Measuring the Meta Efficiency and Its Determinants on Efficiency in the Korean Coffee Shop Franchise
Abstract
:1. Introduction
- Research Question 1: What are the main reasons for the observed inefficiency (e.g., pure technical inefficiency or scale inefficiency) in coffee shop franchisors in Korea?
- Research Question 2: Is there any difference in efficiency among coffee shop franchisors’ groups in Korea?
- Research Question 3: What are the principal determinants affecting operational efficiency, from the perspective of coffee shop franchisors’ group respectively?
2. Literature Review of Franchise Efficiency
3. Methodology
3.1. Analysis Technique (1): Metafrontier DEA Model
3.2. Analysis Technique (2): Simar and Wilson’s Bootstrap-Truncated Regression
- Efficient DMUs excluded
- . (input-orient): right-truncation at 1
- (output-orient): left-truncation at 1
- 3.1.
- For each draw with left-truncation at
- 3.2.
- For each , compute
- 3.3.
- Estimate and through the truncated regression model using the artificial efficiency scores as lhs-variable
4. Research Model and Data
- Franchisor’s Employee: The number of both full and part time employees of the franchise parent company, e.g., franchise supervisor and franchise development manager.
- Franchisee’s Average Sales: The annual gross sales amount per franchisee during a given period.
- Number of Franchisee: The total number of franchised outlets under the franchisor’s brand and system.
- Franchisor’s Financial Stabilization: This financial indicator includes the current ratio, capital adequacy ratio, debt to equity ratio, and cash flow ratio of franchise parent company.
- Franchisor’s Total Assets: The sum of total current and intangible assets, long term receivables, investment in unconsolidated subsidiaries, other investments, net property plant and equipment and other assets.
- Franchisor’s Total Sales: An annual gross sales amount per franchisor, including (a) franchisees’ sales-based royalties, (b) initial franchise fee revenue, and (c) revenue allocated to goods and services distinct from the franchise’s right.
5. Empirical Metafrontier Results
6. Determinants of Meta Efficiency
7. Discussion and Conclusions
7.1. Implications for Theoretical and Operating Practice
- A majority of Korean coffee shop franchisors are located in the decreasing returns-to-scale regions. Thus, these franchisors should seek out sources of a managerial inefficiency and develop a sophisticated framework for achieving their optimal scale to improve their efficiency.
- There are significant group efficiency differences between small-chain and medium-chain groups of Korean coffee brands. The individual franchisor needs strategic initiatives tailored to the characteristics of the franchise group to enhance efficiency and achieve sustainable growth in a coffee shop franchise market in Korea.
- The principal operational drivers affecting meta efficiency differ depending on the preferred operational strategies and characteristics of each franchise group. Thus, a differentiated operating strategy of large-, medium-, and small-chain groups of coffee shop franchisors is required to maximize the individual coffee shop franchisor’s efficiency.
7.2. Limitations and Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
DMU | Year | CRS-Based | VRS-Based | SE | RTS | Major Cause of Inefficiency | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
MF(TE) | GF | TGR | MF(PTE) | GF | TGR | PTE | SE | ||||
Amasvin | 2018 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | ||
2017 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2016 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2015 | N/A | ||||||||||
Average | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | ||||
Arista | 2018 | 0.5279 | 0.5279 | 1.0000 | 0.5929 | 0.6353 | 0.9333 | 0.8904 | DRS | ✓ | |
