The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia
Abstract
:1. Introduction
1.1. Research on the Metabolism of Islands: What Resilience and Sustainability for These Territories
1.2. The “Metal-Energy-Construction Mineral” Nexus
2. Case Study: The Island Metabolism of New Caledonia
- The “Société Le Nickel” (SLN) plant: its capital is 56% owned by Eramet (French industrial company), 34% by STCP (Provinces of New Caledonia), and 10% by Nisshin Steel (stainless steel producer in Japan). It uses a pyrometallurgical process and produces ferronickel. It is the oldest corporation on the island.
- The “Koniambo Nickel SAS” plant processes high-grade saprolites from the Koniambo mountain in the North Province using a pyrometallurgical process. Its capital is 51% owned by the South Pacific Mining Corporation (SMSP) (itself owned by the North Province), and the remaining 49% was recently acquired by Glencore (British-Swiss company), which purchases all the ferronickel that is produced by this plant. The plant went into production in 2013. It is considered as a political “instrument” for the emancipation of native indigenous populations (Kanaks) from France [36].
- In 2010, the “Vale Inco” hydrometallurgical plant started its operations. It is 95% owned by a private international consortium (including the Brazilian company Vale), and the remaining 5% is held by the Southern and Northern Provinces.
3. Method: MFA for the Nexus from International Local Data and Interviews
3.1. At the Level of the Island Flows
3.2. At the Nexus Scale
3.3. Field Survey with Island Stakeholders
- -
- What are the missions of the stakeholder and his professional network?
- -
- What is the economic structure of the different sectors, and what infrastructure projects are planned?
- -
- How is the supply of materials organized, and what are the main challenges to come?
- -
- How are the environmental, social, and spatial challenges of construction projects taken into account? What are the sticking points and conflicts?
- -
- The director of a company in the concrete sector
- -
- An environmental inspector from the environment department of the South Province
- -
- The managing director of a recycling company (which uses plastic waste and slag to make paving stones and curbs)
- -
- The CEO of a professional federation of quarry operators and mining companies
- -
- The managing director of a company in the construction sector
- -
- The representative of the federation of processing industries
- -
- The Head of Technical Studies and Investigation Department of KNS
- -
- The HSEQR (Safety-Environment-Quality) director of SLN
4. Results: The Metabolic Nexus, the Material Footprint of the Island, and Obstacles for the Transition to an Industrial Symbiosis
4.1. The Metabolic Flows of the “Metal-Energy-Construction Mineral” Nexus in New Caledonia
4.2. Spatialization of Nexus: The Material Footprint of Islands
4.3. Potential Building Blocks and Obstacles for the Emergence of an Industrial Symbiosis in the Nexus
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Social Ecology. Society-Nature Relations across Time and Space; Haberl, H., Fischer-Kowalski, M., Krausmann, F., Winiwarter, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Haberl, H.; Wiedenhofer, D.; Pauliuk, S.; Krausmann, F.; Müller, D.B.; Fischer-Kowalski, M. Contributions of sociometabolic research to sustainability science. Nat. Sustain. 2019, 2, 173. [Google Scholar] [CrossRef]
