Understanding the Role of Rural Poor’s Endogenous Impetus in Poverty Reduction: Evidence from China
Abstract
:1. Introduction
2. Background on Endogenous Impetus and Livelihood Capital
3. Research Hypotheses and Methodology
3.1. Research Hypotheses
3.2. Data and Methodology
3.2.1. Data Description
3.2.2. Variable Selection and Indicator Description
3.2.3. Research Methodology
4. Results
4.1. The Test Results of the Measurement Models
4.2. The Test Results of the Structural Model
4.3. The Results of Mediator Analysis
5. Discussion and Conclusions
- (1)
- Endogenous impetus has a significant positive effect on poverty reduction. Both components of the endogenous impetus have a positive impact on the livelihood status, indicating that the greater the endogenous impetus of the poor, the higher the level of their livelihood, and the better their chance of escaping poverty.
- (2)
- The livelihood capital of the poor has a significant positive effect on endogenous impetus. Increasing the stock of human capital, physical capital, and social capital of the poor can effectively promote the generation of thought impetus and the release of behavior impetus. In other words, the accumulation of livelihood capital motivates the endogenous impetus of the poor.
- (3)
- The cultivation of endogenous impetus is a catalyst for poverty reduction of the poor. Endogenous impetus plays a mediation role between livelihood capital and livelihood status, and the increase of its level will help to strengthen the role of livelihood capital and the improvement of livelihood status, and thus enable the poor to get out of poverty.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allison, E.H.; Horemans, B. Putting the principles of the Sustainable Livelihoods Approach into fisheries development policy and practice. Mar. Policy 2006, 30, 757–766. [Google Scholar] [CrossRef]
- Biggs, E.M.; Bruce, E.; Boruff, B.; Duncan, J.M.A.; Horsley, J.; Pauli, N.; McNeill, K.; Neef, A.; Van Ogtrop, F.; Curnow, J.; et al. Sustainable development and the water-energy-food nexus: A perspective on livelihoods. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Masanjala, W. The poverty-HIV/AIDS nexus in Africa: A livelihood approach. Soc. Sci. Med. 2007, 64, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Scoones, I. Sustainable Rural Livelihood: A Framework For Analysis; IDS: Brighton, UK, 1998. [Google Scholar]
- Wu, X.Y.; Qi, X.H.; Yang, S.; Ye, C.; Sun, B. Research on the Intergenerational Transmission of Poverty in Rural China Based on Sustainable Livelihood Analysis Framework: A Case Study of Six Poverty-Stricken Counties. Sustainability 2019, 11, 2341. [Google Scholar] [CrossRef] [Green Version]
- Scoones, I. Livelihoods perspectives and rural development. J. Peasant Stud. 2009, 36, 171–196. [Google Scholar] [CrossRef]
- Soltani, A.; Angelsen, A.; Eid, T.; Naieni, M.S.N.; Shamekhi, T. Poverty, sustainability, and household livelihood strategies in Zagros, Iran. Ecolog. Econ. 2012, 79, 60–70. [Google Scholar] [CrossRef]
- Wang, X.L.; Peng, L.; Xu, D.D.; Wang, X.X. Sensitivity of Rural Households’ Livelihood Strategies to Livelihood Capital in Poor Mountainous Areas: An Empirical Analysis in the Upper Reaches of the Min River, China. Sustainability 2019, 11, 2193. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Wang, T.; Xia, X.L.; Chen, Y.Z.; Lv, H.Q.; Li, N. Analysis on the Choice of Livelihood Strategy for Peasant Households Renting out Farmland: Evidence from Western Poverty-Stricken Areas in China. Sustainability 2019, 11, 1424. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Shuai, C.; Shuai, Y.; Cheng, X.; Liu, Y. Empirical study on the poverty identification and poverty reduction paths of immigrants in the Three Gorges Reservoir Region. China Popul. Resour. Environ. 2017, 27, 136–144. [Google Scholar]
