BIM-Based End-of-Lifecycle Decision Making and Digital Deconstruction: Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Social and Cultural Barriers in Deconstruction and DfD Practices
3.2. BIM-Based DfD and BIM-Based Deconstruction Solutions and Challenges
3.3. BIM and Life Cycle Assessment
3.4. BIM-Aided Waste Management
3.5. Materials/Components Bank
3.6. BIM for Lean and Off-Site Construction
3.7. Interoperability and Industry Foundation Classes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions-Roadmap to a Resource Efficient Europe COM (2011) 571 Final; European Commission: Brussels, Belgium, 2011; p. 26. [Google Scholar]
- European Commission. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions—A Lead Market Initiative for Europe COM (2007) 860 Final; European Commission: Brussels, Belgium, 2007; p. 11. [Google Scholar]
- European Commission Construction and Demolition Waste (CDW). Available online: http://ec.europa.eu/environment/waste/construction_demolition.htm (accessed on 5 February 2019).
- Manfredi, S.; Pant, R. Supporting Environmentally Sound Decisions for Construction and Demolition (C&D) Waste Management—A Practical Guide to Life Cycle Thinking (LCT) and Life Cycle Assessment (LCA); Publications Office of the European Union: Luxembourg, 2011. [Google Scholar]
- OECD. Material Resources, Productivity and the Environment; Green Growth Studies; OECD Publishing: Paris, France, 2015; ISBN 978-92-64-19050-4. [Google Scholar]
- Seethapathy, S.; Henderson, J.H. Management of construction waste in nuclear and thermal power plant projects in India. J. Constr. Dev. Ctries. 2017, 22, 19–46. [Google Scholar] [CrossRef]
- Ajayi, S.O.; Oyedele, L.O.; Akinade, O.O.; Bilal, M.; Owolabi, H.A.; Alaka, H.A.; Kadiri, K.O. Reducing waste to landfill: A need for cultural change in the UK construction industry. J. Build. Eng. 2016, 5, 185–193. [Google Scholar] [CrossRef]
- Rose, C.M.; Stegemann, J.A. From waste management to component management in the construction industry. Sustainability 2018, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.C.P.; Ma, L.Y.H. A BIM-based system for demolition and renovation waste estimation and planning. Waste Manag. 2013, 33, 1539–1551. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-C.; Hong, W.-H.; Park, J.-W.; Cha, G.-W. An estimation framework for building information modeling (BIM)-based demolition waste by type. Waste Manag. Res. 2017, 35, 1285–1295. [Google Scholar] [CrossRef]
- Bilal, M.; Oyedele, L.O.; Akinade, O.O.; Ajayi, S.O.; Alaka, H.A.; Owolabi, H.A.; Qadir, J.; Pasha, M.; Bello, S.A. Big data architecture for construction waste analytics (CWA): A conceptual framework. J. Build. Eng. 2016, 6, 144–156. [Google Scholar] [CrossRef]
- Hoxha, E.; Habert, G.; Chevalier, J.; Bazzana, M.; Le Roy, R. Method to analyse the contribution of material’s sensitivity in buildings’ environmental impact. J. Clean. Prod. 2014, 66, 54–64. [Google Scholar] [CrossRef]
- Lockrey, S.; Verghese, K.; Crossin, E.; Nguyen, H. Concrete recycling life cycle flows and performance from construction and demolition waste in Hanoi. J. Clean. Prod. 2018, 179, 593–604. [Google Scholar] [CrossRef]
- European Union. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives; Official Journal of the European Union: Luxembourg; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32008L0098&from=EN (accessed on 3 April 2019).
- Zanni, S.; Simion, I.M.; Gavrilescu, M.; Bonoli, A. Life cycle assessment applied to circular designed construction materials. Procedia CIRP 2018, 69, 154–159. [Google Scholar] [CrossRef]
- European Commission. EU Construction & Demolition Waste Management Protocol Defines C&D Waste; European Commission Directorate-General for Internal market, Industry, Entrepreneurship and SMEs: Brussels, Belgium, 2016; p. 52. [Google Scholar]
- Kohler, N. From the design of green buildings to resilience management of building stocks. Build. Res. Inf. 2018, 46, 578–593. [Google Scholar] [CrossRef]
- Waldmann, D. Demountable Construction Enables Structural Diversity. Available online: https://orbilu.uni.lu/handle/10993/31437 (accessed on 29 January 2020).