- Krausmann, F.; Richter, R.; Eisenmenger, N. Resource Use in Small Island States. J. Ind. Ecol. 2014, 18, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Petridis, P.; Fischer-Kowalski, M. Island Sustainability: The Case of Samothraki. In Social Ecology; Haberl, H., Fischer-Kowalski, M., Krausmann, F., Winiwarter, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Singh, S.J.; Grünbühel, C.M.; Schandl, H.; Schulz, N. Social Metabolism and Labour in a Local Context: Changing Environmental Relations on Trinket Island. Popul. Environ. 2001, 23, 71–104. [Google Scholar] [CrossRef]
- Fetzel, T.; Petridis, P.; Noll, D.; Singh, S.J.; Fischer-Kowalski, M. Reaching a socio-ecological tipping point: Overgrazing on the Greek island of Samothraki and the role of European agricultural policies. Land Use Policy 2018, 76, 21–28. [Google Scholar] [CrossRef]
- Symmes, R.; Fishman, T.; Telesford, J.N.; Singh, S.J.; Tan, S.-Y.; Kroon, K.D. The weight of islands: Leveraging Grenada’s material stocks to adapt to climate change. J. Ind. Ecol. 2020, 1–14, forthcoming. [Google Scholar] [CrossRef]
- Martinico-Perez, M.F.G.; Schandl, H.; Fishman, T.; Tanikawa, H. The Socio-Economic Metabolism of an Emerging Economy: Monitoring Progress of Decoupling of Economic Growth and Environmental Pressures in the Philippines. Ecol. Econ. 2018, 147, 155–166. [Google Scholar] [CrossRef]
- Deschenes, P.J.; Chertow, M. An island approach to industrial ecology: Towards sustainability in the island context. J. Environ. Plan. Manag. 2004, 47, 201–217. [Google Scholar] [CrossRef]
- Eckelman, M.J.; Chertow, M.R. Using Material Flow Analysis to Illuminate Long-Term Waste Management Solutions in Oahu, Hawaii. J. Ind. Ecol. 2009, 13, 758–774. [Google Scholar] [CrossRef]
- Cole, S. A political ecology of water equity and tourism: A Case Study from Bali. Ann. Tour. Res. 2012, 39, 1221–1241. [Google Scholar] [CrossRef]
- Thompson, B.S. The political ecology of mangrove forest restoration in Thailand: Institutional arrangements and power dynamics. Land Use Policy 2018, 78, 503–514. [Google Scholar] [CrossRef]
- Gössling, S. Tourism and Development in Tropical Islands: Political Ecology Perspectives; Edward Elgar: Cheltenham, UK, 2003. [Google Scholar]
- Allen, M.G.; Porter, D.J. Managing the transition from logging to mining in post-conflict Solomon Islands. Extr. Ind. Soc. 2016, 3, 350–358. [Google Scholar] [CrossRef]
- Harrison, C.; Popke, J. Geographies of renewable energy transition in the Caribbean: Reshaping the island energy metabolism. Energy Res. Soc. Sci. 2018, 36, 165–174. [Google Scholar] [CrossRef]
- Barles, S. Society, energy and materials: The contribution of urban metabolism studies to sustainable urban development issues. J. Environ. Plan. Manag. 2010, 53, 439–455. [Google Scholar] [CrossRef]
- Bahers, J.-B.; Tanguy, A.; Pincetl, S. Metabolic relationships between cities and hinterland: A political-industrial ecology of energy metabolism of Saint-Nazaire metropolitan and port area (France). Ecol. Econ. 2020, 167, 106447. [Google Scholar] [CrossRef]
- Cecchin, A. Material flow analysis for a sustainable resource management in island ecosystems. J. Environ. Plan. Manag. 2016, 0, 1–20. [Google Scholar] [CrossRef]
- Ginard-Bosch, F.J.; Ramos-Martín, J. Energy metabolism of the Balearic Islands (1986–2012). Ecol. Econ. 2016, 124, 25–35. [Google Scholar] [CrossRef]
- Bahers, J.-B.; Perez, J.; Durand, M. Vulnérabilité métabolique et potentialités des milieux insulaires. Le cas de l’île de Ndzuwani (Anjouan), archipel des Comores. Flux 2019, 116–117, 86–104. [Google Scholar] [CrossRef]