2017 | 0.4764 | 0.4764 | 1.0000 | 0.5930 | 0.6026 | 0.9840 | 0.8034 | DRS | ✓ | ||
2016 | 0.5641 | 0.5641 | 1.0000 | 0.6342 | 0.6377 | 0.9944 | 0.8895 | DRS | ✓ | ||
2015 | 0.4749 | 0.4749 | 1.0000 | 0.7368 | 0.7368 | 1.0000 | 0.6446 | DRS | ✓ | ||
Average | 0.5108 | 0.5108 | 1.0000 | 0.6392 | 0.6531 | 0.9779 | 0.8070 | ||||
Café Lu&B | 2018 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | ||
2017 | 0.9825 | 1.0000 | 0.9825 | 1.0000 | 1.0000 | 1.0000 | 0.9825 | IRS | ✓ | ||
2016 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2015 | N/A | ||||||||||
Average | 0.9942 | 1.0000 | 0.9942 | 1.0000 | 1.0000 | 1.0000 | 0.9942 | ||||
Café Amote | 2018 | 0.8258 | 0.8258 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8258 | IRS | ✓ | |
2017 | 0.7283 | 0.7470 | 0.9750 | 1.0000 | 1.0000 | 1.0000 | 0.7283 | IRS | ✓ | ||
2016 | 0.8110 | 0.8110 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8110 | IRS | ✓ | ||
2015 | 0.8025 | 0.8025 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8025 | IRS | ✓ | ||
Average | 0.7919 | 0.7966 | 0.9938 | 1.0000 | 1.0000 | 1.0000 | 0.7919 | ||||
Café-bombom | 2018 | 0.7225 | 1.0000 | 0.7225 | 0.9497 | 1.0000 | 0.9497 | 0.7608 | DRS | ✓ | |
2017 | 0.7281 | 1.0000 | 0.7281 | 0.8192 | 1.0000 | 0.8192 | 0.8888 | DRS | ✓ | ||
2016 | 0.7388 | 0.7583 | 0.9744 | 0.8331 | 0.8933 | 0.9326 | 0.8868 | DRS | ✓ | ||
2015 | N/A | ||||||||||
Average | 0.7298 | 0.9194 | 0.8083 | 0.8674 | 0.9644 | 0.9005 | 0.8454 | ||||
Caffé Glen | 2018 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | ||
2017 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2016 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2015 | 0.7742 | 0.7742 | 0.9999 | 1.0000 | 1.0000 | 1.0000 | 0.7742 | DRS | ✓ | ||
Average | 0.9436 | 0.9436 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9436 | ||||
Caffe One+One | 2018 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | ||
2017 | 0.9792 | 0.9900 | 0.9891 | 1.0000 | 1.0000 | 1.0000 | 0.9792 | IRS | ✓ | ||
2016 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2015 | 0.6765 | 0.7719 | 0.8764 | 0.8779 | 0.9980 | 0.8797 | 0.7706 | DRS | ✓ | ||
Average | 0.9139 | 0.9405 | 0.9664 | 0.9695 | 0.9995 | 0.9699 | 0.9375 | ||||
CAFFE-BENE | 2018 | 0.7995 | 0.9638 | 0.8295 | 0.8327 | 1.0000 | 0.8327 | 0.9601 | DRS | ✓ | |
2017 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2016 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2015 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
Average | 0.9499 | 0.9910 | 0.9574 | 0.9582 | 1.0000 | 0.9582 | 0.9900 | ||||
Coffee Myungga | 2018 | 0.9784 | 1.0000 | 0.9784 | 0.9827 | 1.0000 | 0.9827 | 0.9957 | DRS | ✓ | |
2017 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2016 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2015 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
Average | 0.9946 | 1.0000 | 0.9946 | 0.9957 | 1.0000 | 0.9957 | 0.9989 | ||||
Coffee-banhada | 2018 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | ||
2017 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2016 | 0.9091 | 1.0000 | 0.9091 | 1.0000 | 1.0000 | 1.0000 | 0.9091 | DRS | ✓ | ||
2015 | 0.7646 | 1.0000 | 0.7646 | 0.9464 | 1.0000 | 0.9464 | 0.8079 | DRS | ✓ | ||
Average | 0.9184 | 1.0000 | 0.9184 | 0.9866 | 1.0000 | 0.9866 | 0.9292 | ||||
COFFEE-BAY | 2018 | 0.9154 | 1.0000 | 0.9154 | 1.0000 | 1.0000 | 1.0000 | 0.9154 | DRS | ✓ | |
2017 | 0.9560 | 1.0000 | 0.9560 | 1.0000 | 1.0000 | 1.0000 | 0.9560 | DRS | ✓ | ||
2016 | 0.8188 | 1.0000 | 0.8188 | 1.0000 | 1.0000 | 1.0000 | 0.8188 | DRS | ✓ | ||
2015 | 0.6680 | 1.0000 | 0.6680 | 1.0000 | 1.0000 | 1.0000 | 0.6680 | DRS | ✓ | ||
Average | 0.8395 | 1.0000 | 0.8395 | 1.0000 | 1.0000 | 1.0000 | 0.8395 | ||||
Coffee-mama | 2018 | 0.8148 | 1.0000 | 0.8148 | 0.8299 | 1.0000 | 0.8299 | 0.9819 | DRS | ✓ | |
2017 | 0.9202 | 1.0000 | 0.9202 | 0.9299 | 1.0000 | 0.9299 | 0.9896 | IRS | ✓ | ||
