Regional Ecological Risk Assessment of Wetlands in the Sanjiang Plain with Respect to Human Disturbance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. RERA Framework for the Naoli River Basin
2.3.1. Integrated Risk Assessment Model
2.3.2. Risk Source Intensity Assessment Model
2.3.3. Environment Vulnerability Assessment Model
2.3.4. Ecological Capital Assessment Model
3. Results
3.1. Intensity of Risk Source in the Naoli River Watershed
Ecological Risk Source Intensity
3.2. Characteristics of Risk Receptor Indices in the Naoli River Watershed
3.2.1. Ecological Fragility Distribution
3.2.2. Ecological Capital Distribution
3.3. Integrated Ecological Risk Degree in the Naoli River Watershed
4. Discussion
4.1. Spatial Relationship between Regional Pole-Axis System and Wetlands in the Naoli River Watershed
4.2. Tradeoff and Synergy between Wetlands and Other Ecosystems in the Naoli River Watershed
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, Z.Y.; Xu, X.G.; Lin, H.P.; Wang, X.L. Regional ecological risk assessment of the Liaohe River Delta wetlands. Acta Ecolo. Sinica 2001, 21, 365–373. [Google Scholar]
- Xu, X.G.; Lin, H.P.; Fu, Z.Y.; Bu, R.C. Regional ecological risk assessment of wetland in the Huanghe River Delta. Acta Sci. Nat. Univ. Pekin. 2001, 37, 111–120. [Google Scholar]
- Xu, X.; Lin, H.; Fu, Z. Probe into the method of regional ecological risk assessment—a case study of wetland in the Yellow River Delta in China. J. Environ. Manag. 2004, 70, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Song, C.C.; Song, Y.Y. Scale-dependence of ecological risk assessment and scheme formulation for regional ecological risk assessment of wetlands in Sanjiang Plain. Wetland Sci. 2018, 16, 106–113. [Google Scholar]
- Malekmohammadi, B.; Blouchi, L.R. Ecological risk assessment of wetland ecosystems using Multi Criteria Decision Making and Geographic Information System. Ecol. Indic. 2014, 41, 133–144. [Google Scholar] [CrossRef]
- Patton, D.E. The U.S. environmental protection agency’s framework for ecological risk assessment. Hum. Ecol. Risk Assess. Int. J. 1995, 1, 348–356. [Google Scholar] [CrossRef]
- Peng, T.; Li, J.; Gong, H.; Pu, R.; Li, J.; Shao, S.; Shi, Z.; Feng, X.; Wang, L.; Liu, R. Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China. Sustainability 2019, 11, 2817. [Google Scholar]
- Lu, Y.; Qin, F.; Chang, Z.; Bao, S. Regional Ecological Risk Assessment in the Huai River Watershed during 2010–2015. Sustainability 2017, 9, 2231. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency. Guidelines for Ecological Risk Assessment; Risk Assessment Forum: Washington, DC, USA, 1998; pp. 4–5.
- Landis, W.; Wiegers, J.A. Design considerations and a suggested approach for regional and comparative ecological risk assessment. Hum. Ecol. Risk Assess. Int. J. 1997, 3, 287–297. [Google Scholar] [CrossRef]
- Moraes, R.; Molander, S. A Procedure for Ecological Tiered Assessment of Risks (PETAR). Hum. Ecol. Risk Assess. Int. J. 2004, 10, 349–371. [Google Scholar] [CrossRef]
- Peng, J.; Zong, M.; Hu, Y.; Liu, Y.; Wu, J. Assessing Landscape Ecological Risk in a Mining City: A Case Study in Liaoyuan City, China. Sustainability 2015, 7, 8312–8334. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xu, S.; Liu, X.; Li, X.; Tian, C. Soil organic carbon changes following wetland cultivation: A global meta-analysis. Geoderma 2019, 347, 49–58. [Google Scholar] [CrossRef]
- Mitsch, W.; Bernal, B.; Nahlik, A.; Mander, Ü.; Zhang, L.; Anderson, C.J.; Jørgensen, S.E.; Brix, H. Wetlands, carbon, and climate change. Landsc. Ecol. 2012, 28, 583–597. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Gao, H.; Zhang, W. Climate Change and Anthropogenic Impacts on Wetland and Agriculture in the Songnen and Sanjiang Plain, Northeast China. Remote. Sens. 2018, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.C.; Liu, Y.X.; Li, J.L.; Lu, W.Y.; Wei, X.L.; Sun, C. Evolution of landscape ecological risk at the optical scale: A case study of the open coastal wetlands in Jiangsu, China. Int. J. Environ. Res. Public Health. 2018, 15, 1691. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Lv, J.; Wang, C.; Chen, Z.; Liu, Y. Marsh wetland degradation risk assessment and change analysis: A case study in the Zoige Plateau, China. Ecol. Indic. 2017, 82, 316–326. [Google Scholar] [CrossRef]