- Schaffartzik, A.; Wiedenhofer, D. Linking society and nature: Material flows and the resource nexus. In Routledge Handbook of the Resource Nexus; Routledge: London, UK, 2017. [Google Scholar]
- Newell, J.P.; Goldstein, B.; Foster, A. A 40-year review of food–energy–water nexus literature and its application to the urban scale. Environ. Res. Lett. 2019, 14, 073003. [Google Scholar] [CrossRef] [Green Version]
- Barles, S. Urban metabolism of Paris and its region. J. Ind. Ecol. 2009, 13, 898–913. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- Dai, J.; Wu, S.; Han, G.; Weinberg, J.; Xie, X.; Wu, X.; Song, X.; Jia, B.; Xue, W.; Yang, Q. Water-energy nexus: A review of methods and tools for macro-assessment. Appl. Energy 2018, 210, 393–408. [Google Scholar] [CrossRef]
- Hamiche, A.M.; Stambouli, A.B.; Flazi, S. A review of the water-energy nexus. Renew. Sustain. Energy Rev. 2016, 65, 319–331. [Google Scholar] [CrossRef]
- Arthur, M.; Liu, G.; Hao, Y.; Zhang, L.; Liang, S.; Asamoah, E.F.; Lombardi, G.V. Urban food-energy-water nexus indicators: A review. Resour. Conserv. Recycl. 2019, 151, 104481. [Google Scholar] [CrossRef]
- Fan, J.-L.; Kong, L.-S.; Wang, H.; Zhang, X. A water-energy nexus review from the perspective of urban metabolism. Ecol. Model. 2019, 392, 128–136. [Google Scholar] [CrossRef]
- Dalla Fontana, M.; Boas, I. The politics of the nexus in the city of Amsterdam. Cities 2019, 95, 102388. [Google Scholar] [CrossRef]
- Singh, S.; Kennedy, C. The Nexus of Carbon, Nitrogen, and Biodiversity Impacts from Urban Metabolism. J. Ind. Ecol. 2018, 22, 853–867. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Godfray, H.C.J.; Tilman, D.; Gleick, P.; Hoff, H.; Pahl-Wostl, C.; Xu, Z.; Chung, M.G.; Sun, J.; et al. Nexus approaches to global sustainable development. Nat. Sustain. 2018, 1, 466–476. [Google Scholar] [CrossRef]
- Sverdrup, H.; Koca, D.; Ragnarsdottir, K.V. Peak Metals, Minerals, Energy, Wealth, Food and Population: Urgent Policy Considerations for a Sustainable Society. J. Environ. Sci. Eng. 2013, 2, 499–533. [Google Scholar]
- Malm, A. Fossil Capital: The Rise of Steam Power and the Roots of Global Warming; Verso: New York, NY, USA, 2016. [Google Scholar]
- Allen, M.G. Islands, extraction and violence: Mining and the politics of scale in Island Melanesia. Political Geogr. 2017, 57, 81–90. [Google Scholar] [CrossRef]
- Apanon, C.; Fremont, K.D. L’impact du Nickel en Nouvelle-Calédonie: Deux Emplois Privés Sur Dix Liés au Secteur Nickel en 2012. Available online: https://catalogue.nla.gov.au/Record/7089541 (accessed on 9 March 2020).
- Kowasch, M. Nickel mining in northern New Caledonia—A path to sustainable development? J. Geochem. Explor. 2018, 194, 280–290. [Google Scholar] [CrossRef]
- Martinez-Alier, J. Social Metabolism, Ecological Distribution Conflicts, and Languages of Valuation. Capital. Nat. Soc. 2009, 20, 58–87. [Google Scholar] [CrossRef]
- Conde, M. Resistance to Mining. A Review. Ecol. Econ. 2017, 132, 80–90. [Google Scholar] [CrossRef]
- Schaffartzik, A.; Mayer, A.; Eisenmenger, N.; Krausmann, F. Global patterns of metal extractivism, 1950–2010: Providing the bones for the industrial society’s skeleton. Ecol. Econ. 2016, 122, 101–110. [Google Scholar] [CrossRef]
- Trépied, B. Des conduites d’eau pour les tribus. Action municipale, colonisation et citoyenneté en Nouvelle-Calédonie. Rev. Dhistoire Mod. Contemp. 2011, 58, 93–120. [Google Scholar] [CrossRef]
- Horowitz, L.S. Environmental violence and crises of legitimacy in New Caledonia. Political Geogr. 2009, 28, 248–258. [Google Scholar] [CrossRef]
