Research on Self-Organizing Evolution Level of China’s Photovoltaic Industry Chain System
Abstract
:1. Introduction
2. PV Industry Chain System and the Construction of Its Self-organizing Evolution Level Evaluation Index System
2.1. PV Industry Chain System
2.1.1. Main Chain
2.1.2. Auxiliary Chain
2.1.3. Structure Relationship
2.2. Construction of Self-Organizing Evolution Level Index System of PV Industry Chain System
2.2.1. Development Level
2.2.2. Synergy Level
2.3. Evaluation Criteria
3. Materials and Methods
3.1. Analytical Framework
3.2. Data Sources
3.3. Methods
3.3.1. Measurement Model of Development Level and Self-Organizing Evolution Level
3.3.2. Synergy Level Measurement Model
3.3.3. Renewal GM (1, 1) Grey Prediction Model
4. Results and Analysis
4.1. Measurement of System Self-Organizing Evolution Level
4.1.1. Development Level
4.1.2. Synergy Level
4.1.3. Level of Self-Organizing Evolution
4.2. Evaluation of Self-organizing Evolution Level
4.3. Prediction of Self-Organizing Evolution Level
5. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
Appendix A
Evolution Level | Ex | En | He |
---|---|---|---|
Low | 0.088 | 0.0655 | 0.01 |
Relatively low | 0.272 | 0.0466 | 0.01 |
Medium | 0.505 | 0.035 | 0.01 |
Relatively high | 0.762 | 0.0485 | 0.01 |
high | 0.9520 | 0.0575 | 0.01 |
Appendix B
Index/Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|
0.0061 | 0.016 | 0.0373 | 0.0686 | 0.0726 | 0.0848 | 0.121 | 0.1498 | 0.1896 | 0.2541 | |
0.1268 | 0.0873 | 0.076 | 0.0802 | 0.0653 | 0.0724 | 0.0893 | 0.1077 | 0.1255 | 0.1695 | |
0.0319 | 0.0239 | 0.019 | 0.0189 | 0.0237 | 0.0453 | 0.0883 | 0.1333 | 0.2266 | 0.3891 | |
0.0166 | 0.0768 | 0.0617 | 0.0861 | 0.1304 | 0.0826 | 0.1073 | 0.138 | 0.1392 | 0.1614 |
Index/Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|
0.0142 | 0.0528 | 0.0954 | 0.1476 | 0.0311 | 0.0590 | 0.1630 | 0.1183 | 0.1324 | 0.2251 | |
0.0017 | 0.0068 | 0.0175 | 0.0413 | 0.0327 | 0.0459 | 0.1726 | 0.1203 | 0.1659 | 0.2961 | |
0.0016 | 0.0056 | 0.0161 | 0.0376 | 0.0188 | 0.0479 | 0.1319 | 0.1182 | 0.1825 | 0.3346 | |
0.0034 | 0.0127 | 0.0299 | 0.0612 | 0.0268 | 0.0506 | 0.1548 | 0.1189 | 0.1589 | 0.2815 | |
0.0429 | 0.0853 | 0.0762 | 0.1782 | 0.0265 | 0.0601 | 0.2048 | 0.0740 | 0.0984 | 0.1362 |
References
- Wang, Z.; Wei, W. External cost of photovoltaic oriented silicon production: A case in China. Energy Policy 2017, 107, 437–447. [Google Scholar] [CrossRef]
- Grau, T.; Huo, M.; Neuhoff, K. Survey of photovoltaic industry and policy in Germany and China. Energy Policy 2012, 51, 20–37. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Zhou, W.; Yan, X.; Ou, X. Optimal policy design for photovoltaic power industry with positive externality in China. Resour. Conserv. Recycl. 2016, 115, 22–30. [Google Scholar] [CrossRef]
- Chen, H.H.; Pang, C. Organizational forms for knowledge management in photovoltaic solar energy industry. Knowl. Based Syst. 2010, 23, 924–933. [Google Scholar] [CrossRef]
- Zhang, F.; Gallagher, K.S. Innovation and technology transfer through global value chains: Evidence from China’s PV industry. Energy Policy 2016, 94, 191–203. [Google Scholar] [CrossRef]
- Wang, W.; Shi, Y. The Formation of China’s Photovoltaic Industry Dilemma: Path, Mechanism and Policy Reflection. Contemp. Financ. Econ. 2014, 350, 87–97. [Google Scholar] [CrossRef]
- Geng, Y.; Zhou, X. The Development Path of Solar Photovoltaic Industry. China Soft Sci. 2010, 4, 19–28+134. [Google Scholar] [CrossRef]
- Tong, X.; Wang, T.; Li, M. Global-Local Linkages in Photovoltaic Industry in Wuxi, China. Sci. Geogr. Sin. 2017, 37, 1823–1830. [Google Scholar] [CrossRef]
- Gruss, L.; ten Brink, T. The Development of the Chinese Photovoltaic Industry: An advancing role for the central state? J. Contemp. China 2016, 25, 453–466. [Google Scholar] [CrossRef]
- Dominguez Lacasa, I.; Shubbak, M.H. Drifting towards innovation: The co-evolution of patent networks, policy, and institutions in China’s solar photovoltaics industry. Energy Res. Soc. Sci. 2018, 38, 87–101. [Google Scholar] [CrossRef]
- Zhu, X.; He, C.; Mao, X.; Li, W. The Spatial Pattern of China PV Industry under the Background of Trade Protectionism. Econ. Geogr. 2018, 38, 98–105. [Google Scholar] [CrossRef]