- Wanda, E.; Mamba, B.B.; Msagati, T.A.M.; Msilimba, G. Determination of the health of Lunyangwa wetland using Wetland Classification and Risk Assessment Index. Phys. Chem. Earth Parts A/B/C 2016, 92, 52–60. [Google Scholar] [CrossRef]
- Lv, X.G. Wetland Ecosystem Study in China; Hebei Science and Technology Publishing House: Shijiazhuang, China, 2008; p. 1. [Google Scholar]
- Mulligan, G.F.; Partridge, M.D.; Carruthers, J.I. Central place theory and its reemergence in regional science. Ann. Reg. Sci. 2012, 48, 405–431. [Google Scholar] [CrossRef]
- Lu, D.D. Formation and dynamics of the “Pole-Axis” spatial system. Acta Geogr. Sin. 2002, 22, 1–6. [Google Scholar]
- Karlson, M.; Mörtberg, U.; Balfors, B. Road ecology in environmental impact assessment. Environ. Impact Assess. Rev. 2014, 48, 10–19. [Google Scholar] [CrossRef]
- Yang, X.; Tang, L.; Jia, Y.; Liu, J. Ecological Risk Assessment of the Southern Fujian Golden Triangle in China Based on Regional Transportation Development. Sustainability 2018, 10, 1861. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Hu, K.; Zhang, D.; Lai, J. Speciation and Spatial Distribution of Heavy Metals (cu and Zn) in Wetland Soils of Poyang Lake (China) in Wet Seasons. Wetlands 2017, 9, 411. [Google Scholar] [CrossRef]
- Dai, L.J.; Wang, L.Q.; Li, L.F.; Liang, T.; Zhang, Y.Y.; Ma, C.X.; Xing, B.S. Multivariate geostatistical source identification of heavey metals in the sediment of Poyang Lake in China. Sci. Total Environ. 2018, 621, 1433–1444. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, Y.; Ding, M.; Xie, Z. Level, source identification, and risk analysis of heavy metal in surface sediments from river-lake ecosystems in the Poyang Lake, China. Environ. Sci. Pollut. Res. 2017, 24, 21902–21916. [Google Scholar] [CrossRef]
- Wang, M.; Liu, J.; Lai, J. Metals Pollution and Ecological Risk Assessment of Sediments in the Poyang Lake, China. Bull. Environ. Contam. Toxicol. 2019, 102, 511–518. [Google Scholar] [CrossRef]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Sidhu, G.P.S.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y.; et al. Gobal evaluation of heay metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analysis. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef]
- He, C.; Liu, J.; Li, J.; Liang, X.; Chen, X.-P.; Lei, Y.-R.; Zhu, D. Spatial distribution, source analysis, and ecological risk assessment of DDTs in typical wetland surface soils of Poyang Lake. Environ. Earth Sci. 2012, 68, 1135–1141. [Google Scholar] [CrossRef]
- Song, C.; Liu, D.; Song, Y.; Yang, G.; Wan, Z.; Li, Y.; Xu, X. Effect of exogenous phosphorus addition on soil respiration in Calamagrostis angustifolia freshwater marshes of Northeast China. Atmos. Environ. 2011, 45, 1402–1406. [Google Scholar] [CrossRef]
- Wang, G.-D.; Wang, M.; Yuan, Y.; Lu, X.-G.; Jiang, M. Effects of sediment load on the seed bank and vegetation of Calamagrostis angustifolia wetland community in the National Natural Wetland Reserve of Lake Xingkai, China. Ecol. Eng. 2014, 63, 27–33. [Google Scholar] [CrossRef]
- Zhang, L.; Song, C.; Zheng, X.; Wang, D.; Wang, Y. Effects of nitrogen on the ecosystem respiration, CH4 and N2O emissions to the atmosphere from the freshwater marshes in northeast China. Environ. Earth Sci. 2006, 52, 529–539. [Google Scholar] [CrossRef]
- Zhu, H.; Yan, B.X. Export of phosphorous from paddy field and its transport process in Sanjiang Plain. Wetl. Sci. 2010, 8, 266–272. [Google Scholar]
- Yao, Y.L.; Wang, L.; Lv, X.G.; Yu, H.X. Assessing the sensitivity of runoff to climate change in Naoli River Watershed, Northeast China. Geogr. Res. 2012, 31, 409–416. [Google Scholar]
- Yao, Y.L.; Lv, X.G.; Wang, L.; Yu, H.X. A quantitative analysis of climate change impacts on runoff in Naoli River. Adv. Water Resour. 2010, 21, 765–770. [Google Scholar]
- Cheng, Y.Q.; Zhang, P.Y. Regional differentiation of grain production of commodity grain bases in the Northeast China. J. Nat. Resour. 2005, 20, 925–931. [Google Scholar]
- Liu, Z.M. Study on Runoff Evolvement and Its Driving Mechanism of Naoli River Basin in Recent 50 Years; Northeast Normal University: Changchun, China, 2012; p. 26. [Google Scholar]
- China’s Geospatial Data Cloud. Available online: http://www.gscloud.cn/ (accessed on 3 March 2020).