- Meur, P.-Y.L. La terre en Nouvelle-Calédonie: Pollution, appartenance et propriété intellectuelle. Multitudes 2010, 41, 91–98. [Google Scholar] [CrossRef]
- Merlin, J. L’émergence d’une compétence environnementale autochtone? Terrains Trav. 2014, 24, 85–102. [Google Scholar] [CrossRef]
- Demmer, C. L’export du nickel au cœur du débat politique néo-calédonien. Mouvements 2017, 91, 130–140. [Google Scholar] [CrossRef]
- Bahers, J.-B.; Barles, S.; Durand, M. Urban Metabolism of Intermediate Cities: The Material Flow Analysis, Hinterlands and the Logistics-Hub Function of Rennes and Le Mans (France). J. Ind. Ecol. 2019, 23, 686–698. [Google Scholar] [CrossRef]
- Rosado, L.; Kalmykova, Y.; Patrício, J. Urban metabolism profiles. An empirical analysis of the material flow characteristics of three metropolitan areas in Sweden. J. Clean. Prod. 2016, 126, 206–217. [Google Scholar] [CrossRef]
- Athanassiadis, A.; Bouillard, P.; Crawford, R.H.; Khan, A.Z. Towards a Dynamic Approach to Urban Metabolism: Tracing the Temporal Evolution of Brussels’ Urban Metabolism from 1970 to 2010. J. Ind. Ecol. 2016, 21, 307–319. [Google Scholar] [CrossRef]
- Liang, S.; Qu, S.; Zhao, Q.; Zhang, X.; Daigger, G.T.; Newell, J.P.; Miller, S.A.; Johnson, J.X.; Love, N.G.; Zhang, L.; et al. Quantifying the Urban Food–Energy–Water Nexus: The Case of the Detroit Metropolitan Area. Environ. Sci. Technol. 2019, 53, 779–788. [Google Scholar] [CrossRef] [PubMed]
- EUROSTAT. Economy-Wide Material Flow Accounts (EW-MFA) Compilation Guide. 2013. Available online: https://ec.europa.eu/eurostat/documents/1798247/6191533/2013-EW-MFA-Guide-10Sep2013.pdf/54087dfb-1fb0-40f2-b1e4-64ed22ae3f4c (accessed on 9 March 2020).
- Voskamp, I.M.; Stremke, S.; Spiller, M.; Perrotti, D.; van der Hoek, J.P.; Rijnaarts, H.H.M. Enhanced Performance of the Eurostat Method for Comprehensive Assessment of Urban Metabolism: A Material Flow Analysis of Amsterdam. J. Ind. Ecol. 2017, 21, 887–902. [Google Scholar] [CrossRef]
- Singh, S.J.; Haas, W. Complex Disasters on the Nicobar Islands. In Social Ecology: Society-Nature Relations across Time and Space; Haberl, H., Fischer-Kowalski, M., Krausmann, F., Winiwarter, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Bahers, J.-B.; Kim, J. Regional approach of waste electrical and electronic equipment (WEEE) management in France. Resour. Conserv. Recycl. 2018, 129, 45–55. [Google Scholar] [CrossRef]
- Baccini, P.H.; Brunner, P. Metabolism of the Anthroposphere; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Laner, D.; Rechberger, H.; Astrup, T. Systematic Evaluation of Uncertainty in Material Flow Analysis. J. Ind. Ecol. 2014, 18, 859–870. [Google Scholar] [CrossRef]
- Patrício, J.; Kalmykova, Y.; Rosado, L.; Lisovskaja, V. Uncertainty in Material Flow Analysis Indicators at Different Spatial Levels. J. Ind. Ecol. 2015, 19, 837–852. [Google Scholar] [CrossRef]
- Džubur, N.; Buchner, H.; Laner, D. Evaluating the Use of Global Sensitivity Analysis in Dynamic MFA. J. Ind. Ecol. 2017, 21, 1212–1225. [Google Scholar] [CrossRef]
- Deutz, P.; Baxter, H.; Gibbs, D.; Mayes, W.M.; Gomes, H.I. Resource recovery and remediation of highly alkaline residues: A political-industrial ecology approach to building a circular economy. Geoforum 2017, 85, 336–344. [Google Scholar] [CrossRef]
- ISEE. Tableaux de l’Economie Calédonienne. Available online: http://www.isee.nc/publications/tableau-de-l-economie-caledonienne-tec (accessed on 9 March 2020).
- USGS. 2016 Minerals Yearbook—The Mineral Industry of New Caledonia. Available online: https://www.usgs.gov/media/files/mineral-industry-new-caledonia-2016-pdf (accessed on 9 March 2020).
