Commuting Pattern Recognition Using a Systematic Cluster Framework
Abstract
:1. Introduction
2. Methodology
2.1. Trip Generation from ALPR Data
2.2. Feature Selection and Extraction
2.3. Commuting Vehicles Identification Using Ward’s Hierarchical Clustering
2.3.1. Objective Function
2.3.2. Dissimilarity Measurement
2.3.3. Clustering Procedure
3. Implementation
3.1. Data Description and Feature Extraction
3.2. Performance Evaluation
3.3. Commuting Pattern Analysis
3.3.1. Temporal Commuting Pattern
3.3.2. Spatial Commuting Pattern
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, Y.; Wang, F. Temporal trends of intra urban commuting in Baton Rouge, 1990–2010. Ann. Am. Assoc. Geogr. 2016, 106, 470–479. [Google Scholar]
- McGuckin, N.; Fucci, A. Summary of Travel Trends: 2017 National Household Travel Survey, Report No: FHWA-PL-18-019; U.S. Department of Transportation, Federal Highway Administration: Washington, DC, USA, 2018.
- Varga, L.; Toth, G.; Neda, Z. Commuting patterns: The flow and jump model and supporting data. EPJ Data Sci. 2018, 7, 1–13. [Google Scholar] [CrossRef]
- Uboe, J. Aggregation of gravity models for journeys to work. Environ. Plan. A 2004, 36, 715–729. [Google Scholar] [CrossRef] [Green Version]
- Simini, F.; Gonzalez, M.C.; Maritan, A.; Barabasi, A.L. A universal model for mobility and migration patterns. Nature 2012, 484, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Stefanouli, M.; Polyzos, S. Gravity vs radiation model: Two approaches on commuting in Greece. Transp. Res. Procedia 2017, 24, 65–72. [Google Scholar] [CrossRef]
- Masucci, A.P.; Serras, J.; Johansson, A.; Batty, M. Gravity versus radiation models: On the importance of scale and heterogeneity in commuting flows. Phys. Rev. E. 2013, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargiulo, F.; Lenormand, M.; Huet, S.; Espinosa, O.B. Commuting network models: Getting the essentials. J. Artif. Soc. Soc. Simul. 2012, 15. [Google Scholar] [CrossRef]
- Tsiotas, D.; Aspridis, G.; Gavardinas, I.; Sdrolias, L.; Skodova-Parmova, D. Gravity modeling in social science: The case of the commuting phenomenon in Greece. Evol. Inst. Econ. Rev. 2019, 16, 139–158. [Google Scholar] [CrossRef]
- Bhat, C. Modeling the commute activity-travel pattern of workers: Formulation and empirical analysis. Transp. Sci. 2001, 35, 61–79. [Google Scholar] [CrossRef]
- Wan, L.; Gao, S.; Wu, C.; Jin, Y.; Mao, M.; Yang, L. Big data and urban system model-substitutes or complements? A case study of modelling commuting patterns in beijing. Comp. Environ. Urban Syst. 2018, 68, 64–77. [Google Scholar] [CrossRef]
- Polyzos, S.; Tsiotas, D.; Minetos, D. Determining the Driving Factors of Commuting: An Empirical Analysis from Greece. J. Eng. Sci. Technol. Rev. 2013, 6, 46–55. [Google Scholar] [CrossRef]
- Batty, M. Big data, smart cities and city planning. Dialogues Hum. Geogr. 2013, 3, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Kahaki, S.M.M.; Nordin, M.J.; Ashtari, A.H. Incident and traffic-bottleneck detection algorithm in high-resolution remote sensing imagery. J. ICT Res. Appl. 2012, 6, 151–170. [Google Scholar] [CrossRef] [Green Version]
- Kahaki, S.M.M.; Fathy, M.; Ganj, M. Road-following and traffic analysis using high-resolution remote sensing imagery. In Proceedings of the 3rd International Workshop on Intelligent Vehicle Controls and Intelligent Transportation Systems, Milan, Italy, 4–5 July 2009; pp. 133–142. [Google Scholar]
- Kahaki, S.M.M.; Nordin, M.D.J.; Ashtari, A.H. Incident detection algorithm based on radon transform using high-resolution remote sensing imagery. In Proceedings of the 2011 International Conference on Electrical Engineering and Informatics, Bandung, Indonesia, 17–19 July 2011. [Google Scholar]