2016 | 0.6289 | 0.8656 | 0.7265 | 0.8080 | 0.8762 | 0.9222 | 0.7784 | DRS | ✓ | ||
2015 | 0.4229 | 0.8903 | 0.4749 | 0.7527 | 0.9006 | 0.8358 | 0.5618 | DRS | ✓ | ||
Average | 0.6967 | 0.9390 | 0.7341 | 0.8301 | 0.9442 | 0.8794 | 0.8279 | ||||
Coffeenie | 2018 | 0.7960 | 1.0000 | 0.7960 | 0.8394 | 1.0000 | 0.8394 | 0.9484 | DRS | ✓ | |
2017 | 0.7788 | 1.0000 | 0.7788 | 0.7951 | 1.0000 | 0.7951 | 0.9795 | DRS | ✓ | ||
2016 | 0.6914 | 1.0000 | 0.6914 | 0.8320 | 1.0000 | 0.8320 | 0.8310 | DRS | ✓ | ||
2015 | 0.6366 | 1.0000 | 0.6366 | 0.8738 | 1.0000 | 0.8738 | 0.7286 | DRS | ✓ | ||
Average | 0.7257 | 1.0000 | 0.7257 | 0.8351 | 1.0000 | 0.8351 | 0.8719 | ||||
Coffine Gurunaru | 2018 | 0.6931 | 0.9966 | 0.6955 | 0.7084 | 1.0000 | 0.7084 | 0.9784 | IRS | ✓ | |
2017 | 0.6011 | 1.0000 | 0.6011 | 0.6048 | 1.0000 | 0.6048 | 0.9939 | DRS | ✓ | ||
2016 | 0.6131 | 0.8609 | 0.7122 | 0.6208 | 0.9463 | 0.6561 | 0.9876 | IRS | ✓ | ||
2015 | 0.8792 | 1.0000 | 0.8792 | 0.8793 | 1.0000 | 0.8793 | 0.9999 | IRS | ✓ | ||
Average | 0.6966 | 0.9644 | 0.7220 | 0.7034 | 0.9866 | 0.7122 | 0.9899 | ||||
Compose Coffee | 2018 | 0.9300 | 1.0000 | 0.9300 | 1.0000 | 1.0000 | 1.0000 | 0.9300 | DRS | ✓ | |
2017 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2016 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2015 | N/A | ||||||||||
Average | 0.9767 | 1.0000 | 0.9767 | 1.0000 | 1.0000 | 1.0000 | 0.9767 | ||||
Dal.komm Coffee | 2018 | 0.8161 | 1.0000 | 0.8161 | 0.9010 | 1.0000 | 0.9010 | 0.9058 | DRS | ✓ | |
2017 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2016 | 0.8009 | 1.0000 | 0.8009 | 0.8123 | 1.0000 | 0.8123 | 0.9860 | IRS | ✓ | ||
2015 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
Average | 0.9043 | 1.0000 | 0.9043 | 0.9283 | 1.0000 | 0.9283 | 0.9729 | ||||
Davinci Coffee | 2018 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | ||
2017 | 0.6577 | 0.6577 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.6577 | IRS | ✓ | ||
2016 | 0.6549 | 0.6558 | 0.9986 | 0.6604 | 0.6604 | 1.0000 | 0.9917 | IRS | ✓ | ||
2015 | 0.4893 | 0.5579 | 0.8771 | 0.7018 | 0.7500 | 0.9357 | 0.6972 | DRS | ✓ | ||
Average | 0.7005 | 0.7179 | 0.9689 | 0.8406 | 0.8526 | 0.9839 | 0.8367 | ||||
Deété espresso | 2018 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | ||
2017 | 0.9079 | 1.0000 | 0.9079 | 1.0000 | 1.0000 | 1.0000 | 0.9079 | IRS | ✓ | ||
2016 | 0.7886 | 1.0000 | 0.7886 | 0.8057 | 1.0000 | 0.8057 | 0.9787 | DRS | ✓ | ||
2015 | 0.6474 | 0.9595 | 0.6748 | 0.7525 | 0.9666 | 0.7786 | 0.8603 | DRS | ✓ | ||
Average | 0.8360 | 0.9899 | 0.8428 | 0.8896 | 0.9916 | 0.8961 | 0.9367 | ||||
DROPTOP | 2018 | 0.9034 | 1.0000 | 0.9034 | 1.0000 | 1.0000 | 1.0000 | 0.9034 | DRS | ✓ | |
2017 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2016 | 0.9248 | 1.0000 | 0.9248 | 0.9715 | 1.0000 | 0.9715 | 0.9519 | DRS | ✓ | ||
2015 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
Average | 0.9570 | 1.0000 | 0.9570 | 0.9929 | 1.0000 | 0.9929 | 0.9638 | ||||
EDIYA COFFEE | 2018 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | ||
2017 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2016 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2015 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
Average | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | ||||
Havana Express | 2018 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | ||
2017 | 0.9119 | 0.9187 | 0.9926 | 1.0000 | 1.0000 | 1.0000 | 0.9119 | IRS | ✓ | ||
2016 | 0.9696 | 0.9747 | 0.9948 | 1.0000 | 1.0000 | 1.0000 | 0.9696 | IRS | ✓ | ||
2015 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
Average | 0.9704 | 0.9733 | 0.9968 | 1.0000 | 1.0000 | 1.0000 | 0.9704 | ||||
HOLLYS COFFEE | 2018 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | ||
2017 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2016 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2015 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
