Analysis of Runoff and Sediment Losses from a Sloped Roadbed under Variable Rainfall Intensities and Vegetation Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Characteristics
2.3. Vegetation Characteristics
2.4. Experimental Design
2.5. Runoff Reduction Rate
2.6. Statistical Analysis
3. Results and Discussion
3.1. Runoff Generation Time
3.2. Total Runoff
3.3. Sediment Yield
3.4. Effects of Rainfall Intensity on Runoff Reduction Rate
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Z.Q.; Jia, G.D.; Yu, X.X. Variation of water uptake in degradation agroforestry shelterbelts on the North China Plain. Agric. Ecosyst. Environ. 2020, 1, 106697. [Google Scholar] [CrossRef]
- Christian, V.; Agus, F.; Alamban, R. Runoff and sediment losses from 27 upland catchments in Southeast Asia: Impact of rapid land use changes and conservation practices. Agric. Ecosyst. Environ. 2008, 128, 225–238. [Google Scholar]
- Pan, C.Z.; Zhou, P.; Shang, G. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. J. Hydrol. 2006, 331, 178–185. [Google Scholar] [CrossRef]
- Chaplot, V. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3-N loads predictions. J. Hydrol. 2010, 312, 207–222. [Google Scholar] [CrossRef]
- Imeson, A.C.; Prinsen, H.A.M. Vegetation patterns as biological indicators for identifying runoff and sediment source areas for semi-arid landscapes in Spain. Agric. Ecosyst. Environ. 2004, 104, 333–342. [Google Scholar] [CrossRef]
- Jia, C.F.; Sun, B.P.; Yu, X.X.; Yang, X.H. Evaluation of vegetation restoration along an expressway in a cold, arid, and desertified area of China. Sustainability 2019, 11, 2313. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Fan, D.; Yu, X.; Liu, Z.; Sun, J. Effects of simulated gravel on hydraulic characteristics of overland flow under varying flow discharges. Sci. Rep. 2019, 9, 19781. [Google Scholar] [CrossRef] [PubMed]
- Blanco, C.H.; Gantzer, C.J.; Anderson, S.H. Grass barrier and vegetative filter strip effectiveness in reducing runoff, sediment, nitrogen, and phosphorus loss. Soil Sci. Soc. Am. J. 2014, 68, 1670. [Google Scholar] [CrossRef]
- Peter, F.; Auerswald, K. Effectiveness of grassed waterways in reducing runoff and sediment delivery from agricultural watersheds. J. Environ. Qual. 2003, 32, 927–936. [Google Scholar]
- Li, X.H.; Yang, J.; Zhao, C.Y. Runoff and sediment from orchard terraces in southeastern China. Land Degrad. Dev. 2014, 25, 184–192. [Google Scholar] [CrossRef]
- Ashok, M.; Kar, S.; Singh, V.P. Determination of runoff and sediment yield from a small watershed in sub-humid subtropics using the HSPF model. Hydrol. Process. 2007, 21, 3035–3045. [Google Scholar]
- Vincent, C.; Jean, P. Sediment, soil organic carbon and runoff delivery at various spatial scales. Catena 2009, 88, 46–56. [Google Scholar]
- Polyakov, V.O.; Nearing, M.A.; Nichols, M.H. Long-term runoff and sediment yields from small semiarid watersheds in southern Arizona. Water Resour. Res. 2010, 46, 204–216. [Google Scholar] [CrossRef] [Green Version]
- Anton, L.A.; Sampurno, B.C.; Kukuh, S. Runoff and sediment yield from rural roads, trails and settlements in the upper Konto catchment, East Java, Indonesia. Geomorphology 2012, 87, 28–37. [Google Scholar]
- Truman, C.C.; Potter, T.L.; Nuti, R.C.; Franklin, D.H.; Bosch, D.D. Antecedent water content effects on runoff and sediment yields from two Coastal Plain Ultisols. Agric. Water Manag. 2011, 98, 1196. [Google Scholar] [CrossRef]