- Resource and Environment Data Cloud Platform. Available online: http://www.resdc.cn/ (accessed on 3 March 2020).
- Wu, J.S.; Liu, H.; Peng, J.; Ma, L. Hierarchical structure and spatial pattern of China’s urban system: Evidence from DMSP/OLS nightlight data. Acta Geogr. Sin. 2014, 69, 759–770. [Google Scholar]
- Xu, X.; Xu, L.; Yan, L.; Ma, L.; Lu, Y. Integrated regional ecological risk assessment of multi-ecosystems under multi-disasters: A case study of China. Environ. Earth Sci. 2015, 74, 747–758. [Google Scholar] [CrossRef]
- Wang, H.; Song, C.C. Regional ecological risk assessment of wetlands in the Sanjiang Plain. Prog. Geogr. 2019, 38, 872–882. [Google Scholar]
- Landis, W.; Wiegers, J.K. Ten Years of the Relative Risk Model and Regional Scale Ecological Risk Assessment. Hum. Ecol. Risk Assess. Int. J. 2007, 13, 25–38. [Google Scholar] [CrossRef]
- Wang, W.J.; Zhang, S.W.; Li, Y.; Bu, K. Quantitative assessment of soil erosion in Sanjiang Plain based on GIS and USLE. J. Arid Land Resour. Environ. 2008, 22, 112–117. [Google Scholar]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Xue, Z.S.; Jiang, M.; Lv, X.G.; Liu, X.H.; Zhao, D.Y. Influence of agricultural exploitation on ecosystem services: A case study on Middle and Lower Reaches of Nongjiang River and Bielahong River in the Sanjiang Plain. Wetl. Sci. 2012, 10, 40–45. [Google Scholar]
- Di, X.H.; Hou, X.Y.; Xu, X.L.; Wu, L. Study on spatial-temporal characteristics of ecosystem service value in Shandong Province. Geogr. Geo-Inf. Sci. 2013, 29, 116–120. [Google Scholar]
- Zhao, L.; Liu, J.; Tian, X. The temporal and spatial variation of the value of ecosystem services of the Naoli River Basin ecosystem during the last 60 years. Acta Ecol. Sin. 2013, 33, 3169–3176. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, D.F.; Liu, J.Y. Study on the model of regional differentiation of land use degree in China. J. Nat. Resour. 1997, 12, 105–111. [Google Scholar]
- Fu, Q.; Wang, Z.L.; Liang, C. Application of multi-variate auto-regression model to forecast water demand of well irrigated paddy. J. Hydraul. Eng. 2002, 8, 107–112. [Google Scholar]
- Liu, Z.Q.; Lv, X.G.; Liu, H.Y. Study on ecological fragility of wetlands in Sanjiang Plain. J. Geogr. Sci. 2000, 10, 151–158. [Google Scholar]
- Liu, Z.; Liu, H.; Lu, X. [Ecological fragility of wetlands in Sanjiang Plain]. Ying Yong Sheng Tai Xue Bao (J. Appl. Ecol.) 2001, 12, 241–244. [Google Scholar]
- Liu, Z.-M.; Xia, G.-L.; Lv, X.-G.; Cheng, Z.-K. Response of Water Cycle Processes in Sanjiang Plain to Human Activities and Climate Change in Recent 50 Years. South-to-North Water Divers. Water Sci. Technol. 2011, 9, 68–74. [Google Scholar] [CrossRef]
- Li, S.C.; Zhang, C.Y.; Liu, J.L.; Zhu, W.B.; Ma, C.; Wang, J. The tradeoffs and synergies of ecosystem services: Research progress, development trend, and themes of geography. Geophys. Res. 2013, 32, 1379–1390. [Google Scholar]
- Li, Q.-K.; Hu, Y.; Sun, J. Migration and transformation of agricultural non-point source pollutants in drainage ditches. Chin. J. Eco-Agric. 2010, 18, 210–214. [Google Scholar] [CrossRef]
- Wu, X.N.; Fu, D.G.; Duan, C.Q. Effects of planting modes and agriculture drainage ditches on runoff nitrogen and phosphorous concentration in Chaihe Watershed. J. Soil Water Conserv. 2016, 30, 38–42. [Google Scholar]