Average | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | ||||
Joe’s Sandwich& Coffee | 2018 | 0.9247 | 0.9285 | 0.9959 | 0.9825 | 1.0000 | 0.9825 | 0.9412 | DRS | ✓ | |
2017 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2016 | 0.9860 | 1.0000 | 0.9860 | 1.0000 | 1.0000 | 1.0000 | 0.9860 | IRS | ✓ | ||
2015 | 0.7120 | 0.8139 | 0.8748 | 0.8841 | 1.0000 | 0.8841 | 0.8054 | DRS | ✓ | ||
Average | 0.9057 | 0.9356 | 0.9642 | 0.9666 | 1.0000 | 0.9666 | 0.9331 | ||||
Selecto Coffee | 2018 | 0.8741 | 1.0000 | 0.8741 | 0.8744 | 1.0000 | 0.8744 | 0.9997 | IRS | ✓ | |
2017 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2016 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
2015 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
Average | 0.9685 | 1.0000 | 0.9685 | 0.9686 | 1.0000 | 0.9686 | 0.9999 | ||||
Super Coffee | 2018 | 0.9452 | 0.9645 | 0.9800 | 0.9595 | 0.9888 | 0.9704 | 0.9851 | DRS | ✓ | |
2017 | 0.7319 | 0.8027 | 0.9118 | 0.7813 | 0.8791 | 0.8887 | 0.9368 | DRS | ✓ | ||
2016 | 0.8403 | 0.8448 | 0.9947 | 0.8463 | 0.8629 | 0.9808 | 0.9930 | DRS | ✓ | ||
2015 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | CRS | |||
Average | 0.8794 | 0.9030 | 0.9716 | 0.8968 | 0.9327 | 0.9599 | 0.9787 | ||||
The Kind Coffee | 2018 | 0.4677 | 0.4677 | 1.0000 | 0.4981 | 0.5150 | 0.9672 | 0.9389 | DRS | ✓ | |
2017 | 0.7270 | 1.0000 | 0.7270 | 0.9740 | 1.0000 | 0.9740 | 0.7464 | IRS | ✓ | ||
2016 | 0.5766 | 0.9116 | 0.6325 | 0.6245 | 1.0000 | 0.6245 | 0.9233 | IRS | ✓ | ||
2015 | 0.8132 | 1.0000 | 0.8132 | 0.8494 | 1.0000 | 0.8494 | 0.9574 | IRS | ✓ | ||
Average | 0.6461 | 0.8448 | 0.7932 | 0.7365 | 0.8788 | 0.8538 | 0.8915 | ||||
Topresso | 2018 | 0.7835 | 0.9340 | 0.8389 | 0.8585 | 1.0000 | 0.8585 | 0.9126 | DRS | ✓ | |
2017 | 0.7967 | 0.9506 | 0.8382 | 0.8360 | 1.0000 | 0.8360 | 0.9531 | DRS | ✓ | ||
2016 | 0.6132 | 0.8814 | 0.6957 | 0.8622 | 1.0000 | 0.8622 | 0.7112 | DRS | ✓ | ||
2015 | 0.3865 | 0.7461 | 0.5180 | 0.8658 | 1.0000 | 0.8658 | 0.4464 | DRS | ✓ | ||
Average | 0.6450 | 0.8780 | 0.7227 | 0.8556 | 1.0000 | 0.8556 | 0.7558 | ||||
YOGER-PRESSO | 2018 | 0.7876 | 0.8114 | 0.9707 | 0.7927 | 0.8409 | 0.9427 | 0.9936 | IRS | ✓ | |
2017 | 0.5717 | 0.5717 | 1.0000 | 0.6641 | 0.6816 | 0.9743 | 0.8609 | DRS | ✓ | ||
2016 | 0.5887 | 0.7848 | 0.7501 | 0.6783 | 1.0000 | 0.6783 | 0.8678 | DRS | ✓ | ||
2015 | 0.4192 | 0.7148 | 0.5864 | 0.6772 | 1.0000 | 0.6772 | 0.6190 | DRS | ✓ | ||
Average | 0.5918 | 0.7207 | 0.8268 | 0.7031 | 0.8806 | 0.8181 | 0.8353 | ||||
Zoo Coffee | 2018 | 0.6166 | 0.6166 | 1.0000 | 0.6392 | 0.6550 | 0.9760 | 0.9645 | DRS | ✓ | |
2017 | 0.6410 | 0.6675 | 0.9602 | 0.6460 | 0.7106 | 0.9090 | 0.9923 | DRS | ✓ | ||
2016 | 0.7189 | 1.0000 | 0.7189 | 0.8038 | 1.0000 | 0.8038 | 0.8943 | IRS | ✓ | ||
2015 | 0.6345 | 1.0000 | 0.6345 | 0.6528 | 1.0000 | 0.6528 | 0.9719 | DRS | ✓ | ||
Average | 0.6527 | 0.8210 | 0.8284 | 0.6855 | 0.8414 | 0.8354 | 0.9557 |
References
- Cha, J.B.; Jo, M.N. The Effect of the Corporate Social Responsibility of Franchise Coffee Shops on Corporate Image and Behavioral Intention. Sustainability 2019, 11, 6849. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Lee, S.; Kim, S.W. Surviving in the Red Ocean: Measuring Factors for Business Excellence among Coffee Franchises in Korea. Total Qual. Manag. Bus. Excell. 2016, 27, 761–774. [Google Scholar] [CrossRef]
- Joo, S.J.; Stoeberl, P.A.; Fitzer, K. Measuring and Benchmarking the Performance of Coffee Stores for Retail Operations. Benchmarking Int. J. 2009, 16, 741–753. [Google Scholar] [CrossRef]
- Calderon-Monge, E.; Pastor-Sanz, I.; Huerta-Zavala, P. Economic Sustainability in Franchising: A Model to Predict Franchisor Success or Failure. Sustainability 2017, 9, 1419. [Google Scholar] [CrossRef] [Green Version]
