Can the Gap and Rating of Market Expectation Promote Innovation Input of China Manufacturers?
Abstract
:1. Introduction
2. Literature Reviews and Research Hypotheses
2.1. Market Expectation Gap and Enterprise Innovation Input
2.2. Market Expectation Rating and Enterprise Innovation Input
2.3. Moderating Effect of Institutional Coverage
2.4. Moderating Effect of Government Subsidies
3. Sample Selection and Research Design
3.1. Research Samples
3.2. Regression Model
3.3. Variable Definitions
3.4. Descriptive Statistics
4. Empirical Test and Result Analysis
4.1. The Main Effect between Market Expectation Gap and Innovation Input
4.2. The Moderating Effect between Market Expectation Gap and Innovation Input
4.3. The Main Effect between Market Expectation Rating and Innovation Input
4.4. The Moderating Effect between Market Expectation Rating and Innovation Input
4.5. Robustness Test
5. Research Conclusions and Management Implications
5.1. Research Conclusions
5.2. Management Implications
5.3. Shortcomings and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yuan, B.; Zhang, Y. Flexible environmental policy, technological innovation and sustainable development of China’s industry: The moderating effect of environment regulatory enforcement. J. Clean. Prod. 2020, 243, 118543. [Google Scholar] [CrossRef]
- Einiö, E. R&D subsidies and company performance: Evidence from geographic variation in government funding based on the ERDF population-density rule. Rev. Econ. Stat. 2014, 96, 710–728. [Google Scholar]
- Prencipe, A. Board composition and innovation in university spin-offs. Evidence from the Italian context. J. Tech. Manag. Innov. 2016, 11, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Dunlap, D.; McDonough, E.F., III; Mudambi, R.; Swift, T. Making up is hard to do: Knowledge acquisition strategies and the nature of new product innovation. J. Prod. Innov. Manag. 2016, 33, 472–491. [Google Scholar] [CrossRef]
- Aristizabal-Ramirez, M.; Botero-Franco, M.C.; Canavire-Bacarreza, G. Does financial development promote innovation in developing economies? An empirical analysis. Rev. Dev. Econ. 2017, 21, 475–496. [Google Scholar] [CrossRef]
- Doluca, H.; Wagner, M.; Block, J. Sustainability and environmental behaviour in family firms: A longitudinal analysis of environment related activities, innovation and performance. Bus. Strateg. Environ. 2018, 27, 152–172. [Google Scholar] [CrossRef]
- Greve, H.R. Investment and the behavioral theory of the firm: Evidence from shipbuilding. Ind. Corp. Chang. 2003, 12, 1051–1076. [Google Scholar] [CrossRef]
- Chen, W.R.; Miller, K.D. Situational and institutional determinants of firms’ R&D search intensity. Strateg. Manag. J. 2007, 28, 369–381. [Google Scholar]
- Guo, B.; Pérez-Castrillo, D.; Toldrà-Simats, A. Firms’ innovation strategy under the shadow of analyst coverage. J. Financ. Econ. 2019, 131, 456–483. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Guo, Y.; Jiang, K. Government-subsidized R&D and firm innovation: Evidence from China. Res. Policy 2016, 45, 1129–1144. [Google Scholar]