- Bebbington, A. Capitals and capabilities: A framework for analyzing peasant viability, rural livelihoods and poverty. World Dev. 1999, 27, 2021–2044. [Google Scholar] [CrossRef]
- Li, C.; Wang, M.; Song, Y.A. Vulnerability and livelihood restoration of landless households after land acquisition: Evidence from peri-urban China. Habitat Int. 2018, 79, 109–115. [Google Scholar] [CrossRef]
- Su, F.; Saikia, U.; Hay, I. Relationships between Livelihood Risks and Livelihood Capitals: A Case Study in Shiyang River Basin, China. Sustainability 2018, 10, 509. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Li, X. Cognitive science and poverty governance. Probe 2017, 127–135. [Google Scholar] [CrossRef]
- Hang, C.; Hu, A. The essence of “mental poverty” phenomenon is individual failure: From the perspective of behavioral science. J. Chin. Acad. Gov. 2017, 4, 97–103. [Google Scholar]
- Liu, H.; Ma, L. An analysis of Xi Jinping’s thought on poverty alleviation and development. J. Party Sch. Tianjin Commun. 2017, 19, 39–43. [Google Scholar]
- Zhang, B. Using assisting aspiration and assisting competency to promote the endogenous impetus and the practice path of precision poverty alleviation. Reform 2017, 33, 41–44. [Google Scholar]
- Zheng, R. Motivate the poor’s endogenous impetus of the poverty alleviation: Expansion and evidence of action framework. Guizhou Soc. Sci. 2019, 349, 154–161. [Google Scholar]
- Guan, R.; Wang, W.; Yu, J. Impact of endogenous motivation on household income under the Sustainable Livelihoods Approach. J. Northwest. A&F. Univ. (Soc. Sci. Ed.) 2019, 19, 130–139. [Google Scholar]
- Xue, G. The role of the poor’s endogenous impetus in targeted poverty alleviation and its countermeasures. Adm. Reform 2018, 51–55. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Peng, J. Study on influencing factors of subjective poverty In China. China Soft Sci. 2017, 7, 13. [Google Scholar]
- Xu, Z. Poor farmers lack of endogenous impetus and the performance of poverty alleviation policies. Agric. Econ. 2013, 33, 63–65. [Google Scholar]
- Scott, C.D. Mixed fortunes: A study of poverty mobility among small farm households in Chile, 1968–1986. J. Dev. Stud. 2000, 36, 155–180. [Google Scholar] [CrossRef]
- Lareau, A.; Weininger, E.B. Cultural capital in educational research: A critical assessment. Theory Soc. 2003, 32, 567–606. [Google Scholar] [CrossRef]
- Rawlings, L.B.; Rubio, G.M. Evaluating the impact of conditional cash transfer programs. World Bank Res. Obs. 2005, 20, 29–55. [Google Scholar] [CrossRef] [Green Version]
- Randolph, T.F.; Schelling, E.; Grace, D.; Nicholson, C.F.; Leroy, J.L.; Cole, D.C.; Dentment, M.W.; Omore, A.; Zinsstag, J.; Ruel, M. Invited review: Role of livestock in human nutrition and health for poverty reduction in developing countries. J. Anim. Sci. 2007, 85, 2788–2800. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.S. Threshold Effect of Poverty Alleviation Funds on Human Capital Accumulation: A Case Study of Impoverished Counties in China. Sustainability 2019, 11, 809. [Google Scholar] [CrossRef] [Green Version]
- Galiani, S.; Schargrodsky, E. Property rights for the poor: Effects of land titling. J. Public Econ. 2010, 94, 700–729. [Google Scholar] [CrossRef] [Green Version]
- Lochner, K.A.; Kawachi, I.; Brennan, R.T.; Buka, S.L. Social capital and neighborhood mortality rates in Chicago. Soc. Sci. Med. 2003, 56, 1797–1805. [Google Scholar] [CrossRef]
- Lyons, M.; Snoxell, S. Sustainable urban livelihoods and marketplace social capital: Crisis and strategy in petty trade. Urban Stud. 2005, 42, 1301–1320. [Google Scholar] [CrossRef]
