1. Introduction
Over the centuries, livestock has formed the basis of human wellbeing through its contribution to the household economy, social status and food security [
1]. As highlighted by [
2], global livestock farming systems have evolved since the 18
th century from agro-pastoralism through to the intensification in the 21st century. However, in developing countries, there exists a thin line between different types of livestock production systems [
3]. Sustainability issues have been raised in livestock production as the global demand for protein-rich diets is forecasted to increase [
4], amidst production challenges which are also exacerbated by climate change negative impacts [
5,
6]. The demand for livestock products has been fostered by an upsurge in the middle class in developing countries and an increase in the global population [
4].
The livestock sector is a major consumer of the natural resources with approximately 80% of the agricultural land used for grazing and 8% of water consumption is for livestock systems [
6]. Therefore, in as much as livestock systems are likely to suffer from climate change impacts, they are also considered contributors to the subject. Life cycle assessment studies have indicated that cattle production systems contribute to global warming (as a result of increased carbon dioxide and methane emissions) water depletion, contamination of water resources, and land pollution [
7,
8]. Apparently, industrialized farming system such as intensive beef production has a more carbon footprint and methane gas than the free-range or pasture led system [
3].
By definition, sustainability in the livestock production sector relates to the ability of the system to meet the current demand for livestock products without jeopardizing future generations’ use of resources and minimizing negative externalities [
9]. Based on this premise, in order for the livestock systems to be considered sustainable, they should be able to meet the current and long-run economic, social and environmental obligations.
Contextual Background
In South Africa, 80% of the agricultural land is suitable for livestock production with the sector contributing approximately 40% to the agricultural income [
10]. A dual system exists in the livestock farming sector with a highly commercialized system at one end and the subsistence on the other end. Cattle are the major livestock activity in the country in both commercial and smallholder farms. Cattle production in South Africa is more concentrated in the Eastern Cape, KwaZulu Natal, Free State, and Northwest [
11]. Beef cattle account for approximately 80% of the national herd with dairy accounting for 20%. Approximately 60% of the beef cattle in South Africa are owned by commercial farmers and 40% by the emerging sector [
11]. Three main beef production systems are common in the country: the intensive, semi extensive, and extensive production. The intensive production system ensures that specialists undertake the finishing stages of beef cattle and this is usually done in the feedlot. With clearly defined stages of production, feeding is monitored to produce the required weight in animals in the shortest period.
The primary production involves grazing animals on pastures and secondary production which requires finishing off of animals in the feedlot [
10]. The bulk of the communal farmers allow animals to freely graze hence primary production and secondary production activities are combined [
1]. Such systems are often referred to as extensive. However, sometimes there are overlaps between the production systems. Following [
12], a more precise method of defining the production system is by what the animals eat and where they sleep. Production systems that allow the animals to forage their food more often than not and spend much of their lifecycle outside are referred to as pasture-based. The defining characteristic in pasture led systems is that supplementation of feed is rare and only temporary shelter is provided. Whilst pasture led systems in the industrialized sector are a result of consumer-driven demand for naturally fed animals, in the developing countries it is usually associated with a lack of resources for intensification therefore common in the smallholder sector [
12]. In the context of this study, a pasture led production system will be used synonymously with extensive production.
Land redistribution schemes in South Africa has birthed a group of farmers known as emerging farmers. This emerging sector consists of land reform beneficiaries who have been given institutional support such as improved access to credit, extension and land rights in the bid to transform them to commercialized farmers [
13]. The emerging farmers together with the communal farmers in South Africa constitute the smallholder section. In contrast to the commercial sector which is characterized by high levels of productivity and use of sophisticated machinery, the smallholder sector is often allied to a lack of access to adequate market facilities, high labor-intensity with low farm capital investment and little division of labor [
14]. Cattle offtake in the smallholder sector is as low as 9% as compared to 30% in the commercial sector [
15]. The problems facing smallholder farmers in Africa are complex and range from a lack of institutional support mechanisms to specific farmer related challenges.
The land issue has been at the center of public debate in the past decade, with smallholder farmers incapacitated by a lack of land rights and access to adequate agricultural land [
15]. Ref [
14], highlighted a lack of investment, poor access to extension, lack of working capital and poor livestock management practices as the major constrains limiting emerging farmers from advancing to commercialized production in Limpopo province of South Africa. Similarly, Ref [
13], indicated that in livestock systems, inadequate knowledge of livestock and pasture management and decrease in veld quality as a result of climate variability are the core factors that need to be addressed to improve sustainability in extensive livestock production systems.