- Guo, B.; Li, J.; Zhang, X. Influences of policy coordination on policy effectiveness: An empirical study based on 227 Chinese photovoltaic industry policies. Stud. Sci. Sci. 2018, 36, 790–799. [Google Scholar] [CrossRef]
- Ming, Z.; Shaojie, O.; Hui, S.; Yujian, G. Is the “Sun” still hot in China? The study of the present situation, problems and trends of the photovoltaic industry in China. Renew. Sustain. Energy Rev. 2015, 43, 1224–1237. [Google Scholar] [CrossRef]
- He, X. Solar Power Development in China. Compr. Guide Sol. Energy Syst. 2010, 132, 19–35. [Google Scholar] [CrossRef]
- Xiong, Y.; Yang, X. Government subsidies for the Chinese photovoltaic industry. Energy Policy 2016, 99, 111–119. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Zuo, Y.; Ren, L.; Wang, L. The Development of the Renewable Energy Power Industry under Feed-In Tariff and Renewable Portfolio Standard: A Case Study of China’s Photovoltaic Power Industry. Sustainability 2017, 9, 532. [Google Scholar] [CrossRef] [Green Version]
- Long, R.; Cui, W.; Li, W. The Evolution and Effect Evaluation of Photovoltaic Industry Policy in China. Sustainability 2017, 9, 2147. [Google Scholar] [CrossRef] [Green Version]
- Fan, R.; Dong, L. The dynamic analysis and simulation of government subsidy strategies in low-carbon diffusion considering the behavior of heterogeneous agents. Energy Policy 2018, 117, 252–262. [Google Scholar] [CrossRef]
- United Research Group of China Center for Energy and Development at the National School of Development, Peking University; Department of Energy Economics at the School of Economics, Renmin University of China; Wang, M. Subsidy Crisis and Large-Scale Curtailment of Wind and Solar Power in China. Int. Econ. Rev. 2018, 4, 67–85. [Google Scholar]
- Haken, H. Information and Self-Organization: A Macroscopic Approach to Complex Systems. Am. J. Phys. 1989, 57, 958. [Google Scholar] [CrossRef]
- Haken, H. Advanced Synergetics; Springer: Berlin, Germany, 1983; ISBN 978-364-245-555-1. [Google Scholar]
- Wu, T. Self-Organizing Methodology; Tsinghua University Press: Beijing, China, 2001; ISBN 978-730-204-422-2. [Google Scholar]
- Wang, L.; Wang, Y. Research on the Condition Mechanism of Photovoltaic Industry Chain Risk Evolution Based on Dissipative Structure Theory. Soft Sci. 2018, 32, 21–26. [Google Scholar] [CrossRef]
- De la Tour, A.; Glachant, M.; Ménière, Y. Innovation and international technology transfer: The case of the Chinese photovoltaic industry. Energy Policy 2011, 39, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Awate, S.; Ajith, V.; Ajwani-Ramchandani, R. Catch-up as a Survival Strategy in the Solar Power Industry. J. Int. Manag. 2018, 24, 179–194. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Feng, Z. The economic effects of anti-dumping and anti-subsidy policies among china, the US and the EU: The photovoltaic industry. Singap. Econ. Rev. 2018, 63, 513–534. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Wen, H.; Fu, Z.; Li, X. Operating performance, industry agglomeration and its spatial characteristics of Chinese photovoltaic industry. Renew. Sustain. Energy Rev. 2016, 65, 373–386. [Google Scholar] [CrossRef]
- Haley, U.C.V.; Schuler, D.A. Government Policy and Firm Strategy in the Solar Photovoltaic Industry. Calif. Manag. Rev. 2011, 54, 17–38. [Google Scholar] [CrossRef]
- Chu, J.; Guo, B.; Zhao, Y. A GERT Model Considering Value Viscosity and for Stability Prediction of Closed-loop Photovoltaic Industry Chain System. Ind. Eng. Manag. 2018, 23, 122–129. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, Q.; Xu, X. The Evolution Model and Empirical Studies of Industrial System. Stat. Res. 2007, 2, 47–54. [Google Scholar] [CrossRef]
- Shen, X. Research on the Evaluation of the Evolution Level of Industrial Ecological System in Yunnan Province. Econ. Res. Guide 2012, 8, 77–80. [Google Scholar]
- Qiu, G.; Ding, M. Low-Carbon Development Level Evaluation under the Scope of Ecological Civilization: A Case of Sichuan Province. Ecol. Econ. 2016, 32, 204–209. [Google Scholar]