- Adato, M.; Carter, M.R.; May, J. Exploring poverty traps and social exclusion in South Africa using qualitative and quantitative data. J. Dev. Stud. 2006, 42, 226–247. [Google Scholar] [CrossRef] [Green Version]
- Gopal, D.; Nagendra, H. Vegetation in Bangalore’s Slums: Boosting Livelihoods, Well-Being and Social Capital. Sustainability 2014, 6, 2459–2473. [Google Scholar] [CrossRef] [Green Version]
- Alkire, S. Subjective quantitative studies of human agency. Soc. Indic. Res. 2005, 74, 217–260. [Google Scholar] [CrossRef]
- Drukker, M.; Gunther, N.; Van Os, J. Disentangling associations between poverty at various levels of aggregation and mental health. Epidemiol. E Psichiatr. Soc. Int. J. Epidemiol. Psychiatr. Sci. 2007, 16, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Pearce, A.; Lewis, H.; Law, C. The role of poverty in explaining health variations in 7-year-old children from different family structures: Findings from the UK Millennium Cohort Study. J. Epidemiol. Commun. Health 2013, 67, 181–189. [Google Scholar] [CrossRef]
- Wright, J.H.; Hill, N.A.O.; Roe, D.; Rowcliffe, J.M.; Kumpel, N.F.; Day, M.; Booker, F.; Milner-Gulland, E.J. Reframing the concept of alternative livelihoods. Conserv. Biol. 2016, 30, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z. Cause producing impoverished farmers and establishment of industrialized mechanism for poverty alleviation in China. Res. Agric. Mod. 2008, 29, 711–714. [Google Scholar]
- Sen, A. Development as Freedom; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Solomon, B.B. Black Empowerment: Social Work in Oppressed Communities; Columbia University: New York, NY, USA, 1976. [Google Scholar]
- Lin, M. Activating the endogenous impetus of the poor: Theoretical perspective and policy choice. Chin. Soc. Secur. Rev. 2019, 3, 119–130. [Google Scholar]
- Mo, G.; Zhang, J. Innovation of the paths on helping the poor getting confidence and wisdom based on the view of “humanism”. J. Party Sch. Cent. Comm. CPC 2018, 22, 102–110. [Google Scholar]
- Frankenhuis, W.E.; Nettle, D. The strengths of people in poverty. Curr. Dir. Psychol. Sci. 2020, 29, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Janzen, S.A.; Magnan, N.P.; Sharma, S.; Thompson, W.M. Aspirations failure and formation in rural Nepal. J. Econ. Behav. Organ. 2017, 139, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Lybbert, T.J.; Wydick, B. Poverty, aspirations, and the economics of hope. Econ. Dev. Cult. Chang. 2018, 66, 709–753. [Google Scholar] [CrossRef] [Green Version]
- Veenhoven, R. The fourqualities of life: Ordering concepts and measures of the good life. J. Happiness Stud. 2000, 1, 1–39. [Google Scholar] [CrossRef]
- Ray, D. Aspirations, Poverty and Economic Change; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Copestake, J.; Camfield, L. Measuring multidimensional aspiration gaps: A means to understanding cultural aspects of poverty. Dev. Policy Rev. 2010, 28, 617–633. [Google Scholar] [CrossRef]
- Chivers, D. Success, survive or escape? Aspirations and poverty traps. J. Econ. Behav. Organ. 2017, 143, 116–132. [Google Scholar] [CrossRef]
- Kosec, K.; Mo, C.H. Aspirations and the role of social protection: Evidence from a natural disaster in rural Pakistan. World Dev. 2017, 97, 49–66. [Google Scholar] [CrossRef]
- Spencer, B.; Castano, E. Social class is dead. Long live social class! Stereotype threat among low socioeconomic status individuals. Soc. Justice Res. 2007, 20, 418–432. [Google Scholar] [CrossRef]
- Dalton, P.S.; Ghosal, S.; Mani, A. Poverty and aspirations failure. Econ. J. 2016, 126, 165–188. [Google Scholar] [CrossRef]