- Huang, S.X.; Pereira, R.; Wang, C. Analyst coverage and the likelihood of meeting or beating analyst earnings forecasts. Contemp. Account. Res. 2017, 34, 871–899. [Google Scholar] [CrossRef]
- Castaño, M.S.; Méndez, M.T.; Galindo, M.Á. Innovation, internationalization and business-growth expectations among entrepreneurs in the services sector. J. Bus. Res. 2016, 69, 1690–1695. [Google Scholar] [CrossRef]
- Greve, H.R. Performance, aspirations and risky organizational change. Adm. Sci. Q. 1998, 43, 58–86. [Google Scholar] [CrossRef] [Green Version]
- Shon, J.; Yan, M. R&D cuts and subsequent reversals: Meeting or beating quarterly analyst forecasts. Eur. Account. Rev. 2015, 24, 147–166. [Google Scholar]
- Hayward, M.L.A.; Hambrick, D.C. Explaining the premiums paid for large acquisitions: Evidence of CEO hubris. Adm. Sci. Q. 1997, 42, 103–127. [Google Scholar] [CrossRef]
- Hirshleifer, D.; Low, A.; Teoh, S.H. Are overconfident CEOs better innovators? J. Financ. 2012, 67, 1457–1498. [Google Scholar] [CrossRef] [Green Version]
- Chakravarty, A.; Grewal, R. Analyst earning forecasts and advertising and R&D budgets: Role of agency theoretic monitoring and bonding costs. J. Mark. Res. 2016, 53, 580–596. [Google Scholar]
- Graffin, S.D.; Boivie, S.; CarpEnter, M.A. Examining CEO succession and the role of heuristics in early-stage CEO evaluation. Strateg. Manag. J. 2013, 34, 383–403. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.Y.; Toffanin, M. The information environment of the firm and the market valuation of R&D. J. Bus. Financ. Account. 2018, 45, 1051–1081. [Google Scholar]
- Sung, J.K.; Park, J.; Yoo, S. Exploring the impact of strategic emphasis on advertising versus R&D during stock market downturns and upturns. J. Bus. Res. 2019, 94, 56–64. [Google Scholar]
- Audia, P.G.; Greve, H.R. Less likely to fail: Low performance, firm size, and factory expansion in the shipbuilding industry. Manag. Sci. 2006, 52, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Zahra, S.A.; Hayton, J.C. The effect of international venturing on firm performance: The moderating influence of absorptive capacity. J. Bus. Ventur. 2008, 23, 195–220. [Google Scholar] [CrossRef]
- Lv, D.D.; Chen, W.; Zhu, H.; Lan, H. How does inconsistent negative performance feedback affect the R&D investments of firms? A study of publicly listed firms. J. Bus. Res. 2019, 102, 151–162. [Google Scholar]
- Xie, E.; Huang, Y.; Stevens, C.E.; Lebedev, S. Performance feedback and outward foreign direct investment by emerging economy firms. J. World Bus. 2019, 54, 101014. [Google Scholar] [CrossRef]
- Malmendier, U.; Shanthikumar, D. Are small investors naive about incentives? J. Financ. Econ. 2007, 85, 457–489. [Google Scholar] [CrossRef]
- Briano-Turrent, G.d.C.; Rodríguez-Ariza, L. Corporate governance ratings on listed companies: An institutional perspective in Latin America. Eur. J. Manag. Bus. Econ. 2016, 25, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Ederer, F.; Manso, G. Is pay for performance detrimental to innovation? Manag. Sci. 2013, 59, 1496–1513. [Google Scholar] [CrossRef] [Green Version]