- Susana, B.; Angeles, G.M.; Jamal, B. Plant spatial pattern predicts hillslope runoff and erosion in a semiarid mediterranean landscape. Ecosystems 2007, 10, 987–998. [Google Scholar] [CrossRef] [Green Version]
- Norton, J.B.; Sandor, J.A.; White, C.S. Runoff and sediments from hillslope soils within a Native American agroecosystem. Soil Sci. Soc. Am. J. 2007, 71, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Mantzos, N.; Karakitsou, A.; Hela, D.; Patakioutas, G.; Leneti, E.; Konstantinou, I. Persistence of oxyfluorfen in soil, runoff water, sediment and plants of a sunflower cultivation. Sci. Total Environ. 2014, 472, 767–777. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, G.; Wang, G. Effects of canopy and roots of patchy distributed artemisia capillaris on runoff, sediment, and the spatial variability of soil erosion at the plot scale. Soil Sci. 2012, 177, 409–415. [Google Scholar] [CrossRef]
- You, J.Y.; Quan, H.D.; Yuan, Y.F.; Peng, X.D.; Zhao, L.S.; Yang, J. Effects of rainfall intensity on runoff and sediment yields on bare slopes in a karst area, SW China. Geoderma 2018, 330, 30–40. [Google Scholar]
- Silburn, D.M.; Glanville, S.F. Management practices for control of runoff losses from cotton furrows under storm rainfall. I. Runoff and sediment on a black Vertosol. Aust. J. Soil Res. 2002, 40, 1–20. [Google Scholar] [CrossRef]
- Zhang, Y.E.; Wang, D.D.; Liu, Z.Q.; Jia, G.D.; Yu, X.X.; Chen, L.H. Assessment of leaf water enrichment of Platycladus orientalis using numerical modeling with different isotopic models. Ecol. Indic. 2020, 1, 106069. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burguet, M.; Guzmán, G.; De Luna, E.; Taguas, E.V.; Gomez, J.A. Evaluation of disruption of sediment connectivity and herbicide transport across a slope by grass strips using a magnetic iron oxide tracer. Soil Tillage Res. 2018, 180, 268–281. [Google Scholar] [CrossRef]
- Yang, D.; Kanae, S.; Oki, T.; Koike, T.; Musiake, K. Global potential soil erosion with reference to land use and climate changes. Hydrol. Process. 2003, 17. [Google Scholar] [CrossRef]
- De las Heras, M.M.; Nicolau, J.M.; Merino-Martín, L.; Wilcox, B.P. Plot-scale effects on runoff and erosion along a slope degradation gradient. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Lesschen, J.P.; Schoorl, J.M.; Cammeraat, L.H. Modelling runoff and erosion for a semi-arid catchment using a multi-scale approach based on hydrological connectivity. Geomorphology 2009, 109, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, J.; Wu, P.; Zhao, X. Application of neural network and grey relational analysis in ranking the factors affecting runoff and sediment yield under simulated rainfall. Soil Res. 2016, 54, 291. [Google Scholar] [CrossRef]
- Sérgio, A.P.; Malvar, M.C.; Diana, C.S.V.; Lee, M.; Jan, J.K. Effectiveness of hydro mulching to reduce runoff and erosion in a recently burnt pine plantation in central Portugal. Land Degrad. Dev. 2016, 27. [Google Scholar] [CrossRef]
- Polyakov, V.O.; Lal, R. Soil organic matter and CO2 emission as affected by water erosion on field runoff plots. Geoderma 2008, 143, 216–222. [Google Scholar] [CrossRef]
- María, J.M.; Ramón, B.; Luis, J.; Raquel, P.-R. Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots. Sci. Total Environ. 2007, 378, 161–165. [Google Scholar]
- Gessesse, B.; Bewket, W.; Achim, B. Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the modjo watershed, Ethiopia. Land Degrad. Dev. 2015, 26, 711–724. [Google Scholar] [CrossRef]