- Zhou, D.; Hong, R.; Xia, J. Identification of taxi pick-up and drop-off hotspots using the density-based spatial clustering method. In Proceedings of the 17th COTA International Conference of Transportation Professionals, Shanghai, China, 7–8 July 2018. [Google Scholar]
- Kung, K.; Greco, K.; Sobolevsky, S.; Ratti, C. Exploring universal patterns in human home-work commuting from mobile phone data. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altintasi, O.; Tuydesyaman, H. Utilization of RFID data to evaluate characteristics of private car commuters in Middle East Technical University campus. Pamukkale Univ. J. Eng. Sci. 2016, 22, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Liu, C.; Wen, H.; Wang, Y. Understanding commuting patterns using transit smart card data. J. Transp. Geogr. 2017, 58, 135–145. [Google Scholar] [CrossRef]
- McNeill, G.; Bright, J.; Hale, S.A. Estimating local commuting patterns from geolocated Twitter data. EPJ Data Sci. 2017, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Tong, M. Classification of London’s Public Transport Users Using Smart Card Data. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2013. [Google Scholar]
- Chang, Y.; Yang, D. Recognition of Vehicles with Commuting Property Using License Plate Data. J. Transp. Syst. Eng. Inf. Technol. 2016, 16, 77–82. (In Chinese) [Google Scholar]
- Chen, H.; Yang, C.; Xu, X. Clustering vehicle temporal and spatial travel behavior using license plate recognition data. J. Adv. Transp. 2017, 2017. [Google Scholar] [CrossRef]
- Rao, W.; Wu, Y.J.; Xia, J.; Ou, J.; Kluger, R. Origin-destination pattern estimation based on trajectory reconstruction using automatic license plate recognition data. Transp. Res. Part C Emerg. Technol. 2018, 95, 29–46. [Google Scholar] [CrossRef]
- Ou, J.; Lu, J.; Xia, J.; An, C.; Lu, Z. Learn, Assign, and Search: Real-Time Estimation of Dynamic Origin-Destination Flows Using Machine Learning Algorithms. IEEE Access 2019, 7, 26967–26983. [Google Scholar] [CrossRef]
- Ou, J.; Xia, J.; Wu, Y.-J.; Rao, W. Short-term traffic flow forecasting for urban roads using data-driven feature selection strategy and Bias-corrected random forests. Transp. Res. Rec. 2019, 2645, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, F.; Ozen, F. A new license plate recognition system based on probabilistic neural networks. Procedia Technol. 2012, 1, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Primerano, F.; Taylor, M.A.P.; Pitaksringkarn, L.; Tisato, P. Defining and understanding trip chaining behaviour. Transportation 2008, 35, 55–72. [Google Scholar] [CrossRef]
- Kim, J.; Mahmassani, H.S. Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories. Transp. Res. Procedia 2015, 9, 164–184. [Google Scholar] [CrossRef] [Green Version]
- Rao, W.; Xia, J.; Lyu, W.; Lu, Z. Interval data-based k-means clustering method for traffic state identification at urban intersections. IET Intell. Transp. Syst. 2019, 13, 1106–1115. [Google Scholar] [CrossRef]
- Oh, S.; Byon, Y.-J.; Yeo, H. Impact of Traffic State Transition and Oscillation on Highway Performance with Section-Based Approach. In Proceedings of the Intelligent Transportation Systems (ITSC) 2015, IEEE 18th International Conference on IEEE, Las Palmas, Spain, 15–18 September 2015; pp. 2141–2146. [Google Scholar]
- Fraley, C.; Raftery, A.E. Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 2002, 97, 611–631. [Google Scholar] [CrossRef]
- Xia, J.; Chen, M. A nested clustering technique for freeway operating condition classification. Comput.-Aided Civ. Infrastruct. Eng. 2007, 22, 430–437. [Google Scholar] [CrossRef]
- Xia, J.; Huang, W.; Guo, J. A clustering approach to online freeway traffic state identification using ITS data. KSCE J. Civil Eng. 2012, 16, 426–432. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Clustering Method: Clustering Criterion and Agglomerative Algorithm. Available online: https://arxiv.org/pdf/1111.6285.pdf (accessed on 25 December 2019).