- Hou, Z.; Guo, Y.; Wu, B. On the internal logic of the insufficiency of poor households’ intrinsic motivation from the perspective of behavioral economics. J. Northeast. Norm. Univ. (Philos. Soc. Sci.) 2019, 170–176. [Google Scholar] [CrossRef]
- Mullainathan, S.; Shafir, E. Scarcity; Penguin UK: London, UK, 2013. [Google Scholar]
- Mani, A.; Mullainathan, S.; Shafir, E.; Zhao, J.Y. Poverty impedes cognitive function. Science 2013, 341, 976–980. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Duflo, E. Poor Economics; Hachette UK: London, UK, 2012. [Google Scholar]
- Mani, A.; Mullainathan, S.; Shafir, E.; Zhao, J.Y. Response to comment on “Poverty impedes cognitive function”. Science 2013, 342, 1169. [Google Scholar] [CrossRef] [Green Version]
- Wicherts, J.M.; Scholten, A.Z. Comment on “Poverty impedes cognitive function”. Science 2013, 342, 1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Bank. World Development Report 2014: Risk and Opportunity: Managing Risk for Development; Tsinghua University Press: Beijing, China, 2014. [Google Scholar]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 1979, 75, 263–291. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Munro, A. Regional variation in risk and time preferences: Evidence from a large-scale field experiment in rural Uganda. J. Afr. Econ. 2014, 23, 151–187. [Google Scholar] [CrossRef] [Green Version]
- Azam, J.-P.; Gubert, F. Migrants’ remittances and the household in Africa: A review of evidence. J. Afr. Econ. 2006, 15, 426–462. [Google Scholar] [CrossRef]
- Mickelson, K.D.; Williams, S.L. Perceived stigma of poverty and depression: Examination of interpersonal and intrapersonal mediators. J. Soc. Clin. Psychol. 2008, 27, 903–930. [Google Scholar] [CrossRef]
- Huber, F.; Herrmann, A.M.; Meyer, F.; Vogel, J.; Vollhardt, K. Kausalmodellierung Mit Partial Least Squares: Eine Anwendungsorientierte Einführun; Springer: Wiesbaden, Germany, 2007. [Google Scholar]
- Weiber, R.; Mühlhaus, D. Strukturgleichungsmodellierung: Eine Anwendungsorientierte Einführung in Die Kausalanalyse Mit Hilfe von AMOS, SmartPLS und SPSS; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Haenlein, M.; Kaplan, A.M. A beginner’s guide to Partial Least Squares Analysis. Underst. Stat. 2004, 3, 283–297. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Podsakoff, N.P. Sources of method bias in social science research and recommendations on how to control It. Annu. Rev. Psychol. 2012, 63, 539–569. [Google Scholar] [CrossRef] [Green Version]
- Huber, F. Leitfaden SmartPLS. Auswertung von Strukturgleichungsmodellen. Universität Mainz-Lehrstuhl für Marketing I. Mainz. 2012. Available online: http://www.marketing-i.bwl.unimainz.de/660.php.2003-07.12 (accessed on 20 March 2020).
- Joseph, F.; Hair, J.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Southend Oaks, CA, USA, 2013. [Google Scholar]
- Henseler, J.; Ringle, M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Mbiba, M.; Collinson, M.; Hunter, L.; Twine, W. Social capital is subordinate to natural capital in buffering rural livelihoods from negative shocks: Insights from rural South Africa. J. Rural Stud. 2019, 65, 12–21. [Google Scholar] [CrossRef]
Regional Distribution | Changyang County | Shangcai County | Gonghu County | Haiyuan County | Tongwei County | Tianzhen County | Chahar Right Middle Banner | Jinzhai County |
---|---|---|---|---|---|---|---|---|
Sample Size | 123 | 133 | 152 | 113 | 135 | 147 | 144 | 165 |
Latent Variable | Indicators Symbol | Observable Indicators | Indicator Definition | Mean | Standard Deviation |
---|---|---|---|---|---|