The changing environmental, social, and economic context over time demands that livestock producers be more innovative. Environmental sustainability debates in cattle production are centered on the impacts caused by climate change and life cycle assessments of the sector. The authors of [
5] projected that by 2020 in Africa, over 75 million people would be exposed to climate variability effects and extreme weather conditions such as drought, floods, and extremely hot conditions. The vulnerability of the agricultural sector arises from its sensitivity to rainfall and temperature changes. Generally, in Southern Africa, high incidences of drought, high temperatures, and unreliable rainfall have been experienced in the past years [
16]. The region is considered as arid as it receives poor spatial rainfall distribution therefore water insecurity is a common problem [
17]. Increased temperatures as a result of global warming effects are more detrimental in mixed farming systems and pasture led systems rather than industrialized livestock systems.
Though extreme cases of climate change can be predicted across different regions, adaptation measures may lower the impact [
9,
16,
18,
19]. Adaptation refers to practices applied to a system in response to predicted shocks or stresses to reduce harm and vulnerability from the outcome of such occurrences [
20]. In climate-related events, the adaptive capacity assesses the range of activities that can be utilized to cope with the negative impacts of climate change or climate variability. Adaptation targets a specific system and is based on a local to regional intervention whereas mitigation broadly targets all systems in a global context [
20]. Climate variability poses a serious strain on the smallholder production systems which are already operating under a limited resource base. In pasture led systems, in particular, climate variability poses a severe threat of reducing the quality and quantity of forage in the arid to semi-arid regions [
17,
21].
The objective of this study is, therefore, to identify and analyze production constraints and climate-related events that hinder the sustainability of PLFS and determine the socio-economic factors that influence the adaptive capacity of pasture-based livestock farmers in the study area. On the backdrop of consumer preferences towards pasture led beef due to the perceived nutritional, environmental animal welfare benefits [
12], this study will provide insights on improving the sustainability of pasture led system in the South African context.
3. Results and Discussion
Socioeconomic characteristics: The summary statistics of the farmers’ demography, farm-based characteristics, and adaptive capacity profile were presented in
Table 1. This explains the descriptive statistics in which the characteristics of the group gender was found to be 90.6% for men and 9.4% for women. The summary descriptive for the explanatory variables were presented in
Table 1 below.
Table 2 explains the levels of adaptive capacity and their percentages.
Analysis of production constraints and climate-related events: Several variables were considered as constraints to PLFS by the farmers in the study area. Included are the climate-related variables in which the farmers attempt to foster adaptive capacity. All variables were subjected to PCA analysis to generate a new set of linear uncorrelated variables which influence PLFS in the study area. Multicollinearity test and correlation matrix were also determined as shown in
Table 3 and
Table 4, respectively where the mean VIF was 1.705. This shows that there was no presence of multicollinearity among the variables responsible for PLFS.
Table 5 revealed the descriptive summary of the identified factors that influence pasture-based livestock production in the study area.
Table 6 explains the frequency and the relative frequency percentage in each category of variables considered as constraints to PLFS by the farmers in the study area.
Table 7 reveals that Principal Component 1 (
PC1) contributed to 20.671 percent of the variations with an eigenvalue of 2.894 in the variables included in which the cumulative percentage is 20.671. The
PC1 is strongly associated with seven of the original variables. This suggests that these seven criteria or variables in the principal component vary together. The
PC1 increases with a shortage of labor, inadequate rainfall, fluctuation in product price, lack of funds and resources, lack of access to buy input, death of animals, and reduction in livestock number. This suggests that the effect or challenges of climate change on PBLS is greatly influenced by the aforementioned variables, which can be represented as follows: (
PC1) = 0.813X
1 + 0.516X
2 + 0.652X
3 + 0.639X
5 + 0.548X
6 + 0.467X
7 + 0.432X
8. Following [
25] principle, and [
26], five factors (principal components) were extracted based on the result in
Table 8, according to the responses of the respondents. Variables with a factor loading of above 0.40 and at 10% overlapping variance were retained while variables less than 0.40 were not retained.