- Simion, I.; Ghinea, C.; Maxineasa, S.; Taranu, N.; Bonoli, A.; Gavrilescu, M. Ecological footprint applied in the assessment of construction and demolition waste integrated management. Environ. Eng. Manag. J. 2013, 12, 779–788. [Google Scholar]
- Densley Tingley, D.; Davison, B. Developing an LCA methodology to account for the environmental benefits of design for deconstruction. Build. Environ. 2012, 57, 387–395. [Google Scholar] [CrossRef]
- European Commission. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions-on the Implementation of the Circular Economy Action Plan COM (2019) 190 Final; European Commission: Brussels, Belgium, 2019; p. 12. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions-Closing the Loop—An EU action Plan for the Circular Economy COM (2015) 614 Final; European Commission: Brussels, Belgium, 2015; p. 21. [Google Scholar]
- Durmisevic, E. Transformable Building Structures: Design for Dissassembly as a Way to Introduce Sustainable Engineering to Building Design & Construction. Ph.D. Thesis, TUDelft, Delft, The Netherlands, 2006. [Google Scholar]
- Durmisevic, E. Circular Economy in Construction Design Strategies for Reversible Buildings. Available online: https://www.bamb2020.eu/wp-content/uploads/2019/05/Reversible-Building-Design-Strateges.pdf (accessed on 29 January 2020).
- Van Nederveen, S.; Gielingh, W. Modelling the life-cycle of sustainable, living buildings. Electron. J. Inf. Technol. Constr. 2009, 14, 674–691. [Google Scholar]
- Sacks, R.; Eastman, C.; Lee, G.; Teicholz, P. BIM Handbook: A guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 3rd ed.; Wiley: Hoboken, NJ, USA, 2018; ISBN 978-1-119-28755-1. [Google Scholar]
- Chatterton, S. The BIM Jedi (Formally the Revit Jedi): The Many Dimensions of BIM. Available online: http://bim4scottc.blogspot.com/2018/01/the-many-dimensions-of-bim.html (accessed on 5 February 2019).
- Charef, R.; Alaka, H.; Emmitt, S. Beyond the third dimension of BIM: A systematic review of literature and assessment of professional views. J. Build. Eng. 2018, 19, 242–257. [Google Scholar] [CrossRef]
- European Comission. Circular Economy-Principles for Building Design; European Comission: Brussels, Belgium, 2020. [Google Scholar]
- Akbarieh, A.; Jayasinghe, L.B.; Waldmann, D.; Hjaltadóttir, R.E.; Teferle, F.N. BIM-based end-of-life cycle decision making and digital deconstruction: Scientometric and bibliometric analysis. Sustainability 2020, in press. [Google Scholar]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Hood, W.; Wilson, C. The literature of bibliometrics, scientometrics, and informetrics. Scientometrics 2001, 52, 291–314. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2016. [Google Scholar]
- Wang, N.; Liang, H.; Jia, Y.; Ge, S.; Xue, Y.; Wang, Z. Cloud computing research in the is discipline: A citation/co-citation analysis. Decis. Support Syst. 2016, 86, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Nisonger, T.E. The “80/20 Rule” and core journals. Ser. Libr. 2008, 55, 62–84. [Google Scholar] [CrossRef]
- Densley Tingley, D.; Cooper, S.; Cullen, J. Understanding and overcoming the barriers to structural steel reuse, a UK perspective. J. Clean. Prod. 2017, 148, 642–652. [Google Scholar] [CrossRef]
- Sanchez, B.; Haas, C. Capital project planning for a circular economy. Constr. Manag. Econ. 2018, 36, 303–312. [Google Scholar] [CrossRef]
- Liu, Z.; Osmani, M.; Demian, P.; Baldwin, A. A BIM-aided construction waste minimisation framework. Autom. Constr. 2015, 59, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Won, J.; Cheng, J.C.P.; Lee, G. Quantification of construction waste prevented by BIM-based design validation: Case studies in South Korea. Waste Manag. 2016, 49, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, S.O.; Oyedele, L.O.; Bilal, M.; Akinade, O.O.; Alaka, H.A.; Owolabi, H.A.; Kadiri, K.O. Waste effectiveness of the construction industry: Understanding the impediments and requisites for improvements. Resour. Conserv. Recycl. 2015, 102, 101–112. [Google Scholar] [CrossRef]
- Ma, L.; Le, Y.; Li, H.; Jin, R.; Piroozfar, P.; Liu, M. Regional comparisons of contemporary construction industry sustainable concepts in the chinese context. Sustainability 2018, 10, 3831. [Google Scholar] [CrossRef] [Green Version]
- Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A. Critical review of bim-based LCA method to buildings. Energy Build. 2017, 136, 110–120. [Google Scholar] [CrossRef]
- Li, C.Z.; Hong, J.; Xue, F.; Shen, G.Q.; Xu, X.; Mok, M.K. Schedule risks in prefabrication housing production in Hong Kong: A social network analysis. J. Clean. Prod. 2016, 134, 482–494. [Google Scholar] [CrossRef] [Green Version]
- ISO 16739-1:2018 Industry Foundation Classes (IFC) for Data Sharing in the Construction and Facility Management Industries—Part 1: Data Schema; International Organization for Standardization: Geneva, Switzerland, 2018; p. 1474.
