A Metacoupling Framework for Exploring Transboundary Watershed Management
Abstract
:1. Introduction
2. The Limpopo River Watershed Case Study
3. Metacoupling Framework
3.1. Overview
3.2. Intracouplings
3.3. Pericouplings
3.4. Telecouplings
4. Interactions and Feedbacks among Levels of the Metacoupled System
4.1. Extension Agents Facilitate Information Flows within and among Systems
4.2. Vulnerability to Climate-Induced Floods and Droughts
4.3. Inequality in the Telecoupling Driven by Transnational Politics
5. Spillover Effects
6. Conclusions and Future Directions
- Applying the metacoupling framework to other transboundary watersheds to assess the generality of its data needs, strengths, and limitations.
- Exploring the relationships between watersheds and other types of CHANS such as agricultural and mining systems.
- Investigating the effects of externalities such as climate change on watershed systems.
- Analyzing the spillover effects from transboundary watershed CHANS (e.g., impacts on biogeochemical cycles, global fisheries).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Feng, X.; Liu, Q.; Yin, L.; Fu, B.; Chen, Y. Linking water research with the sustainability of the human–natural system. Curr. Opin. Environ. Sustain. 2018, 33, 99–103. [Google Scholar]
- Collen, B.; Whitton, F.; Dyer, E.E.; Baillie, J.E.M.; Cumberlidge, N.; Darwall, W.R.T.; Pollock, C.; Richman, N.I.; Soulsby, A.-M.; Böhm, M. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 2014, 23, 40–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF). Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; WHO & UNICEF: Geneva, Switzerland, 2017. [Google Scholar]
- Dos Santos, S.; Adams, E.A.; Neville, G.; Wada, Y.; de Sherbinin, A.; Mullin Bernhardt, E.; Adamo, S.B. Urban growth and water access in sub-Saharan Africa: Progress, challenges, and emerging research directions. Sci. Total Environ. 2017, 607, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Gleick, P.H. Water, War & Peace in the Middle East. Environ. Sci. Policy Sustain. Dev. 1994, 36, 6–42. [Google Scholar]
- Siebert, S.; Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 2010, 384, 198–217. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D.; Sun, Y.; Liu, X.; Wang, N.; Savenije, H.H.G. Water demand management: A case study of the Heihe River Basin in China. Phys. Chem. Earth Parts ABC 2005, 30, 408–419. [Google Scholar] [CrossRef]
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions: Water management research challenges. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef] [Green Version]
- Salmoral, G.; Schaap, N.C.E.; Walschebauer, J.; Alhajaj, A. Water diplomacy and nexus governance in a transboundary context: In the search for complementarities. Sci. Total Environ. 2019, 690, 85–96. [Google Scholar] [CrossRef]
- Wagner, W.; Gawel, J.; Furumai, H.; Souza, M.P.D.; Teixeira, D.; Rios, L.; Ohgaki, S.; Zehnder, A.J.B.; Hemond, H.F. Sustainable Watershed Management: An International Multi-Watershed Case Study. AMBIO J. Hum. Environ. 2002, 31, 2–13. [Google Scholar] [CrossRef]
- Wolf, A.T. Criteria for equitable allocations: The heart of international water conflict. Nat. Resour. Forum 1999, 23, 3–30. [Google Scholar] [CrossRef]
- Harou, J.J.; Pulido-Velazquez, M.; Rosenberg, D.E.; Medellín-Azuara, J.; Lund, J.R.; Howitt, R.E. Hydro-economic models: Concepts, design, applications, and future prospects. J. Hydrol. 2009, 375, 627–643. [Google Scholar] [CrossRef] [Green Version]
- Bekchanov, M.; Sood, A.; Jeuland, M. Review of Hydro-Economic Models to Address River Basin Management Problems: Structure, Applications and Research Gaps; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2015. [Google Scholar]
- Esteve, P.; Varela-Ortega, C.; Blanco-Gutiérrez, I.; Downing, T.E. A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecol. Econ. 2015, 120, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Alamanos, A.; Latinopoulos, D.; Papaioannou, G.; Mylopoulos, N. Integrated Hydro-Economic Modeling for Sustainable Water Resources Management in Data-Scarce Areas: The Case of Lake Karla Watershed in Greece. Water Resour. Manag. 2019, 33, 2775–2790. [Google Scholar] [CrossRef]
- Baldassarre, G.D.; Sivapalan, M.; Rusca, M.; Cudennec, C.; Garcia, M.; Kreibich, H.; Konar, M.; Mondino, E.; Mård, J.; Pande, S.; et al. Sociohydrology: Scientific Challenges in Addressing the Sustainable Development Goals. Water Resour. Res. 2019, 55, 6327–6355. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.P.; Jackson, S.; Tharme, R.E.; Douglas, M.; Flotemersch, J.E.; Zwarteveen, M.; Lokgariwar, C.; Montoya, M.; Wali, A.; Tipa, G.T.; et al. Understanding rivers and their social relations: A critical step to advance environmental water management. Wiley Interdiscip. Rev. Water 2019, 6, 1381. [Google Scholar] [CrossRef] [Green Version]