- Fasaei, H.; Tempelaar, M.P.; Jansen, J.J.P. Firm reputation and investment decisions: The contingency role of securities analysts’ recommendations. Long Range Plan. 2018, 51, 680–692. [Google Scholar] [CrossRef]
- Brauer, M.; Wiersema, M. Analyzing analyst research: A review of past coverage and recommendations for future research. J. Manag. 2018, 44, 218–248. [Google Scholar] [CrossRef] [Green Version]
- Gentry, R.J.; Shen, W. The impacts of performance relative to analyst forecasts and analyst coverage on firm R&D intensity. Strateg. Manag. J. 2013, 34, 121–130. [Google Scholar]
- Thomson, R.; Jensen, P. The effects of government subsidies on business R&D employment: Evidence from OECD countries. Natl. Tax J. 2013, 66, 281–309. [Google Scholar]
- Jin, Z.; Shang, Y.; Xu, J. The impact of government subsidies on private R&D and firm performance: Does ownership matter in China’s manufacturing industry? Sustainability 2018, 10, 2205. [Google Scholar]
- Bernini, C.; Pellegrini, G. How are growth and productivity in private firms affected by public subsidy? Evidence from a regional policy. Reg. Sci. Urban Econ. 2011, 41, 253–265. [Google Scholar] [CrossRef]
- Murphy, K.M.; Shleifer, A.; Vishny, R.W. Why is rent-seeking so costly to growth? Am. Econ. Rev. 1993, 83, 409. [Google Scholar]
- Lerner, J. The government as venture capitalist: The long-run impact of the SBIR program. J. Bus. 1999, 72, 285–318. [Google Scholar] [CrossRef]
- Takalo, T.; Tanayama, T. Adverse selection and financing of innovation: Is there a need for R&D subsidies? J. Technol. Transf. 2010, 35, 16–41. [Google Scholar]
- Kleer, R. Government R&D subsidies as a signal for private investors. Res. Policy 2010, 39, 1361–1374. [Google Scholar]
- Ranga, M.; Etzkowitz, H. Great expectations: An innovation solution to the contemporary economic crisis. Eur. Plan. Stud. 2012, 20, 1429–1438. [Google Scholar] [CrossRef]
- Liu, M.; Liu, L.; Xu, S.; Du, M.; Liu, X.; Zhang, Y. The influences of government subsidies on performance of new energy firms: A firm heterogeneity perspective. Sustainability 2019, 11, 4518. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Zuo, Y. The certification effect of R&D subsidies from the central and local governments: Evidence from China. R D Manag. 2018, 48, 615–626. [Google Scholar]
- Li, L.; Chen, J.; Gao, H.; Xie, L. The certification effect of government R&D subsidies on innovative entrepreneurial firms’ access to bank finance: Evidence from China. Small Bus. Econ. Group 2019, 52, 241–259. [Google Scholar]
- Cornaggia, J.; Mao, Y.; Tian, X.; Wolfe, B. Does banking competition affect innovation? J. Financ. Econ. 2015, 115, 189–209. [Google Scholar] [CrossRef] [Green Version]
- Jora, O.D.; Butiseacă, A.; Iacob, M. Seeking truth from facts and figures only? The logic of economics and China’s miracles. Rev. Int. Comp. Manag. 2017, 18, 545–562. [Google Scholar]