Human Capital (HC) | HC_1 | Mean Family Education | Illiteracy-0, Primary education-1, Junior high school education-2, High school diploma-3, University degree-4, Graduate and above-6. | 1.324 | 0.788 |
HC_2 | Proportion of Peasant-worker | Ratio of peasant-worker to total family size. | 0.193 | 0.225 | |
HC_3 | Proportion of Population Burden | Ratio of the number of individuals without income to total family size. | 0.552 | 0.344 | |
HC_4 | Family Insurance Type | Nothing at all-0, NRCMI and NRSEI-1, NRCMI and NRSEI-3, Commercial insurance-4, NRCMI, NRSEI, and Commercial Insurance-5. | 2.927 | 0.343 | |
Physical Capital (PC) | PC_1 | Housing Condition Index | Quantification of two indicators per capita housing area and housing type. | 64.134 | 57.842 |
PC_2 | Household Fixed Asset Index | Ratio of the amount of assets in the family to total assets of the list. | 0.311 | 0.127 | |
PC_3 | Family Electricity Stability | Very bad-1, Bad-2, Normal-3, Good-4, Very good-5 | 4.272 | 0.619 | |
PC_4 | Cultivated Land Quality | Very bad-1, Bad-2, Normal-3, Good-4, Very good-5 | 3.382 | 0.855 | |
Social Capital (SC) | SC_1 | Leading Role of Village Heads to Escaping Poverty | Very bad-1, Bad-2, Normal-3, Good-4, Very good-5 | 4.174 | 0.865 |
SC_2 | Opportunity to Participate in Democratic Decision-making | Very small-1, Small-2, Normal-3, Large-4, Very large-5 | 3.897 | 0.877 | |
SC_3 | Ability to Appeal to Government Agencies for Help | Very small-1, Small-2, Normal-3, Large-4, Very large-5 | 3.823 | 0.882 | |
SC_4 | Many Good Friends in the Village | Very small-1, Small-2, Normal-3, Large-4, Very large-5 | 4.058 | 0.919 | |
Thought Impetus (TI) | TI_1 | Satisfaction with Current Life | Very bad-1, Bad-2, Normal-3, Good-4, Very good-5 | 4.039 | 0.856 |
TI_2 | Confidence in Improving Living Standards in the Future | Very small-1, Small-2, Normal-3, Large-4, Very large-5 | 4.013 | 0.863 | |
TI_3 | Frankly Facing Unpleasant Events in Life | Very bad-1, Bad-2, Normal-3, Good-4, Very good-5 | 4.004 | 0.856 | |
Behaviour Impetus (BI) | BI_1 | Degree of Participation in Skills Training | Very small-1, Small-2, Normal-3, Large-4, Very large-5 | 2.924 | 0.922 |
BI_2 | Self-development Ability | Very small-1, Small-2, Normal-3, Large-4, Very large-5 | 2.878 | 1.037 | |
BI_3 | Ability to Resist Risks | Very small-1, Small-2, Normal-3, Large-4, Very large-5 | 3.574 | 0.641 | |
Livelihood Status (LS) | LS_1 | Family’s Per Capita Net Income | Ratio of total family income (the sum of Planting, breeding, forestry, working, operation, government subsidies and other income) to total family size | 6080.16 | 4506.67 |
LS_2 | Family Daily Diet Index | The frequency of eating meat, eggs, and vegetables every week, a comprehensive indicator of diet | 7.057 | 1.92 | |
LS_3 | Family Poverty Index | Poverty Scorecard scores | 48.352 | 11.177 |
Reflective Measurement Models | Reflective Indicators | Factor Loading > 0.7 | Indicators Reliability > 0.5 | Composite Reliability > 0.7 | Average Variance Extracted > 0.5 | Variance Inflation Factor |
---|---|---|---|---|---|---|
Livelihood status (LS) | LS_1 | 0.641 | 0.411 | 0.806 | 0.585 | 1.234 |
LS_2 | 0.723 | 0.523 | 1.294 | |||
LS_3 | 0.907 | 0.823 | 1.497 | |||
Thought Impetus (TI) | TI_1 | 0.846 | 0.716 | 0.901 | 0.752 | 1.781 |
TI_2 | 0.886 | 0.785 | 2.097 | |||
TI_3 | 0.868 | 0.753 | 2.019 | |||
Social Capital (SC) | SC_1 | 0.839 | 0.704 | 0.867 | 0.622 | 1.704 |
SC_2 | 0.850 | 0.7225 | 2.006 | |||
SC_3 | 0.794 | 0.630 | 1.797 | |||
SC_4 | 0.657 | 0.432 | 1.329 | |||
Formative Measurement Models | Formative Indicators | Outer Weights | T value | P value | Significance Level | Variance Inflation Factor |
Human Capital (HC) | HC_1→HC | 0.578 | 13.209 | 0.000 | *** | 1.101 |