- Sivapalan, M.; Savenije, H.H.G.; Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Process. 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Quan, Y.; Wang, C.; Yan, Y.; Wu, G.; Zhang, H. Impact of Inter-Basin Water Transfer Projects on Regional Ecological Security from a Telecoupling Perspective. Sustainability 2016, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Hyndman, D.; Winkler, J.; Viña, A.; Deines, J.; Lupi, F.; Luo, L.; Li, Y.; Basso, B.; Zheng, C.; et al. Urban water sustainability: Framework and application. Ecol. Soc. 2016, 21. [Google Scholar] [CrossRef] [Green Version]
- Oberlack, C.; Boillat, S.; Brönnimann, S.; Gerber, J.-D.; Heinimann, A.; Ifejika Speranza, C.; Messerli, P.; Rist, S.; Wiesmann, U. Polycentric governance in telecoupled resource systems. Ecol. Soc. 2018, 23, 16. [Google Scholar] [CrossRef] [Green Version]
- Kapsar, K.E.; Hovis, C.L.; Bicudo da Silva, R.F.; Buchholtz, E.K.; Carlson, A.K.; Dou, Y.; Du, Y.; Furumo, P.R.; Li, Y.; Torres, A.; et al. Telecoupling Research: The First Five Years. Sustainability 2019, 11, 1033. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of Coupled Human and Natural Systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J. Integration across a metacoupled world. Ecol. Soc. 2017, 22. [Google Scholar] [CrossRef]
- Deines, J.M.; Liu, X.; Liu, J. Telecoupling in urban water systems: An examination of Beijing’s imported water supply. Water Int. 2015, 41, 251–270. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Bodin, Ö.; Liu, J.; Zhang, M.; Li, X. Alignment of social and ecological structures increased the ability of river management. Sci. Bull. 2019, 64, 1318–1324. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.A.; Eriksen, S.; Ombe, Z.A. Double exposure in Mozambique’s Limpopo River Basin. Geogr. J. 2010, 176, 6–24. [Google Scholar] [CrossRef]
- Limpopo River Awareness Kit. Available online: http://www.limpopo.riverawarenesskit.org/LIMPOPORAK_COM/INDEX.HTM (accessed on 20 May 2019).
- Lehner, B.; Reidy Liermann, C.; Revenga, C.; Vorosmarty, C.; Fekete, B.; Crouzet, P.; Doll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. Global Reservoir and Dam Database; Version 1 (GRanDv1): Reservoirs; Columbia University: New York City, NY, USA, 2011. [Google Scholar]
- Center for International Earth Science Information Network-CIESIN Gridded Population of the World (GPW), v4|SEDAC. Available online: https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (accessed on 15 February 2020).
- Chilundo, M.; Kelderman, P.; O’keeffe, J.H. Design of a water quality monitoring network for the Limpopo River Basin in Mozambique. Phys. Chem. Earth Parts ABC 2008, 33, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Merz, L. Limpopo National Park Irrigation Scheme Assessment 2018. Available online: https://ufdc.ufl.edu/l/IR00011106/00001 (accessed on 22 February 2020).
- Schaffer-Smith, D.; Tomscha, S.A.; Jarvis, K.J.; Maguire, D.Y.; Treglia, M.L.; Liu, J. Network analysis as a tool for quantifying the dynamics of metacoupled systems: An example using global soybean trade. Ecol. Soc. 2018, 23. [Google Scholar] [CrossRef] [Green Version]
- Eakin, H.; DeFries, R.; Kerr, S.; Lambin, E.F.; Liu, J.; Marcotullio, P.J.; Messerli, P.; Reenberg, A.; Rueda, X.; Swaffield, S.R.; et al. Significance of telecoupling for exploration of land-use change. In Rethinking Global Land Use in an Urban Era; MIT Press: Cambridge, MA, USA, 2014; pp. 141–161. [Google Scholar]
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.W.; Izaurralde, R.C.; Lambin, E.F.; Li, S.; et al. Framing Sustainability in a Telecoupled World. Ecol. Soc. 2013, 18, 26. [Google Scholar] [CrossRef]
- Wessel, G.R.; Greenberg, J.K. Geoscience for the Public Good and Global Development: Toward a Sustainable Future; Geological Society of America: McLean, VA, USA, 2016; ISBN 978-0-8137-2520-8. [Google Scholar]
- Liu, J.; Viña, A.; Yang, W.; Li, S.; Xu, W.; Zheng, H. China’s Environment on a Metacoupled Planet. Annu. Rev. Environ. Resour. 2018, 43, 1–34. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Daryanto, S.; Fu, B.; Wang, S.; Liu, Y. Metacoupling supply and demand for soil conservation service. Curr. Opin. Environ. Sustain. 2018, 33, 136–141. [Google Scholar] [CrossRef]
- Matyas, C.J.; Silva, J.A. Extreme weather and economic well-being in rural Mozambique. Nat. Hazards 2013, 66, 31–49. [Google Scholar] [CrossRef]
- Bowmer, K.H. Ecosystem Effects from Nutrient and Pesticide Pollutants: Catchment Care as a Solution. Resources 2013, 2, 439–456. [Google Scholar] [CrossRef] [Green Version]
- van der Zaag, P.; Juizo, D.; Vilanculos, A.; Bolding, A.; Uiterweer, N.P. Does the Limpopo River Basin have sufficient water for massive irrigation development in the plains of Mozambique? Phys. Chem. Earth Parts ABC 2010, 35, 832–837. [Google Scholar] [CrossRef]
- World Food Programme Mozambique|World Food Programme. Available online: https://www1.wfp.org/countries/mozambique (accessed on 24 May 2019).