- Wu, W.; Zhou, X. Establishment and Application of the Evaluation System of Inclusive Green Growth Performance in China. Chin. J. Manag. Sci. 2019, 27, 183–194. [Google Scholar] [CrossRef]
- Gong, C.; Ying, P.; Li, W. Research on evaluation method of provincial science and technology development level based on dual driven. Stud. Sci. Sci. 2019, 37, 1589–1597. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y. Research on the Co-evolution Dynamic Mechanism of Photovoltaic Industry Chain System. East. China Econ. Manag. 2017, 31, 170–177. [Google Scholar] [CrossRef]
- Li, Y.; Du, J. Artificial Intelligence with Uncertainty; National Defense Industry Press: Beijing, China, 2005; ISBN 978-711-803-921-4. [Google Scholar]
- Wang, L.; Wang, Y. Assessment on Industrial Chain Risk of Equipment Manufacturing Industry Based on Cloud Model. Technol. Econ. 2016, 35, 80–87. [Google Scholar]
- Chen, Y.; Yang, Y.; Du, D. Study on Performance Evaluation of Provincial Ecological Environment Based on Cloud Model. Soft Sci. 2018, 32, 100–108. [Google Scholar] [CrossRef]
- Liu, S.; Xie, N. Grey System Theory and Its Application; Science Press: Beijing, China, 2008; ISBN 978-703-022-847-5. [Google Scholar]
- Tang, W.; Xiang, C. The Improvements of Forecasting Method in GM (1, 1) Model Based on Quadratic Interpolation. Chin. J. Manag. Sci. 2006, 14, 110–112. [Google Scholar] [CrossRef]
- Shi, P.; Li, X.; Xiong, Y. Coupling Measurement and Prospect Forecast of Regional “Beautiful China” Construction and Tourism Industry Development—A Case Study of 11 Provinces along the Yangtze River Economic Belt. China Soft Sci. 2018, 2, 86–102. [Google Scholar]
- Hu, F.; Lu, L.; Huang, B. Research on Talent Demand Forecast of High-tech Industry in Jiangsu Province: Based on Improved Metabolic GM (1, 1) Model. Sci. Technol. Manag. Res. 2018, 16, 57–62. [Google Scholar] [CrossRef]
- Jin, Q.; Zheng, Q. Ecological Innovation Synergy Degree and Its Influencing Factors in the Yangtze River Economic Zone. Sci. Technol. Manag. Res. 2018, 18, 261–266. [Google Scholar] [CrossRef]
- Ma, H.; Cao, X.; Li, X. Synergy Degree of Innovation Network of Emerging Technology Industry in Central China. Econ. Geogr. 2019, 3, 164–173. [Google Scholar] [CrossRef]
First-Level Index | Secondary Index | Weight |
---|---|---|
Development level | 0.1049 | |
0.0157 | ||
0.1907 | ||
0.0359 | ||
Synergy level | 0.0695 | |
0.1778 | ||
0.2036 | ||
0.1482 | ||
0.0537 |
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|
Evolution level | 0.0139 | 0.0233 | 0.0335 | 0.0616 | 0.0365 | 0.0572 | 0.1465 | 0.1300 | 0.1848 | 0.3128 |
Year | Original Data | Second-Order Buffer Sequence | Predictive Value | Relative Error | Average Relative Error |
---|---|---|---|---|---|
2009 | 0.0233 | 0.182 | 0.1751 | 3.7955% | 1.9227% |
2010 | 0.0335 | 0.1911 | 0.1874 | 1.9168% | |
2011 | 0.0616 | 0.2011 | 0.2007 | 0.2228% | |
2012 | 0.0365 | 0.2125 | 0.2148 | 1.0817% | |
2013 | 0.0572 | 0.2261 | 0.2299 | 1.6996% | |
2014 | 0.1465 | 0.2411 | 0.2462 | 2.0964% | |
2015 | 0.1300 | 0.2569 | 0.2635 | 2.5727% | |
2016 | 0.1848 | 0.2808 | 0.2821 | 0.4586% | |
2017 | 0.3128 | 0.3128 | 0.302 | 3.4604% | |
2018 | 0.3233 | 1.5388% | |||
2019 | 0.3480 | 1.1917% | |||
2020 | 0.3749 | 0.9240% | |||
2021 | 0.4038 | 0.7845% | |||
2022 | 0.4345 | 0.7641% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chen, J.; Wang, L. Research on Self-Organizing Evolution Level of China’s Photovoltaic Industry Chain System. Sustainability 2020, 12, 1792. https://doi.org/10.3390/su12051792
Liu Y, Chen J, Wang L. Research on Self-Organizing Evolution Level of China’s Photovoltaic Industry Chain System. Sustainability. 2020; 12(5):1792. https://doi.org/10.3390/su12051792
Chicago/Turabian StyleLiu, Yiping, Jian Chen, and Lingjun Wang. 2020. "Research on Self-Organizing Evolution Level of China’s Photovoltaic Industry Chain System" Sustainability 12, no. 5: 1792. https://doi.org/10.3390/su12051792
APA StyleLiu, Y., Chen, J., & Wang, L. (2020). Research on Self-Organizing Evolution Level of China’s Photovoltaic Industry Chain System. Sustainability, 12(5), 1792. https://doi.org/10.3390/su12051792