- Ou, J.; Xia, J.; Wang, Y.; Wang, C.; Lu, Z. A data-driven approach to determining freeway incident impact areas with fuzzy and graph theory-based clustering. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 178–199. [Google Scholar] [CrossRef]
- Ou, J.; Yang, S.; Wu, Y.-J.; An, C.; Xia, J. Systematic clustering method to identify and characterise spatiotemporal congestion on freeway corridors. IET Intell. Transp. Syst. 2018, 12, 826–837. [Google Scholar] [CrossRef] [Green Version]
- Dragut, A.; Nichitiu, C. A monotonic on-line linear algorithm for hierarchical agglomerative classification. Inf. Technol. Manag. 2004, 5, 114–141. [Google Scholar] [CrossRef]
- Rani, Y.; Rohil, H. A study of hierarchical clustering algorithm. Int. J. Inf. Comput. Technol. 2013, 3, 1225–1232. [Google Scholar]
- Liu, Y.; Li, Z.; Xiong, H.; Gao, X.; Wu, J. Understanding of Internal Clustering Validation Measures. In Proceedings of the 2010 IEEE International Conference on Data Mining, Sydney, Australia, 14–17 December 2010. [Google Scholar]
- Strobl, C.; Boulesteix, A.L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
Date_Key | Time_Key | Week | License_Plate | Direc_tion | Install_Type | Lp_Camera_Id |
---|---|---|---|---|---|---|
20170501 | 92449840 | Mon | …9603 | WB | 0 | 1000077 |
20170501 | 171139043 | Mon | …0161 | WB | 1 | 1000049 |
20170501 | 171436975 | Mon | …0161 | WB | 1 | 1000051 |
20170501 | 121404959 | Mon | …0708 | WB | 1 | 1000048 |
20170501 | 123904031 | Mon | …7HJ6 | WB | 1 | 1000043 |
20170501 | 201203163 | Mon | …R8E8 | WB | 1 | 1000035 |
20170501 | 125711833 | Mon | …SV31 | WB | 0 | 1000080 |
ID | License_Plate | |||
---|---|---|---|---|
1 | …F507 | 23 | 1 | 2 |
2 | …K132 | 23 | 2 | 1 |
3 | …5A58 | 22 | 3 | 4 |
4 | …T8J3 | 19 | 4 | 1 |
5 | …76PD | 17 | 5 | 1 |
6 | …303Q | 17 | 1 | 5 |
7 | …21S7 | 19 | 9 | 7 |
8 | …0BA8 | 18 | 9 | 6 |
9 | …H5N3 | 18 | 9 | 8 |
10 | …5J23 | 12 | 9 | 7 |
11 | …H3N1 | 13 | 8 | 9 |
12 | …M80W | 4 | 2 | 2 |
Method | Feature | Cluster | Performance Evaluation | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | IMP | PF | |||||
K-means | 0.2 | 12.3 | 0.9 | 2.8 | 0.11 | 3.34 | 2.64 | 0.05 | 0.07 | |
1.0 | 2.1 | 2.2 | 4.0 | 0.10 | ||||||
1.1 | 2.7 | 2.4 | 4.6 | 0.10 | ||||||
Hclust | 0.1 | 1.1 | 3.9 | 13.6 | 0.10 | 3.47 | 2.79 | 0.04 | 0.05 | |
1.0 | 2.1 | 4.1 | 2.0 | 0.09 | ||||||
1.0 | 2.3 | 4.6 | 2.5 | 0.11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, R.; Rao, W.; Zhou, D.; An, C.; Lu, Z.; Xia, J. Commuting Pattern Recognition Using a Systematic Cluster Framework. Sustainability 2020, 12, 1764. https://doi.org/10.3390/su12051764
Hong R, Rao W, Zhou D, An C, Lu Z, Xia J. Commuting Pattern Recognition Using a Systematic Cluster Framework. Sustainability. 2020; 12(5):1764. https://doi.org/10.3390/su12051764
Chicago/Turabian StyleHong, Rongrong, Wenming Rao, Dong Zhou, Chengchuan An, Zhenbo Lu, and Jingxin Xia. 2020. "Commuting Pattern Recognition Using a Systematic Cluster Framework" Sustainability 12, no. 5: 1764. https://doi.org/10.3390/su12051764
APA StyleHong, R., Rao, W., Zhou, D., An, C., Lu, Z., & Xia, J. (2020). Commuting Pattern Recognition Using a Systematic Cluster Framework. Sustainability, 12(5), 1764. https://doi.org/10.3390/su12051764