Indicator | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Summation |
---|---|---|---|---|---|---|---|---|---|
C13 | 9 | 12 | 16 | 0 | 1 | 18 | 22 | 15 | 93 |
C14 | 2 | 7 | 7 | 0 | 1 | 18 | 26 | 12 | 73 |
C15 | 6 | 8 | 12 | 0 | 0 | 14 | 15 | 13 | 68 |
C17 | 3 | 4 | 5 | 0 | 0 | 10 | 17 | 13 | 52 |
C18 | 1 | 5 | 7 | 0 | 0 | 16 | 17 | 13 | 59 |
C19 | 0 | 0 | 1 | 0 | 0 | 3 | 6 | 0 | 10 |
C20 | 1 | 1 | 0 | 0 | 0 | 3 | 4 | 4 | 13 |
C21 | 0 | 1 | 1 | 0 | 0 | 5 | 6 | 10 | 23 |
C22 | 4 | 6 | 6 | 0 | 0 | 9 | 11 | 9 | 45 |
C23 | 2 | 1 | 1 | 0 | 0 | 4 | 5 | 3 | 16 |
C24 | 1 | 1 | 3 | 0 | 0 | 6 | 5 | 5 | 21 |
C25 | 1 | 2 | 2 | 0 | 0 | 2 | 4 | 3 | 14 |
C26 | 26 | 32 | 39 | 0 | 9 | 71 | 82 | 64 | 323 |
C27 | 41 | 54 | 54 | 3 | 12 | 91 | 106 | 60 | 421 |
C28 | 4 | 9 | 9 | 0 | 0 | 4 | 7 | 7 | 40 |
C29 | 7 | 11 | 11 | 0 | 2 | 20 | 24 | 18 | 93 |
C30 | 9 | 18 | 25 | 0 | 3 | 23 | 34 | 25 | 137 |
C31 | 8 | 11 | 17 | 0 | 0 | 20 | 22 | 8 | 86 |
C32 | 14 | 20 | 30 | 0 | 1 | 28 | 34 | 27 | 154 |
C33 | 10 | 10 | 11 | 0 | 0 | 21 | 24 | 14 | 90 |
C34 | 21 | 29 | 29 | 0 | 6 | 41 | 54 | 30 | 210 |
C35 | 28 | 39 | 45 | 1 | 15 | 70 | 76 | 63 | 337 |
C36 | 18 | 25 | 29 | 0 | 2 | 38 | 47 | 48 | 207 |
C37 | 12 | 10 | 11 | 0 | 0 | 20 | 24 | 17 | 94 |
C38 | 33 | 41 | 50 | 0 | 9 | 91 | 110 | 66 | 400 |
C39 | 38 | 42 | 54 | 0 | 19 | 119 | 148 | 103 | 523 |
C40 | 0 | 4 | 2 | 0 | 6 | 15 | 17 | 19 | 63 |
C41 | 1 | 3 | 3 | 0 | 0 | 7 | 8 | 7 | 29 |
C42 | 0 | 1 | 2 | 0 | 0 | 2 | 3 | 4 | 12 |
Summation | 300 | 407 | 482 | 4 | 86 | 789 | 958 | 680 | 3706 |
Type | Variables | Observation | Definition and Measurement |
---|---|---|---|
Dependent Variables | Innovation Input | PRE | R & D expenses divided by operating revenue |
PRS | R & D personnel divided by total employees | ||
Innovation Output | ALP | Economic added value divided by total employees | |
Independent Variables | Market Expectation | MEG | See formula (2) |
MER | See formula (3) | ||
Moderating Variables | Capital Environment | INC | See formula (4) |
Government Environment | GOS | Government subsidies divided by operating revenue | |
Control Variables | Enterprise Attribute | ENS | Natural logarithm of total assets |
ENA | Observation date minus establishment date | ||
Financial Attribute | RID | Early warning bankruptcy Z value | |
ASL | Liquidity ratio | ||
CSR | Cash flow adequacy ratio | ||
Resource Attribute | LAI | Labor cost | |
TEI | Technician divided by total employees | ||
CAI | Investment activities divided by operating activities in the net cash flow |
Variable | Size | Minimum | Maximum | Mean | Std. |
---|---|---|---|---|---|
PRE | 3706 | 0.010 | 125.910 | 4.293 | 4.424 |
PRS | 3706 | 0.010 | 84.660 | 15.226 | 10.994 |
ALP | 3706 | −18.843 | 48.593 | 0.107 | 1.810 |
MEG | 3706 | −1997.477 | 237.207 | −0.391 | 34.643 |
MER | 3706 | 1.000 | 3.000 | 1.649 | 0.356 |
INC | 3706 | 1.000 | 44.500 | 9.946 | 7.111 |
GOS | 3706 | 0.000 | 48.229 | 1.224 | 2.152 |
ENS | 3706 | 1.382 | 8.887 | 3.879 | 1.168 |