- Sveum, M.; Sykuta, M. The Effect of Franchising on Establishment Performance in the U.S. Restaurant Industry. Cornell Hosp. Q. 2019, 60, 104–115. [Google Scholar] [CrossRef]
- Uli, L.D.; Martín, F.V.; Catalunña, F.J.R. Analysis of Efficiency of Own and Franchised Units in the Spanish Franchise System. Eur. Res. Manag. Bus. Econ. 2017, 23, 165–172. [Google Scholar]
- Battesse, G.E.; Rao, D.S.P.; O’Donnell, C.J. A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies. J. Prod. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- Assaf, A.G. Accounting for Size in Efficiency Comparisons of Airports. J. Air Transp. Manag. 2009, 15, 256–258. [Google Scholar] [CrossRef]
- Kim, H.; Lee, D.; Ryu, M.H. An Optimal Strategic Business Model for Small Businesses Using Online Platforms. Sustainability 2018, 10, 579. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhou, P.; Zhao, Z.; Shen, N. Energy Efficiency and Energy Saving Potential in China: A Directional Meta-Frontier DEA Approach. Sustainability 2014, 6, 5476–5492. [Google Scholar] [CrossRef] [Green Version]
- Assaf, A.G.; Barros, C.P.; Josiassen, A. Hotel efficiency: A Bootstrapped Metafrontier Approach. Int. J. Hosp. Manag. 2012, 31, 621–629. [Google Scholar] [CrossRef]
- Tsai, W.H.; Lee, H.L.; Yang, C.H.; Huang, C.C. Input-Output Analysis for Sustainability by Using DEA Method: A Comparison Study between European and Asian Countries. Sustainability 2016, 8, 1230. [Google Scholar] [CrossRef] [Green Version]
- Simar, L.; Wilson, P.W. A General Methodology for Bootstrapping in Non-Parametric Frontier Models. J. Appl. Stat. 2000, 27, 779–802. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Estimation and Inference in Two-Stage, Semi-Parametric Models of Production Processes. J. Econ. 2007, 136, 31–64. [Google Scholar] [CrossRef]
- Barros, C.P.; Perrigot, R. Franchised Network Efficiency: A DEA Application to US Networks. In Economics and Management of Networks; Cliquet, G., Tuunanen, M., Hendrikse, G., Windsperger, J., Eds.; Contributions to Management Science; Physica-Verlag HD: Heidelberg, Germany, 2007. [Google Scholar]
- Botti, L.; Briec, W.; Cliquet, G. Plural forms versus franchise and company-owned systems: A DEA approach of hotel chain performance. Omega 2009, 37, 566–578. [Google Scholar] [CrossRef]
- Roh, E.Y.; Choi, K. Efficiency Comparison of Multiple Brands within the Same Franchise: Data Envelopment Analysis Approach. Int. J. Hosp. Manag. 2010, 29, 92–98. [Google Scholar] [CrossRef]
- Martin, C.J.G.; Medal-Bartual, A.; Peris-Ortiz, M. Analysis of Efficiency and Profitability of Franchise Services. Serv. Ind. J. 2014, 34, 796–810. [Google Scholar] [CrossRef]
- Medal-Bartual, A.; Garcia-Martina, C.-J.; Sala-Garrido, R. Efficiency Analysis of Small Franchise Enterprises through a DEA Metafrontier Model. Serv. Ind. J. 2012, 32, 2421–2434. [Google Scholar] [CrossRef]
- Piot-Lepetit, I.; Perrigot, R.; Cliquet, G. Impact of the Industry on Franchise Chain Efficiency: A Meta-DEA and Context-Dependent DEA Approach. J. Oper. Res. Soc. 2014, 65, 1692–1699. [Google Scholar] [CrossRef]
- Reynolds, D. An Exploratory Investigation of Multiunit Restaurant Productivity Assessment Using Data Envelopment Analysis. J. Travel Tour. Mark. 2004, 16, 19–26. [Google Scholar] [CrossRef]
- Battese, G.E.; Rao, D.S.P. Technology Gap, Efficiency and a Stochastic Metafrontier Function. Int. J. Bus. Econ. 2002, 1, 1–7. [Google Scholar]
- O’Donnell, C.J.; Rao, D.S.P.; Battese, G.E. Metafrontier Frameworks for the Study of Firm-Level Efficiencies and Technology Ratios. Empir. Econ. 2008, 34, 231–255. [Google Scholar] [CrossRef]
- Lee, Y.L.; Kuo, S.H.; Jiang, M.Y.; Li, Y. Evaluating the Performances of Taiwan’s International Tourist Hotels: Applying the Directional Distance Function and Meta-Frontier Approach. Sustainability 2019, 11, 5773. [Google Scholar] [CrossRef] [Green Version]