- BS 1192-4:2014 Collaborative Production of Information Part 4: Fulfilling Employers Information Exchange Requirements Using COBie–Code of Practice; British Standard Institution: London, UK, 2014; ISBN 978-0-580-85255-8.
- Menegaki, M.; Damigos, D. A review on current situation and challenges of construction and demolition waste management. Curr. Opin. Green Sustain. Chem. 2018, 13, 8–15. [Google Scholar] [CrossRef]
- Oh, M.; Lee, J.; Hong, S.W.; Jeong, Y. Integrated system for BIM-based collaborative design. Autom. Constr. 2015, 58, 196–206. [Google Scholar] [CrossRef]
- Ajayi, S.O.; Oyedele, L.O.; Akinade, O.O.; Bilal, M.; Alaka, H.A.; Owolabi, H.A.; Kadiri, K.O. Attributes of design for construction waste minimization: A case study of waste-to-energy project. Renew. Sustain. Energy Rev. 2017, 73, 1333–1341. [Google Scholar] [CrossRef]
- PAS 1192-2:2013 Specification for Information Management for the Capital/Delivery Phase of Construction Projects Using Building Information Modelling; British Standard Institution: London, UK, 2013; ISBN 978-0-580-78136-0.
- Santos, R.; Costa, A.A.; Grilo, A. Bibliometric analysis and review of building information modelling literature published between 2005 and 2015. Autom. Constr. 2017, 80, 118–136. [Google Scholar] [CrossRef]
- Kassem, M.; Succar, B. Macro BIM adoption: Comparative market analysis. Autom. Constr. 2017, 81, 286–299. [Google Scholar] [CrossRef]
- Cavka, H.B.; Staub-French, S.; Poirier, E.A. Levels of BIM compliance for model handover. J. Inf. Technol. Constr. 2018, 23, 243–258. [Google Scholar]
- Re Cecconi, F.; Maltese, S.; Dejaco, M.C. Leveraging BIM for digital built environment asset management. Innov. Infrastruct. Solut. 2017, 2, 14. [Google Scholar] [CrossRef]
- Kivits, R.A.; Furneaux, C. BIM: Enabling sustainability and asset management through knowledge management. Sci. World J. 2013, 2013, 983721. [Google Scholar] [CrossRef]
- Alwan, Z.; Jones, P.; Holgate, P. Strategic sustainable development in the UK construction industry, through the framework for strategic sustainable development, using building information modelling. J. Clean. Prod. 2017, 140, 349–358. [Google Scholar] [CrossRef]
- Esa, M.R.; Halog, A.; Rigamonti, L. Strategies for minimizing construction and demolition wastes in Malaysia. Resour. Conserv. Recycl. 2017, 120, 219–229. [Google Scholar] [CrossRef]
- Chong, H.-Y.; Lee, C.-Y.; Wang, X. A mixed review of the adoption of building information modelling (BIM) for sustainability. J. Clean. Prod. 2017, 142, 4114–4126. [Google Scholar] [CrossRef] [Green Version]
- Joblot, L.; Paviot, T.; Deneux, D.; Lamouri, S. Literature review of Building Information Modeling (BIM) intended for the purpose of renovation projects. In Proceedings of the 20th IFAC World Congress, Toulouse, France, 9–14 July 2017; Volume 50, pp. 10518–10525. [Google Scholar]
- Zuo, J.; Zhao, Z.-Y. Green building research–current status and future agenda: A review. Renew. Sustain. Energy Rev. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Ness, D.; Swift, J.; Ranasinghe, D.C.; Xing, K.; Soebarto, V. Smart steel: New paradigms for the reuse of steel enabled by digital tracking and modelling. J. Clean. Prod. 2015, 98, 292–303. [Google Scholar] [CrossRef]
- Akbarnezhad, A.; Ong, K.C.G.; Chandra, L.R. Economic and environmental assessment of deconstruction strategies using building information modeling. Autom. Constr. 2014, 37, 131–144. [Google Scholar] [CrossRef]
- Akanbi, L.A.; Oyedele, L.O.; Akinade, O.O.; Ajayi, A.O.; Davila Delgado, M.; Bilal, M.; Bello, S.A. Salvaging building materials in a circular economy: A BIM-based whole-life performance estimator. Resour. Conserv. Recycl. 2018, 129, 175–186. [Google Scholar] [CrossRef]
- Akinade, O.O.; Oyedele, L.O.; Ajayi, S.O.; Bilal, M.; Alaka, H.A.; Owolabi, H.A.; Bello, S.A.; Jaiyeoba, B.E.; Kadiri, K.O. Design for Deconstruction (DfD): Critical success factors for diverting end-of-life waste from landfills. Waste Manag. 2017, 60, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, B.; Haas, C. A novel selective disassembly sequence planning method for adaptive reuse of buildings. J. Clean. Prod. 2018, 183, 998–1010. [Google Scholar] [CrossRef]