- Deasy, C.; Quinton, J.N.; Silgram, M.; Bailey, A.P.; Jackson, B.; Stevens, C.J. Mitigation options for sediment and phosphorus loss from winter-sown arable crops. J. Environ. Qual. 2009, 38, 2121. [Google Scholar] [CrossRef] [PubMed]
- Cerdà, A.; Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Pereira, P.; Brevik, E.; Giménez-Morera, A.; Fernández-Raga, M.; Pulido, M.; di Prima, S.; et al. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. J. Environ. Manag. 2017, 202, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Uchida, T.; Asano, Y. Spatial variability in the flowpath of hillslope runoff and streamflow in a meso-scale catchment. Hydrol. Process. 2010, 24, 2277–2286. [Google Scholar] [CrossRef]
- Murphy, T.; Dougall, C.; Burger, P.; Carroll, C. Runoff water quality from dryland cropping on Vertisols in Central Queensland, Australia. Agric. Ecosyst. Environ. 2013, 180, 21–28. [Google Scholar] [CrossRef]
- Helmers, M.J.; Zhou, X.; Asbjornsen, H.; Kolka, R.; Tomer, M.D.; Cruse, R.M. Sediment removal by prairie filter strips in row-cropped ephemeral watersheds. J. Environ. Qual. 2012, 41, 1531–1539. [Google Scholar] [CrossRef] [Green Version]
- Brazier, R.E.; Beven, K.J.; Freer, J.; Rowan, J.S. Equifinality and uncertainty in physically based soil erosion models: Application of the glue methodology to WEPP-the water erosion prediction project-for sites in the UK and USA. Earth Surface Process. Landf. 2015, 25, 825–845. [Google Scholar] [CrossRef]
- Pimentel, D.; Kounang, N. Ecology of soil erosion in ecosystems. Ecosystems 1998, 1, 416–426. [Google Scholar] [CrossRef]
The Difference of Source | SS | df | MS | F-Value | p-Value |
---|---|---|---|---|---|
Between groups | 38,568.133 | 2 | 5112.29 | 4.911 | 0.047 |
Within the group | 94,227.600 | 12 | 7852.300 | - | - |
Total | 132,795.733 | 14 | - | - | - |
The Difference of Source | SS | df | MS | F-Value | p-Value |
---|---|---|---|---|---|
Between groups | 1846.586 | 2 | 923.293 | 13.558 | 0.001 |
Within the group | 817.169 | 40 | 68.097 | 4.106 | 0.093 |
Total | 2663.755 | 44 | - | - | - |
Rainfall Density | Bare Slope Runoff Volume/L | Grass Runoff Volume/L | Shrub-Grass Combined Runoff Volume/L | Reducing Rate of Grass Slop/% | Reducing Rate of Shrub-Grass Combined Slop/% |
---|---|---|---|---|---|
15 mm∙h−1 | 29.35 | 13.1 | 10.66 | 55.37 | 63.68 |
28 mm∙h−1 | 41.46 | 22.58 | 16.96 | 45.54 | 59.09 |
40 mm∙h−1 | 42.08 | 25.84 | 17.91 | 38.59 | 57.44 |
63 mm∙h−1 | 51.54 | 27.26 | 20.53 | 47.11 | 60.16 |
82 mm∙h−1 | 57.67 | 33.2 | 26.41 | 42.43 | 54.20 |
Average | 44.42 | 24.40 | 18.49 | 45.81 | 58.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, C.; Sun, B.; Yu, X.; Yang, X. Analysis of Runoff and Sediment Losses from a Sloped Roadbed under Variable Rainfall Intensities and Vegetation Conditions. Sustainability 2020, 12, 2077. https://doi.org/10.3390/su12052077
Jia C, Sun B, Yu X, Yang X. Analysis of Runoff and Sediment Losses from a Sloped Roadbed under Variable Rainfall Intensities and Vegetation Conditions. Sustainability. 2020; 12(5):2077. https://doi.org/10.3390/su12052077
Chicago/Turabian StyleJia, Chunfeng, Baoping Sun, Xinxiao Yu, and Xiaohui Yang. 2020. "Analysis of Runoff and Sediment Losses from a Sloped Roadbed under Variable Rainfall Intensities and Vegetation Conditions" Sustainability 12, no. 5: 2077. https://doi.org/10.3390/su12052077
APA StyleJia, C., Sun, B., Yu, X., & Yang, X. (2020). Analysis of Runoff and Sediment Losses from a Sloped Roadbed under Variable Rainfall Intensities and Vegetation Conditions. Sustainability, 12(5), 2077. https://doi.org/10.3390/su12052077