- Badunenko, O.; Tauchmann, H. Simar and Wilson Two-Stage Efficiency Analysis for Stata. Stata J. 2019, 19, 950–988. [Google Scholar] [CrossRef] [Green Version]
- Barros, C.P.; Assaf, A.G. Bootstrapped Efficiency Measures of Oil Blocks in Angola. Energy Policy 2009, 37, 4098–4103. [Google Scholar] [CrossRef]
- Piot-Lepetit, I.; Perrigot, R.; Cliquet, G. Organizational Form and Efficiency of Franchise Chains. Int. J. Retail Distrib. Manag. 2014, 42, 671–684. [Google Scholar] [CrossRef]
- Perrigot, R.; Piot-Lepetit, I.; Cliquet, G. Plural Form and Franchise Chains Efficiency: A DEA Meta-Frontier Approach Applied to French Chains. In Economics Working Paper Archive (University of Rennes 1 & University of Caen); Center for Research in Economics and Management (CREM): Caen, France, 2012. [Google Scholar]
- Castrogiovanni, G.J.; Justice, R.T.; Julian, S.D. Franchise Failure Rates: An Assessment of Magnitude and Influencing Factors. J. Small Bus. Manag. 1993, 31, 105–114. [Google Scholar]
- Holmberg, S.; Morgan, K.B. Franchise Turnover and Failure: New Research and Perspectives. J. Bus. Ventur. 2003, 18, 403–418. [Google Scholar] [CrossRef]
- Choi, K. Multi-Period Efficiency and Productivity Changes in US Domestic Airlines. J. Air Transp. Manag. 2017, 59, 18–25. [Google Scholar] [CrossRef]
Authors | Method | DMUs | Input Variables | Output Variables |
---|---|---|---|---|
Barros and Perrigot [15] | Output-oriented DEA (BCC) | 150 US franchising networks ranked in the Entrepreneur’s 25 Annual Franchise 500® | Average total investment, Duration of agreement, Cash liquidity requirements, Employees | Franchising fee, Royalty, Change in franchised units |
Botti et al. [16] | Input-oriented DEA (CCR, BCC) | 16 Hotel chains in France | Costs, Territory Coverage, Chain Duration. | Sales |
Kim et al. [2] | Input-oriented DEA (CCR) | 6 Coffee franchisors in Korea from 2010 to 2014 | Product cost, Labor cost, Costs for interior design | Sales profit |
Martin et al. [18] | Super-efficiency with Input-oriented BCC | 143 franchises in the trade and other services sector in Spain | Tangible fixed assets, Intangible assets, Total volume of own resources, Total liabilities, Labor costs | Sales and returns before interest and tax |
Medal-Bartual et al. [19] | Meta-Frontier DEA | 73 franchise enterprises (5 groups) in Spain | Total assets, Total volume of own resources, Total liabilities, Labor costs | Sales, Returns |
Reynolds [21] | DEA (CCR, BCC) | 38 Restaurant chains of same-brand franchises in US | Hours worked, Average wage, Number of competitors, Seating capacity | Daily sales, Tip percentage |
Piot-Lepetit et al. [20] | Meta-Frontier DEA | 43 chains (24 retailing and 19 services) in French franchises | Capital, Labor costs, Functioning costs | Total sales |
Roh and Choi [17] | Input-oriented DEA (CCR, BCC) | 550 chain restaurants operating within the Pacific Rim | Environmental/Location, Physical resources, Human resources, Management efficiency | Sales, Net income |
Variables | Input Variables | Output Variables | |||||
---|---|---|---|---|---|---|---|
Number of Franchisee | Franchisee’s Average Sales | Franchisor’s Employee | Financial Stabilization | Franchisor’s Total Sales | Franchisor’s Total Asset | ||
2018 | Max. | 2142 | 386,275 | 762 | 90 | 184,124,914 | 105,342,107 |
Min. | 31 | 61,939 | 6 | 33 | 348,056 | 139,526 | |
Ave. | 243.9 | 168,357.7 | 66.1 | 59.2 | 18,433,532.4 | 12,564,188.0 | |
S.D. | 407.2 | 81,288.2 | 145.0 | 13.6 | 41,434,327.8 | 26,179,605.0 | |
2017 | Max. | 1865 | 374,116 | 662 | 90 | 153,544,611 | 105,165,315 |
Min. | 32 | 66,709 | 6 | 33 | 148,791 | 81,916 | |
Ave. | 232.2 | 166,669.9 | 65.9 | 59.2 | 17,929,997.4 | 12,850,812.3 | |
S.D. | 367.4 | 82,125.3 | 132.6 | 13.6 | 37,103,534.2 | 28,218,335.8 | |
2016 | Max. | 1577 | 355,839 | 439 | 90 | 135,521,376 | 110,276,297 |