- ISEE. Commerce extérieur Customs Office of New Caledonia Données de la Direction Régionale des Douanes. Available online: http://www.isee.nc/economie-entreprises/economie-finances/commerce-exterieur (accessed on 9 March 2020).
- ISEE. Energie Environnement Données Sur le Bilan Énergétique. Available online: http://www.isee.nc/economie-entreprises/entreprises-secteurs-d-activites/energie-environnement (accessed on 9 March 2020).
- DIMENC. Gouvernement de Nouvelle-Calédonie Schema Pour la Transition Energetique de la Nouvelle-Caledonie. Available online: https://maitrise-energie.nc/espace-presse/schema-pour-la-transition-energetique-de-la-nouvelle-caledonie (accessed on 9 March 2020).
- Jouanny, M. Réhabilitation d’un site d’enfouissement de déchets inertes en parc d’activités dynamique et durable. Mémoire de projet individuel à Polytech Tours 2016, 37. [Google Scholar]
- Eurostat. Economy-Wide Material Flow Accounts Handbook. 2018. Available online: https://ec.europa.eu/eurostat/documents/3859598/9117556/KS-GQ-18-006-EN-N.pdf/b621b8ce-2792-47ff-9d10-067d2b8aac4b (accessed on 9 March 2020).
- Material Flows and Resource Productivity—Eurostat. Available online: https://ec.europa.eu/eurostat/web/environment/material-flows-and-resource-productivity (accessed on 18 February 2020).
- Yoshida, K.; Fishman, T.; Okuoka, K.; Tanikawa, H. Material stock’s overburden: Automatic spatial detection and estimation of domestic extraction and hidden material flows. Resour. Conserv. Recycl. 2017, 123, 165–175. [Google Scholar] [CrossRef]
- Wiedmann, T.O.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. USA 2015, 112, 6271–6276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bringezu, S.; Schütz, H.; Steger, S.; Baudisch, J. International comparison of resource use and its relation to economic growth: The development of total material requirement, direct material inputs and hidden flows and the structure of TMR. Ecol. Econ. 2004, 51, 97–124. [Google Scholar] [CrossRef]
- Schandl, H.; Fischer-Kowalski, M.; West, J.; Giljum, S.; Dittrich, M.; Eisenmenger, N.; Geschke, A.; Lieber, M.; Wieland, H.; Schaffartzik, A.; et al. Global Material Flows and Resource Productivity: Forty Years of Evidence. J. Ind. Ecol. 2018, 22, 827–838. [Google Scholar] [CrossRef]
- Linton, J.; Budds, J. The hydrosocial cycle: Defining and mobilizing a relational-dialectical approach to water. Geoforum 2014, 57, 170–180. [Google Scholar] [CrossRef]
- Baka, J.E. Political-industrial ecologies of energy. In Handbook on the Geographies of Energy; Edward Elgar Publishing: Cheltenham, UK, 2017. [Google Scholar]
- Cousins, J.J.; Newell, J.P. A political–industrial ecology of water supply infrastructure for Los Angeles. Geoforum 2015, 58, 38–50. [Google Scholar] [CrossRef]
- Higuera, P. Évaluation Technico-Économique des Débouchés de Valorisation des Scories de Nickel. Territoire: Nouvelle-Calédonie; IAE Nantes—Économie & Management Université de Nantes: Nantes, France, 2019. [Google Scholar]
- Chertow, M.R. “Uncovering” Industrial Symbiosis. J. Ind. Ecol. 2007, 11, 11–30. [Google Scholar] [CrossRef]
- Norgate, T.E.; Jahanshahi, S.; Rankin, W.J. Assessing the environmental impact of metal production processes. J. Clean. Prod. 2007, 15, 838–848. [Google Scholar] [CrossRef]
- Nakajima, K.; Nansai, K.; Matsubae, K.; Tomita, M.; Takayanagi, W.; Nagasaka, T. Global land-use change hidden behind nickel consumption. Sci. Total Environ. 2017, 586, 730–737. [Google Scholar] [CrossRef]
- Mudd, G.M. Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geol. Rev. 2010, 38, 9–26. [Google Scholar] [CrossRef]
- Ventura, A.; Antheaume, N. Environmental assessment of carbon capture and utilization: A new systemic vision—application to valorization of nickel slags. In Proceedings of the International Workshop CO2 Storage in Concrete, Marne-La-Vallée, France, 24–26 June 2019. [Google Scholar]