The
PC2 contributed to 14.941 percent of the variation according to
Table 7, with an eigenvalue of 2.092 and the cumulative frequency of 35.612 percent. Six variables are strongly associated in
PC2. This is better explained that
PC2 increases with inadequate rainfall, fluctuation in product price, lack of access to buy input. However, it decreases with a lack of funds and resources, flood and fire. This indicates that the effect or challenges of climate change on PBLS were significantly influenced by the variables in the equation presented. (
PC2) = 0.675X
2 + 0.444X
3 − 0.630X
5 + 0.461X
6 - 0.500X
11 - 0.424X
13.The PC3 reported the eigenvalue of 1.491, the variability and the cumulative percent were 10.650 and 46.262 respectively. The PC3 increases with the lack of storage facilities, drought and decreases with storm. This indicates that these variables influence the effect or challenges of climate change on PBLS, and it can be represented as follows: PC3 = 0.688X4 + 0.456X12 − 0.598X14. In the same vein, PC4 contributed to 8.293 percent of the variations with an eigenvalue of 1.161 in the variables included in which the cumulative percentage is 54.556 percent. The PC4 increases with a shortage of pasture, however, it decreases with flooding. This explains that a shortage of pasture and flood influence the effect or challenges of climate change on PBLS. This can be represented as follow: PC4 = 0.672X9 − 0.449X11
PC5 as shown in
Table 7 explained that variability percent is 7.863 with an eigenvalue of 1.101 while the cumulative percentage is found to be 62.419. There are three variables which are strongly associated in
PC5. The explanation for this is that the effect or challenges of climate change on PBLS increases with a lack of storage facilities, reduction in livestock number and, however, decreases with pest and disease. This can be represented as follows:
PC5 = 0.490X
4 + 0.410X
8 − 0.444X
10.
Table 8 and
Table 9 show the tests that indicate the suitability and fitness of the PCA employed. The Kaiser-Meyer-Olkin Measure of Sampling Adequacy indicates the proportion of variance of variables that might be caused by underlying factors. High values (close to 1.0) generally show that factor analysis may be useful for the data. On the other hand, if the value is less than 0.50, the results of the factor analysis will not be useful. Similarly, Bartlett’s sphericity test was carried out to test the hypothesis that the correlation matrix. This is an identity matrix, which explains if the variables are unrelated and therefore unsuitable for structure detection. Small values (less than 0.05) of the significance level indicate that factor analysis may be useful with the data. The result from
Table 7 and
Table 8 confirmed that the results from PCA were consistent and fit for the analysis.
Socio-economics Determinants to Adaptive Capacity among Pasture-based Livestock Farmers in the Study Area: The result from
Table 10 revealed that age, other income sources, labor use, own the land and income were statistically significant to adaptive capacity. In other words, adaptive capacity to climate change was determined and influenced by the above-mentioned factors in the study area.
Table 11 shows the predictive margin test explains the outcome for each categories of the adaptive capacity.
The marginal effect estimates of the results were shown in
Table 12, which explains the effect of the margin for each categories of adaptive capacity.
Age was found negatively associated with a coefficient of 0.029 and significantly (
p < 0.05) influence the adaptive capacity. This implies that an increase in age decreases the adaptive capacity. The age of a farmer plays a significant role in the sustainability of PLFS in the study area. The mean age of the farmers in the study area is 50.473, and this is not surprising as the majority of the farmers in the study area exhibit low outcomes towards high adaptive capacity. This could be attributed to the fact that old farmers are reluctant to adopt new things, measures of adaptive capacity were lacking. This result is supported by [
27], who reported that age influence the level of adaptive capacity.
The other source of income was positively associated (coefficient of 0.401) and statistically significant, thus influencing adaptive capacity. Farmers who engage in off-farm activities apart from earning income in farming tend to increase the adaptive capacity as the farmer would be able to afford facilities needed such as irrigation facilities among others. In the same train of thought, the level of income influences adaptive capacity. Income generated from agricultural activities also determines the level of adaptive capacity. The higher the income generated, the more likely a farmer tends to increase the level of adaptive capacity [
28], reported similar results, that level of income in livestock farming determines the level of adaptive capacity among rural household farming in Ethiopia.
The use of labor was positively correlated and significantly (
p < 0.05) influenced the level of adaptive capacity in the study area. The maximum number of labor use as found in
Table 1, was three laborers, however, it was established that farmers with more labor use have a higher probability to increase the level of adaptive capacity. The reason could be that the farmer has more helping hands to adopt and carry out certain activities on the farm to increase the level of adaptive capacity. Activities such as farm management practices, implementation of irrigation, windbreaks among many others. This could be referred to as adaptation through human assets as explained by [
29].
The landowner is another factor that determines the level of adaptive capacity in the study area. Owning the land was negatively associated with a coefficient of −2.083 and statistically significant. The reason for this result is that the knowledge and experience of the landowners determine the adoption of natural resources management and the level of adaptive capacity. This was supported by [
23], who reported that landownership is likely to influence adoption if the innovation requires investments tied to the land.
Figure 2 shows the predictive margin graph of adaptive capacity used by pasture-based livestock farmers in the study area in the face of climate-related events. The high adaptive capacity is seen to be relatively low, followed by the low adaptive capacity. This graph is better explained in
Table 2, where the percentage of high adaptive capacity, low adaptive and moderate adaptive capacity were given as 16.2%, 40.1% and 43.7% respectively.