Min. | 35 | 41,969 | 4 | 33 | 148,026 | 50,183 | |
Ave. | 215.7 | 179,149.6 | 62.8 | 59.2 | 18,554,830.3 | 12,695,795.8 | |
S.D. | 330.0 | 88,638.3 | 106.3 | 13.6 | 35,369,830.6 | 28,379,970.6 | |
2015 | Max. | 1240 | 375,685 | 486 | 77 | 128,958,973 | 163,399,948 |
Min. | 30 | 11,156 | 1 | 33 | 326,890 | 129,210 | |
Ave. | 208.9 | 184,492.1 | 72.7 | 56.9 | 20,214,419.2 | 13,866,208.0 | |
S.D. | 294.4 | 104,262.8 | 114.3 | 11.8 | 35,024,661.5 | 34,915,928.3 |
Group | Year | Number of DMUs | CRS-Based | VRS-Based | ||||
---|---|---|---|---|---|---|---|---|
Average MF (TE) | Average GF | Average TGR | Average MF (PTE) | Average GF | Average TGR | |||
Large coffee shop chains (N ≥ 300) | 2018 | 6 | 0.9171 | 0.9625 | 0.9526 | 0.9376 | 0.9735 | 0.9626 |
2017 | 6 | 0.9213 | 0.9286 | 0.9927 | 0.9440 | 0.9469 | 0.9957 | |
2016 | 5 | 0.8815 | 0.9570 | 0.9138 | 0.9357 | 1.0000 | 0.9357 | |
2015 | 5 | 0.8174 | 0.9430 | 0.8509 | 0.9354 | 1.0000 | 0.9354 | |
Average | 0.8875 | 0.9476 | 0.9316 | 0.9384 | 0.9783 | 0.9593 | ||
Medium coffee shop chains (100 ≤ N < 300) | 2018 | 9 | 0.8489 | 0.9927 | 0.8551 | 0.9170 | 1.0000 | 0.9170 |
2017 | 9 | 0.8732 | 0.9945 | 0.8778 | 0.9282 | 1.0000 | 0.9282 | |
2016 | 7 | 0.7332 | 0.9512 | 0.7669 | 0.8434 | 0.9823 | 0.8597 | |
2015 | 5 | 0.6906 | 0.9273 | 0.7273 | 0.8888 | 0.9801 | 0.9054 | |
Average | 0.8028 | 0.9727 | 0.8200 | 0.8985 | 0.9926 | 0.9051 | ||
Small coffee shop chains (N < 100) | 2018 | 14 | 0.8557 | 0.8805 | 0.9750 | 0.8831 | 0.9139 | 0.9657 |
2017 | 14 | 0.8364 | 0.8757 | 0.9580 | 0.9018 | 0.9423 | 0.9562 | |
2016 | 17 | 0.8646 | 0.9100 | 0.9518 | 0.8948 | 0.9412 | 0.9518 | |
2015 | 15 | 0.7774 | 0.8770 | 0.8925 | 0.8886 | 0.9634 | 0.9236 | |
Average | 0.8342 | 0.8869 | 0.9438 | 0.8921 | 0.9406 | 0.9490 |
(I) Group–(J) Group | Model | Test Statistics | Std. Error | Std. Test Statistics | Sig. | Adj. sig. |
---|---|---|---|---|---|---|
Small-Large | CRS | 13.782 | 6.936 | 1.987 | 0.047 | 0.141 |
VRS | 9.789 | 5.404 | 1.811 | 0.070 | 0.210 | |
Small-Medium | CRS | 15.467 | 6.223 | 2.485 | 0.013 | 0.039 |
VRS | 11.550 | 4.848 | 2.382 | 0.017 | 0.052 | |
Large-Medium | CRS | −1.685 | 7.812 | −0.216 | 0.829 | 1.000 |
VRS | −1.761 | 6.086 | −0.289 | 0.772 | 1.000 |
Environmental Variables | Group | DEAModel | Coef. | Std. Err. | z | P > |z| | 95% Conf. Interval | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Franchise History | Large | CRS | −0.0007513 | 0.0002888 | −2.60 | 1.910 | −0.001342 | −0.0001711 |
VRS | −0.0004757 | 0.0002228 | −2.14 | 1.967 | −0.0009385 | −0.000044 | ||
Medium | CRS | −0.0016337 | 0.0006642 | −2.46 | 1.986 | −0.0029627 | −0.0003364 | |
VRS | −0.0000871 | 0.0003718 | −0.23 | 1.185 | −0.0008498 | 0.0006173 | ||
Small | CRS | 0.0001366 | 0.0003932 | 0.35 | 0.728 | −0.000628 | 0009487 | |
VRS | 0.0002527 | 0.00039 | 0.82 | 0.413 | −0.000329 | 0.0008785 | ||
Total Franchise Fee | Large | CRS | 1.42 × 10−6 ** | 6.36 × 10−7 | 2.23 | 0.026 | 1.41 × 10−7 | 2.64 × 10−6 |
VRS | 1.06 × 10−6 ** | 4.72 × 10−7 | 2.25 | 0.024 | 1.74 × 10−7 | 2.01 × 10−6 | ||
Medium | CRS | 8.45 × 10−7 ** | 3.82 × 10−7 | 2.21 | 0.027 | 1.27 × 10−7 | 1.58 × 10−6 | |
VRS | 8.23 × 10−8 | 2.16 × 10−7 | 0.38 | 0.703 | −3.39 × 10−7 | 5.01 × 10−7 | ||
Small | CRS | −4.29 × 10−7 | 3.21 × 10−7 | −1.34 | 1.819 | −1.06 × 10−6 | 2.01 × 10−7 | |
VRS | −3.74 × 10−7 | 2.50 × 10−7 | −1.50 | 1.866 | −8.69 × 10−7 | 1.36 × 10−7 | ||
Advertisement and Promotion | Large | CRS | −0.0056105 | 0.0032931 | −1.70 | 1.912 | −0.0119926 | 0.0007415 |
VRS | 0.000603 | 0.0023972 | 0.25 | 0.801 | −0.0044809 | 0.0049637 | ||
Medium | CRS | −0.0006873 | 0.002327 | −0.30 | 1.232 | −0.0052283 | 0.003944 | |
VRS | −0.0001032 | 0.0012966 | −0.08 | 1.063 | −0.0026222 | 0.0055246 | ||
Small | CRS | 0.0001534 | 0.0013262 | 0.12 | 0.908 | −0.002395 | 0.0028667 | |
VRS | −0.0010026 | 0.0010319 | −0.97 | 1.669 | −0.003053 | 0.0010916 | ||