- Schaffartzik, A.; Pichler, M. Extractive Economies in Material and Political Terms: Broadening the Analytical Scope. Sustainability 2017, 9, 1047. [Google Scholar] [CrossRef] [Green Version]
PRIMARY DATA for Figure 2 | Source | Year of Data | Types of Processing |
---|---|---|---|
Metals extraction | USGS *** | 2001–2016 | None |
Unused extraction | Interviews with economic stakeholders | 2016 | This data is verified with USGS-ISEE ** (difference between extraction and exports) |
Metallurgical process | ISEE - Input-Output table of New Caledonia economy | 2016 | None |
Metals Waste collection | Interviews with economic stakeholders | 2016 | Ratios from interviews and inputs of metals processing |
Metals exportation | ISEE ** - Customs Office of New Caledonia | 2001–2016 | None |
Import of fossil fuels | ISEE ** – Energy Environment | 2001–2016 | None |
Energy transformation | DIMENC * Government of New Caledonia : Energy transition diagnostic and planning | 2015 | Estimate based on ISEE ** data (10% increase of imports) |
Energy distribution | ISEE ** – Energy Environment | 2016 | |
Energy consumption | DIMENC * Government of New Caledonia : Energy transition diagnostic and planning | 2015 | Estimate based on ISEE ** data (10% increase of imports) |
Energy losses | DIMENC * Government of New Caledonia : Energy transition diagnostic and planning | 2015 | Estimate based on ISEE ** data (10% increase of imports) |
Atmospheric emissions | DIMENC * Government of New Caledonia : Energy transition diagnostic and planning | 2015 | Estimate based on ISEE ** data (10% increase of imports) |
Imports of minerals | ISEE ** - Customs Office of New Caledonia | 2001–2016 | None |
Minerals extraction | DIMENC * Government of New Caledonia : | 2007; 2016 | None |
Minerals transformation | ISEE ** - Input-Output table of New Caledonia economy | 2016 | None |
Cement consumption | ISEE ** - Input-Output table of New Caledonia economy | 2001–2016 | |
Minerals consumption | ISEE ** - Input-Output table of New Caledonia economy | 2016 | None |
Minerals waste collection | Report from Jouanny, 2016 | 2016 | None |
INDICATORS for Section 4.2 | |||
DMI = imports (biomass, minerals, fossil fuels, manufactured products, metals, chemicals) + extraction (biomass, minerals, nickel, cobalt) | For imports: ISEE ** - Customs Office of New Caledonia For extraction: DIMENC * & USGS *** | 2001–2016 (2017) 2016 | Data for mineral import in 2016 is exceptionally high (+160% of 2015 and 2017). To avoid the effect of an unrepresentative year, we chose 2017 for this data. |
DMC = DMI – exports (nickel, cobalt, , fisheries) | For exports: ISEE ** - Customs Office of New Caledonia | 2016 | |
DPO = atmospheric emission + exported waste | DIMENC *, ISEE ** Energy Environment | 2015, 2016 | Estimate based on ISEE ** data (10% increase of imports) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahers, J.-B.; Higuera, P.; Ventura, A.; Antheaume, N. The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia. Sustainability 2020, 12, 2191. https://doi.org/10.3390/su12062191
Bahers J-B, Higuera P, Ventura A, Antheaume N. The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia. Sustainability. 2020; 12(6):2191. https://doi.org/10.3390/su12062191
Chicago/Turabian StyleBahers, Jean-Baptiste, Paula Higuera, Anne Ventura, and Nicolas Antheaume. 2020. "The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia" Sustainability 12, no. 6: 2191. https://doi.org/10.3390/su12062191
APA StyleBahers, J. -B., Higuera, P., Ventura, A., & Antheaume, N. (2020). The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia. Sustainability, 12(6), 2191. https://doi.org/10.3390/su12062191