- The World Bank Country|Data. Available online: https://data.worldbank.org/country/mozambique (accessed on 24 May 2019).
- Needles, L.A.; Lester, S.E.; Ambrose, R.; Andren, A.; Beyeler, M.; Connor, M.S.; Eckman, J.E.; Costa-Pierce, B.A.; Gaines, S.D.; Lafferty, K.D.; et al. Managing Bay and Estuarine Ecosystems for Multiple Services. Estuaries Coasts 2015, 38, 35–48. [Google Scholar] [CrossRef]
- Inguane, R.; Gallego-Ayala, J.; Juízo, D. Decentralized water resources management in Mozambique: Challenges of implementation at the river basin level. Phys. Chem. Earth Parts ABC 2014, 67, 214–225. [Google Scholar] [CrossRef]
- Bicheron, P.; Amberg, V.; Bourg, L.; Petit, D.; Huc, M.; Miras, B.; Brockmann, C.; Hagolle, O.; Delwart, S.; Ranera, F.; et al. Geolocation Assessment of MERIS GlobCover Orthorectified Products. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2972–2982. [Google Scholar] [CrossRef]
- ESA CCI LAND COVER–S2 Prototype Land Cover 20 m Map of Africa 2016. Available online: http://2016africalandcover20m.esrin.esa.int/download.php (accessed on 15 February 2020).
- FAO. Food and Agriculture Organization of the United Nations Regional Overview of Food Insecurity Africa: African Food Security Prospects Brighter Than Ever 2015; FAO: Rome, Italy, 2015. [Google Scholar]
- Milliman, J.D.; Farnsworth, K.L. River Discharge to the Coastal Ocean: A Global Synthesis; Cambridge University Press: Cambridge, UK, 2011; ISBN 978-0-511-91530-7. [Google Scholar]
- Cozzi, S.; Giani, M. River water and nutrient discharges in the Northern Adriatic Sea: Current importance and long term changes. Cont. Shelf Res. 2011, 31, 1881–1893. [Google Scholar] [CrossRef]
- Kerr, J. Watershed Management: Lessons from Common Property Theory. Int. J. Commons 2007, 1, 89–109. [Google Scholar] [CrossRef]
Metacoupling | HEM | SH | |
---|---|---|---|
Accounts for both socioeconomic and environmental characteristics | X | X | X |
Can predict future scenarios | X | X | X |
Explicitly integrates across local to regional scales | X | ||
Can account for cultural and spiritual characteristics and governance styles | X | X |
Scheme | Number of Members | Total Area in Hectares |
---|---|---|
Chimangue | 40 | 4.3 |
Hassane | 21 | 2 |
Matafula | 7 | 2.5 |
Ndope | 42 | 4 |
Psitima 1 | 28 | 3 |
Chibotane | 43 | 6.5 |
Chipanzo | 29 | 2.5 |
Cunze | 20 | 4 |
Guzwe | 12 | 5 |
Macuachane | 35 | 6 |
Munhamane | 28 | 7 |
Chibumba | 31 | 4 |
Mbeti | 40 | 12 |
Sihogoni | 20 | 8 |
Licenga | 11 | 5 |
Chicumbane | 41 | 4 |
Panhame | 40 | 4 |
Concept | Description | Effects |
---|---|---|
Intracoupling |
|
|
Pericoupling |
|
|
Telecoupling |
|
|
Cross-level interactions |
|
|
|
| |
|
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merz, L.; Yang, D.; Hull, V. A Metacoupling Framework for Exploring Transboundary Watershed Management. Sustainability 2020, 12, 1879. https://doi.org/10.3390/su12051879
Merz L, Yang D, Hull V. A Metacoupling Framework for Exploring Transboundary Watershed Management. Sustainability. 2020; 12(5):1879. https://doi.org/10.3390/su12051879
Chicago/Turabian StyleMerz, Leandra, Di Yang, and Vanessa Hull. 2020. "A Metacoupling Framework for Exploring Transboundary Watershed Management" Sustainability 12, no. 5: 1879. https://doi.org/10.3390/su12051879
APA StyleMerz, L., Yang, D., & Hull, V. (2020). A Metacoupling Framework for Exploring Transboundary Watershed Management. Sustainability, 12(5), 1879. https://doi.org/10.3390/su12051879