Franchisor’s Management Control | Large | CRS | −0.0041475 | 0.0050665 | −0.82 | 1.587 | −0.144173 | 0.0057284 |
VRS | −0.0065265 | 0.003595 | −1.82 | 1.931 | −0.135664 | 0.0007654 | ||
Medium | CRS | −0.0026858 | 0.0033774 | −0.80 | 1.574 | −0.0093955 | 0.00442 | |
VRS | 0.017022 | 0.018976 | 0.90 | 0.370 | −0.0019856 | 0.0055246 | ||
Small | CRS | 0.0066637 *** | 0.0019286 | 3.46 | 0.001 | 0.002962 | 0.01065 | |
VRS | 0.0052372 *** | 0.0015088 | 3.71 | 0.001 | 0.002385 | 0.0084489 | ||
Growth Rate of Franchisor | Large | CRS | 0.012241 *** | 0.003591 | 3.13 | 0.002 | 0.002031 | 0.0179889 |
VRS | 0.0075892 *** | 0.0025883 | 2.93 | 0.003 | 0.0025691 | 0.0125574 | ||
Medium | CRS | 0.0027067 | 0.001715 | 1.58 | 0.115 | −0007222 | 0.0060904 | |
VRS | 0.0021091 ** | 0.0009534 | 2.21 | 0.027 | 0.0002291 | 0.0040213 | ||
Small | CRS | −0.01137 | 0.0010904 | −1.04 | 1.703 | −0.003297 | 0.0010164 | |
VRS | −0.0002833 | 0.008658 | −0.33 | 1.256 | −0.00109 | 0.0013863 | ||
ROE (Return on Equity) of Franchisor | Large | CRS | −0.0027078 | 0.0012322 | −2.20 | 1.972 | −0.0051804 | −0.0002331 |
VRS | −0.0001116 | 0.0009262 | −0.12 | 1.096 | −0018614 | 0.0017514 | ||
Medium | CRS | −0.0020445 | 0.0012655 | −1.62 | 1.894 | −0.004566 | 0.0004413 | |
VRS | −0.0000755 | −0.0007073 | −0.11 | 1.085 | −0.0014458 | 0.0013482 | ||
Small | CRS | 0.002457 *** | 0.0007697 | 2.92 | 0.004 | 0.0007864 | 0.0037528 | |
VRS | 0.0011999 ** | 0.0005807 | 2.07 | 0.039 | 0.0000264 | −0.000231 | ||
Franchise Turnover/Failure Rates | Large | CRS | −0.0015297 | 0.0012248 | −1.36 | 1.826 | −0.0037678 | 0.0006353 |
VRS | −0.001522 | 0.000819 | −1.86 | 1.937 | −0.0032555 | 0.0000983 | ||
Medium | CRS | 0.0008429 | 0.0022505 | 0.37 | 0.708 | −0.0035888 | 0.0053132 | |
VRS | −0.0011857 | 0.0012496 | −0.95 | 1.657 | −0.0036485 | 0.0011901 | ||
Small | CRS | −0.0027058 | 0.0010669 | −2.54 | 1.989 | −0.004854 | −0.000660 | |
VRS | −0.0024405 | 0.0008414 | −2.90 | 1.996 | −0.004107 | −0.000818 | ||
Constant | Large | CRS | 0.9302242 *** | 0.1778719 | 5.23 | 0.000 | 0.5839312 | 1.265962 |
VRS | 0.7122965 *** | 0.128604 | 5.61 | 0.000 | 0.4745063 | 0.9782561 | ||
Medium | CRS | 0.8952816 *** | 0.205504 | 4.36 | 0.000 | 0.4972496 | 0.288165 | |
VRS | 0.7196367 *** | 0.1182745 | 6.08 | 0.000 | 0.4927688 | 0.9576661 | ||
Small | CRS | 0.5107363 *** | 0.1242524 | 4.11 | 0.000 | 0.2678025 | 0.7519387 | |
VRS | 0.6900445 *** | 0.953892 | 7.23 | 0.000 | 0.5024822 | 0.8717355 | ||
Sigma | Large | CRS | 0.0863977 *** | 0.0133299 | 6.48 | 0.000 | 0.0431533 | 0.0955025 |
VRS | 0.0620644 *** | 0.0099559 | 6.23 | 0.000 | 0.0299715 | 0.0689021 | ||
Medium | CRS | 0.1071516 *** | 0.0155064 | 6.91 | 0.000 | 0.0616554 | 0.1233969 | |
VRS | 0.618008 *** | 0.0083852 | 7.37 | 0.000 | 0.0372806 | 0.0693693 | ||
Small | CRS | 0.134486 *** | 0.0150303 | 8.95 | 0.000 | 0.0974256 | 0.1574115 | |
VRS | 0.1045414 *** | 0.0115133 | 9.08 | 0.000 | 0.075395 | 0.1217068 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, D.-Y.; Choi, K.; Kang, D.-H. Measuring the Meta Efficiency and Its Determinants on Efficiency in the Korean Coffee Shop Franchise. Sustainability 2020, 12, 2398. https://doi.org/10.3390/su12062398
Park D-Y, Choi K, Kang D-H. Measuring the Meta Efficiency and Its Determinants on Efficiency in the Korean Coffee Shop Franchise. Sustainability. 2020; 12(6):2398. https://doi.org/10.3390/su12062398
Chicago/Turabian StylePark, Doo-Young, Kanghwa Choi, and Dae-Han Kang. 2020. "Measuring the Meta Efficiency and Its Determinants on Efficiency in the Korean Coffee Shop Franchise" Sustainability 12, no. 6: 2398. https://doi.org/10.3390/su12062398
APA StylePark, D. -Y., Choi, K., & Kang, D. -H. (2020). Measuring the Meta Efficiency and Its Determinants on Efficiency in the Korean Coffee Shop Franchise. Sustainability, 12(6), 2398. https://doi.org/10.3390/su12062398