HC_2→HC | 0.511 | 11.158 | 0.000 | *** | 1.235 | |
HC_3→HC | 0.230 | 4.561 | 0.000 | *** | 1.156 | |
HC_4→HC | 0.189 | 4.321 | 0.000 | *** | 1.002 | |
Physical Capital (PC) | PC_1→PC | 0.334 | 8.164 | 0.000 | *** | 1.030 |
PC_2→PC | 0.914 | 39.617 | 0.000 | *** | 1.012 | |
PC_3→PC | 0.142 | 3.139 | 0.002 | *** | 1.018 | |
PC_4→PC | 0.167 | 3.886 | 0.000 | *** | 1.036 | |
Behavior Impetus (BI) | BI_1→BI | 0.358 | 6.537 | 0.000 | *** | 2.466 |
BI_2→BI | 0.659 | 12.506 | 0.000 | *** | 2.485 | |
BI_3→BI | 0.182 | 5.201 | 0.000 | *** | 1.016 |
Path | Variance Inflation Factor | Path Coefficients | T value | P value | Significance Level |
---|---|---|---|---|---|
TI→LS | 1.582 | 0.243 | 7.019 | 0.000 | *** |
BI→LS | 1.711 | 0.285 | 9.932 | 0.000 | *** |
HC→TI | 1.066 | 0.075 | 3.198 | 0.001 | *** |
HC→BI | 1.066 | 0.481 | 21.158 | 0.000 | *** |
PC→TI | 1.138 | 0.222 | 8.216 | 0.000 | *** |
PC→BI | 1.138 | 0.288 | 11.030 | 0.000 | *** |
SC→TI | 1.073 | 0.479 | 14.543 | 0.000 | *** |
SC→BI | 1.073 | 0.065 | 2.472 | 0.014 | ** |
HC→LS | 1.452 | 0.226 | 8.818 | 0.000 | *** |
PC→LS | 1.326 | 0.314 | 10.375 | 0.000 | *** |
SC→LS | 1.428 | 0.011 | 0.398 | 0.691 | NS |
Endogenous Latent Variable | Thought Impetus (TI) | Behavior Impetus (BI) | Livelihood status (LS) | |||
Determination Coefficient (R2 Value) | 0.353 | 0.402 | 0.596 | |||
Predictive Relevance(Q² Value) | 0.256 | 0.23 | 0.323 | |||
Latent Variable | Effect Size (f²) | Effect Size (q²) | Effect Size (f²) | Effect Size (q²) | Effect Size (f²) | Effect Size (q²) |
Human Capital (HC) | 0.008 | 0.004 | 0.363 | 0.156 | 0.087 | 0.034 |
Physical Capital (PC) | 0.067 | 0.042 | 0.122 | 0.053 | 0.185 | 0.059 |
Social Capital (SC) | 0.331 | 0.210 | 0.007 | 0.003 | 0.000 | 0.000 |
Thought Impetus (TI) | - | - | - | - | 0.093 | 0.032 |
Behavior Impetus (BI) | - | - | - | - | 0.117 | 0.032 |
Mediator | Path | Path Coefficients | P value | Variance Accounted for Value | Types of Mediator |
---|---|---|---|---|---|
HC→TI→LS | HC→TI | 0.176 *** | 0.000 | 0.144 | No mediation |
TI→LS | 0.414 *** | 0.000 | |||
HC→LS | 0.434 *** | 0.000 | |||
HC→BI→LS | HC→BI | 0.568 *** | 0.000 | 0.556 | Partial mediation |
BI→LS | 0.492 *** | 0.000 | |||
HC→LS | 0.223 *** | 0.000 | |||
PC→TI→LS | PC→TI | 0.367 *** | 0.000 | 0.205 | Partial mediation |
TI→LS | 0.323 *** | 0.000 | |||
PC→LS | 0.461 *** | 0.000 | |||
PC→BI→LS | PC→BI | 0.436 *** | 0.000 | 0.338 | Partial mediation |
BI→LS | 0.455 *** | 0.000 | |||
PC→LS | 0.389 *** | 0.000 | |||
SC→TI→LS | SC→TI | 0.543 *** | 0.000 | 0.878 | Full mediation |
TI→LS | 0.479 *** | 0.000 | |||
SC→LS | 0.036 NS | 0.294 | |||
SC→BI→LS | SC→BI | 0.185 *** | 0.000 | 0.372 | Partial mediation |
BI→LS | 0.588 *** | 0.000 | |||
SC→LS | 0.184 *** | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Huang, F.; Wang, Z.; Shuai, C.; Li, J. Understanding the Role of Rural Poor’s Endogenous Impetus in Poverty Reduction: Evidence from China. Sustainability 2020, 12, 2487. https://doi.org/10.3390/su12062487
Liu J, Huang F, Wang Z, Shuai C, Li J. Understanding the Role of Rural Poor’s Endogenous Impetus in Poverty Reduction: Evidence from China. Sustainability. 2020; 12(6):2487. https://doi.org/10.3390/su12062487
Chicago/Turabian StyleLiu, Jing, Fubin Huang, Zihan Wang, Chuanmin Shuai, and Jiaxin Li. 2020. "Understanding the Role of Rural Poor’s Endogenous Impetus in Poverty Reduction: Evidence from China" Sustainability 12, no. 6: 2487. https://doi.org/10.3390/su12062487
APA StyleLiu, J., Huang, F., Wang, Z., Shuai, C., & Li, J. (2020). Understanding the Role of Rural Poor’s Endogenous Impetus in Poverty Reduction: Evidence from China. Sustainability, 12(6), 2487. https://doi.org/10.3390/su12062487