ENA | 3706 | 2.016 | 58.290 | 16.782 | 5.180 |
RID | 3706 | −0.580 | 205.178 | 8.709 | 12.888 |
ASL | 3706 | 0.169 | 51.133 | 2.690 | 3.121 |
CSR | 3706 | −121.508 | 218.602 | 0.927 | 7.612 |
LAI | 3706 | 0.009 | 1.492 | 0.117 | 0.069 |
TEI | 3706 | 0.193 | 84.663 | 18.378 | 12.499 |
CAI | 3706 | −1609.333 | 1972.500 | 2.340 | 220.515 |
Variables | LLC | IPS | ADF | PP |
---|---|---|---|---|
PRE | −102.467 (0.000) | −82.992 (0.000) | 1245.050 (0.000) | 1525.990 (0.000) |
PRS | −381.597 (0.000) | −133.915 (0.000) | 1340.030 (0.000) | 1599.750 (0.000) |
ALP | −72.235 (0.000) | −25.614 (0.000) | 977.283 (0.000) | 1162.540 (0.000) |
MEG | −1299.050 (0.000) | −134.900 (0.000) | 1465.970 (0.000) | 1764.900 (0.000) |
MFI | −239.833 (0.000) | −48.648 (0.000) | 1283.220 (0.000) | 1567.600 (0.000) |
MER | −159.057 (0.000) | −74.881 (0.000) | 1185.380 (0.000) | 1472.660 (0.000) |
INC | −63.283 (0.000) | −24.277 (0.000) | 880.103 (0.004) | 1102.540 (0.000) |
GOS | −7548.520 (0.000) | −474.823 (0.000) | 1014.670 (0.000) | 1137.460 (0.000) |
Variables | PRE-M1 | PRE-M2 | PRE-M3 | |||
---|---|---|---|---|---|---|
Beta | P | Beta | P | Beta | P | |
MEG | −0.126 *** | 0.000 | −0.162 *** | 0.000 | ||
MEG2 | 0.005 *** | 0.000 | 0.016 *** | 0.000 | ||
INC | −0.005 | 0.761 | ||||
INC × MEG | 0.068 *** | 0.000 | ||||
INC × MEG2 | −0.007 *** | 0.001 | ||||
GOS | 0.030 ** | 0.042 | ||||
GOS × MEG | 0.066 *** | 0.000 | ||||
GOS × MEG2 | −0.005 *** | 0.000 | ||||
ENS | 0.224 *** | 0.000 | 0.216 *** | 0.000 | 0.213 *** | 0.000 |
ENA | −0.052 *** | 0.000 | −0.050 *** | 0.000 | −0.052 *** | 0.000 |
RID | 0.061 *** | 0.002 | 0.084 *** | 0.000 | 0.080 *** | 0.000 |
ASL | 0.017 | 0.407 | 0.005 | 0.805 | 0.005 | 0.803 |
CSR | −0.015 | 0.227 | −0.013 | 0.302 | −0.013 | 0.300 |
LAI | 0.442 *** | 0.000 | 0.426 *** | 0.000 | 0.423 *** | 0.000 |
TEI | 0.198 *** | 0.000 | 0.201 *** | 0.000 | 0.203 *** | 0.000 |
CAI | 0.008 | 0.514 | 0.004 | 0.719 | 0.002 | 0.871 |
Individual effect | Fixed | Fixed | Fixed | |||
Time effect | Fixed | Fixed | Fixed | |||
R2 | 0.439 | 0.447 | 0.457 | |||
F-statistics | 192.617 | 175.4079 | 134.714 |
INC | GOS | Relation Function | Shape and Color | Effective Curves |
---|---|---|---|---|
-- | -- | −0.126MEG+0.005MEG2 | U, black | |
H | H | 1.221MEG−0.120MEG2 | Inverted U, red | |
L | L | 0.030MEG+0.001MEG2 | U, green | |
H | L | 0.936MEG−0.098MEG2 | Inverted U, blue | |
L | H | 0.254MEG−0.021MEG2 | Inverted U, purple |
Variables | PRE-M4 | PRE-M5 | ||
---|---|---|---|---|
Beta | P | Beta | P | |
MER | 0.129 * | 0.050 | −0.067 | 0.454 |
MER2 | −0.002 * | 0.067 | 0.080 ** | 0.028 |
INC | −0.021 * | 0.088 | ||
INC × MER | 0.003 | 0.968 | ||
INC × MER2 | −0.032 * | 0.061 | ||
GOS | 0.011 | 0.426 | ||
GOS × MER | −0.087 | 0.428 | ||
GOS × MER2 | 0.130 ** | 0.033 | ||
ENS | 0.223 *** | 0.000 | 0.103 *** | 0.000 |
ENA | −0.051 *** | 0.000 | −66.536 *** | 0.658 |
RID | 0.060 *** | 0.003 | 0.038 ** | 0.039 ** |
ASL | 0.018 | 0.362 | −0.028 * | 0.083 * |
CSR | −0.015 | 0.235 | −0.007 | 0.396 |
