |
belfry | 0.2785 |
bell tower | 0.6630 |
projections | 0.0585 |
CI | 0.05156 |
Sub-criterion D2.5 | Priority vector |
overturning | 0.5781 |
shear mechanisms | 0.2282 |
vaults of chapels | 0.1336 |
irregularities on plan and elevation | 0.0601 |
CI | 0.02524 |
Sub-criterion D2.6 | Priority vector |
overturning of façade | 0.5610 |
in-plane mechanisms | 0.0963 |
mechanisms at top part | 0.2960 |
prothyrum or narthex | 0.0467 |
CI | 0.07311 |
Sub-criterion D2.7 | Priority vector |
overturning of end wall | 0.6483 |
Shear mechanisms | 0.2297 |
vaults of transept | 0.1220 |
CI | 0.00355 |
Criterion D3 | Priority vector |
roofing | 0.8333 |
matroneum (floors) | 0.1667 |
CI | 0.0001 |
Sub-criterion D3.1 | Priority vector |
dome | 0.750 |
roof of building | 0.250 |
CI | 0.0002 |
Sub-sub-criterion D3.1.1 | Priority vector |
lantern | 0.125 |
Lantern tower/drum | 0.875 |
CI | 0.0001 |
Sub-sub-criterion D2.i.j (2<i<7 and 1<j <5); Sub-sub-criterion D3.1.i.j (1 <i<2 and 1<j<2) | Priority vector |
mural painting | 0.4673 |
mosaic | 0.2772 |
none | 0.0954 |
stucco | 0.1601 |
CI | 0.0116 |
Priority Vector | |
---|---|
collapse | 0.4830 |
very high | 0.1921 |
high | 0.1874 |
moderate | 0.0646 |
low | 0.0427 |
null | 0.0302 |
Church | Priority (Normal Values) | Ranking |
---|---|---|
Chiesa di Sant’Antonio | 0.233600 | 1 |
Chiesa di San Marco | 0.130948 | 2 |
Cappella degli Scrovegni | 0.121087 | 3 |
Chiesa Madre | 0.100648 | 4 |
Chiesa di San Silvestro | 0.073573 | 5 |
Chiesa di Santa Maria delle Grazie | 0.072700 | 6 |
Chiesa del Santo Rosario | 0.060274 | 7 |
Chiesa dell’Annunziata | 0.037264 | 8 |
Chiesa di S. Egidio | 0.034368 | 9 |
Chiesa dei Santi Senesio e Teopompo | 0.034363 | 10 |
Complesso di Santa Maria ai Monti | 0.019805 | 11 |
Chiesa di San Luca Evangelista | 0.008256 | 12 |
Complesso della Madonna del Carmine | 0.001544 | 13 |
Chiesa di San Michele Arcangelo | 0.001054 | 14 |
Chiesa dell’Immacolata Concezione | 0.000713 | 15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alpaos, C.; Valluzzi, M.R. Protection of Cultural Heritage Buildings and Artistic Assets from Seismic Hazard: A Hierarchical Approach. Sustainability 2020, 12, 1608. https://doi.org/10.3390/su12041608
D’Alpaos C, Valluzzi MR. Protection of Cultural Heritage Buildings and Artistic Assets from Seismic Hazard: A Hierarchical Approach. Sustainability. 2020; 12(4):1608. https://doi.org/10.3390/su12041608
Chicago/Turabian StyleD’Alpaos, Chiara, and Maria Rosa Valluzzi. 2020. "Protection of Cultural Heritage Buildings and Artistic Assets from Seismic Hazard: A Hierarchical Approach" Sustainability 12, no. 4: 1608. https://doi.org/10.3390/su12041608
APA StyleD’Alpaos, C., & Valluzzi, M. R. (2020). Protection of Cultural Heritage Buildings and Artistic Assets from Seismic Hazard: A Hierarchical Approach. Sustainability, 12(4), 1608. https://doi.org/10.3390/su12041608