Where Human Activities Happen | What Enters the Scope of Wetlands | Wetland Risk Events | Where People/Materials Come from | Proxy | |
---|---|---|---|---|---|
Human-caused direct risk on wetlands | Inside of the scope of wetlands | People | Reclamation | Regional pole-axis system, i.e., nearby multi-level central places, through multi-level roads | DMSP-OLS nighttime light intensity index and normalized density of multi-level roads |
Biological resources’ excessive use | |||||
Water resources’ unreasonable use | |||||
Tourism | |||||
Human-caused indirect risk on wetlands | Outside of the scope of wetlands | Materials, e.g., sand, compounds of nitrogen and phosphorus | Pollution | Upstream non-wetland ecosystems, e.g., forestland, dry cropland, and paddy fields | Soil erosion grades and NPS pollution level |
Sediment deposition |
Ecosystem Service Value/ (Yuan/hm2) | ||||||||
---|---|---|---|---|---|---|---|---|
Dry Cropland | Paddy Field | Forest Land | Grass Land | Wetland | Water Body | Unused Land | Construction Land | |
Gas regulation | 442.4 | 1240.4 | 3097.0 | 707.9 | 1592.7 | 0 | 0 | 0 |
Climate regulation | 787.5 | 2389.1 | 2389.1 | 796.4 | 15,130.9 | 407 | 0 | 0 |
Water conservation | 530.9 | 1891.0 | 2831.5 | 707.9 | 13,715.2 | 18033.2 | 26.5 | 260.3 |
Soil formation and protection | 1291.9 | 941.0 | 3450.9 | 1725.5 | 1513.1 | 8.8 | 17.7 | 86.8 |
Waste treatment | 1451.2 | 904.0 | 1159.2 | 1159.2 | 16,086.6 | 16,086.6 | 8.8 | 0 |
Biodiversity conservation | 628.2 | 1681.2 | 2884.6 | 964.5 | 2212.2 | 2203.3 | 300.8 | 0 |
Food production | 884.9 | 1327.3 | 88.5 | 265.5 | 265.5 | 88.5 | 8.8 | 82.6 |
Raw material | 88.5 | 88.5 | 2300.6 | 44.2 | 61.9 | 8.8 | 0 | 0 |
Entertainment culture | 8.8 | 8.8 | 1132.6 | 35.4 | 4910.9 | 3840.2 | 8.8 | 82.6 |
Total | 6114.3 | 10,471.3 | 19334 | 6406.5 | 55,489 | 40,676.4 | 371.4 | 512.3 |
Factors | Grades Assigned | Weight | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
Slope (°) | < 2.50 | 2.50–6.88 | 6.88–12.56 | > 12.56 | 0.3 |
Vegetation Coverage (%) | > 87.18 | 83.52–87.18 | 75.54–83.52 | < 75.54 | 0.3 |
Drought Index | < 0.96 | 0.96–0.99 | 0.99–1.03 | > 1.03 | 0.2 |
Soil Erodibility (K value) | < 0.26 | 0.26–0.32 | 0.32–0.38 | > 0.38 | 0.2 |
Revised | Vulnerable ecotone between land and water body (Y, N) Y = 1, N = 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Song, C.; Song, K. Regional Ecological Risk Assessment of Wetlands in the Sanjiang Plain with Respect to Human Disturbance. Sustainability 2020, 12, 1974. https://doi.org/10.3390/su12051974
Wang H, Song C, Song K. Regional Ecological Risk Assessment of Wetlands in the Sanjiang Plain with Respect to Human Disturbance. Sustainability. 2020; 12(5):1974. https://doi.org/10.3390/su12051974
Chicago/Turabian StyleWang, Hui, Changchun Song, and Kaishan Song. 2020. "Regional Ecological Risk Assessment of Wetlands in the Sanjiang Plain with Respect to Human Disturbance" Sustainability 12, no. 5: 1974. https://doi.org/10.3390/su12051974
APA StyleWang, H., Song, C., & Song, K. (2020). Regional Ecological Risk Assessment of Wetlands in the Sanjiang Plain with Respect to Human Disturbance. Sustainability, 12(5), 1974. https://doi.org/10.3390/su12051974