LAI | 0.443 *** | 0.000 | 0.412 *** | 0.000 |
TEI | 0.197 *** | 0.000 | 0.066 *** | 0.001 |
CAI | 0.008 | 0.524 | 0.005 | 0.475 |
Individual effect | Fixed | Fixed | ||
Time effect | Fixed | Fixed | ||
R2 | 0.440 | 0.442 | ||
F−statistics | 170.292 | 126.128 |
INC | GOS | Relation Function | Shape and Color | Effective Curves |
---|---|---|---|---|
-- | -- | 0.129MER−0.002MER2 | Inverted U, black | |
H | H | −0.308MER−0.027MER2 | Inverted U, red | |
L | L | 0.023MER−0.131MER2 | Inverted U, green | |
H | L | 0.067MER−0.585MER2 | Inverted U, blue | |
L | H | −0.352MER+0.428MER2 | U, purple |
Variables | ALP | ||||
---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 | |
MEG | −0.011 (0.435) | −0.028 (0.194) | |||
MEG2 | 0.002 *** (0.003) | 0.003 * (0.052) | |||
MER | 0.127 ** (0.014) | −0.107 (0.196) | |||
MER2 | −0.002 ** (0.022) | 0.015 * (0.094) | |||
INC | −0.044 *** (0.001) | −0.037 *** (0.003) | |||
INC × MEG | 0.033 ** (0.020) | ||||
INC × MEG2 | −0.001 * (0.072) | ||||
INC × MER | 0.150 * (0.081) | ||||
INC × MER2 | −0.010 * (0.090) | ||||
GOS | 0.015 (0.314) | 0.006 (0.619) | |||
GOS × MEG | 0.024 * (0.052) | ||||
GOS × MEG2 | −0.001 * (0.081) | ||||
GOS × MER | −0.024 (0.804) | ||||
GOS × MER2 | 0.011 * (0.073) | ||||
ENS | 0.046 *** (0.000) | 0.046 *** (0.000) | 0.003 (0.788) | 0.045 *** (0.000) | 0.045 *** (0.000) |
ENA | −0.043 *** (0.000) | −0.044 *** (0.000) | −56.084 (0.346) | −0.043 *** (0.000) | −0.043 *** (0.000) |
RID | 0.044 *** (0.006) | 0.045 *** (0.005) | 0.012 (0.552) | 0.043 *** (0.007) | 0.041 ** (0.010) |
ASL | 0.011 (0.484) | 0.011 (0.495) | −0.032 * (0.081) | 0.013 (0.422) | 0.014 (0.374) |
CSR | −0.006 (0.517) | −0.006 (0.522) | −0.002 (0.856) | −0.006 (0.534) | −0.006 (0.534) |
LAI | 0.024 ** (0.022) | 0.024 ** (0.023) | 0.033 (0.163) | 0.025 ** (0.017) | 0.026 ** (0.013) |
TEI | 0.776 *** (0.000) | 0.773 *** (0.000) | 0.652 *** (0.000) | 0.775 *** (0.000) | 0.773 *** (0.000) |
CAI | 0.004 (0.709) | 0.003 (0.738) | 0.004 (0.658) | 0.003 (0.724) | 0.003 (0.724) |
Individual effect | Fixed | Fixed | Fixed | Fixed | Fixed |
Time effect | Fixed | Fixed | Fixed | Fixed | Fixed |
R2 | 0.654 | 0.655 | 0.656 | 0.655 | 0.656 |
F-statistics | 465.582 | 412.553 | 305.929 | 411.697 | 305.334 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z. Can the Gap and Rating of Market Expectation Promote Innovation Input of China Manufacturers? Sustainability 2020, 12, 2039. https://doi.org/10.3390/su12052039
Jiang Z. Can the Gap and Rating of Market Expectation Promote Innovation Input of China Manufacturers? Sustainability. 2020; 12(5):2039. https://doi.org/10.3390/su12052039
Chicago/Turabian StyleJiang, Zhangsheng. 2020. "Can the Gap and Rating of Market Expectation Promote Innovation Input of China Manufacturers?" Sustainability 12, no. 5: 2039. https://doi.org/10.3390/su12052039
APA StyleJiang, Z. (2020). Can the Gap and Rating of Market Expectation Promote Innovation Input of China Manufacturers? Sustainability, 12(5), 2039. https://doi.org/10.3390/su12052039