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Akinade, O.O.; Ajayi, S.O.; Alaka, H.A.; Owolabi, H.A. Analysis of critical features and evaluation of BIM software: Towards a plug-in for construction waste minimization using big data. Int. J. Sustain. Build. Technol. Urban Dev. 2015, 6, 211–228. [Google Scholar] [CrossRef]
- Tibaut, A.; Zazula, D. Sustainable management of construction site big visual data. Sustain. Sci. 2018, 13, 1311–1322. [Google Scholar] [CrossRef]
- Akinade, O.O.; Oyedele, L.O.; Bilal, M.; Ajayi, S.O.; Owolabi, H.A.; Alaka, H.A.; Bello, S.A. Waste minimisation through deconstruction: A BIM based deconstructability assessment score (BIM-DAS). Resour. Conserv. Recycl. 2015, 105, 167–176. [Google Scholar] [CrossRef]
- Volk, R.; Luu, T.H.; Mueller-Roemer, J.S.; Sevilmis, N.; Schultmann, F. Deconstruction project planning of existing buildings based on automated acquisition and reconstruction of building information. Autom. Constr. 2018, 91, 226–245. [Google Scholar] [CrossRef]
- Lu, W.; Webster, C.; Chen, K.; Zhang, X.; Chen, X. Computational Building Information Modelling for construction waste management: Moving from rhetoric to reality. Renew. Sustain. Energy Rev. 2017, 68, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.U.; Ng, S.T. Critical consideration of buildings’ environmental impact assessment towards adoption of circular economy: An analytical review. J. Clean. Prod. 2018, 205, 763–780. [Google Scholar] [CrossRef]
- Röck, M.; Hollberg, A.; Habert, G.; Passer, A. LCA and BIM: Visualization of environmental potentials in building construction at early design stages. Build. Environ. 2018, 140, 153–161. [Google Scholar] [CrossRef]
- Minunno, R.; O’Grady, T.; Morrison, G.M.; Gruner, R.L.; Colling, M. Strategies for applying the circular economy to prefabricated buildings. Buildings 2018, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Peng, C. Calculation of a building’s life cycle carbon emissions based on Ecotect and building information modeling. J. Clean. Prod. 2016, 112, 453–465. [Google Scholar] [CrossRef]
- Ajayi, S.; Oyedele, L.; Ceranic, B.; Gallanagh, M.; Kadiri, K. Life cycle environmental performance of material specification: A BIM-enhanced comparative assessment. Int. J. Sustain. Build. Technol. Urban Dev. 2015, 6, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Eleftheriadis, S.; Mumovic, D.; Greening, P. Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities. Renew. Sustain. Energy Rev. 2017, 67, 811–825. [Google Scholar] [CrossRef] [Green Version]
- Marzouk, M.; Abdelkader, E.M.; Al-Gahtani, K. Building information modeling-based model for calculating direct and indirect emissions in construction projects. J. Clean. Prod. 2017, 152, 351–363. [Google Scholar] [CrossRef]
- Marzouk, M.; El-zayat, M.; Aboushady, A. Assessing environmental impact indicators in road construction projects in developing countries. Sustainability 2017, 9, 843. [Google Scholar] [CrossRef] [Green Version]
- Yeheyis, M.; Hewage, K.; Alam, M.S.; Eskicioglu, C.; Sadiq, R. An overview of construction and demolition waste management in Canada: A lifecycle analysis approach to sustainability. Clean Technol. Environ. Policy 2013, 15, 81–91. [Google Scholar] [CrossRef]
- de Magalhães, R.F.; Danilevicz, Â.D.M.F.; Saurin, T.A. Reducing construction waste: A study of urban infrastructure projects. Waste Manag. 2017, 67, 265–277. [Google Scholar] [CrossRef]
- Cai, G.; Waldmann, D. A material and component bank to facilitate material recycling and component reuse for a sustainable construction: Concept and preliminary study. Clean Technol. Environ. Policy 2019, 21, 2015–2032. [Google Scholar] [CrossRef]
- Koutamanis, A.; van Reijn, B.; van Bueren, E. Urban mining and buildings: A review of possibilities and limitations. Resour. Conserv. Recycl. 2018, 138, 32–39. [Google Scholar] [CrossRef]
- Norman, A.T. Blockchain Technology Explained: The Ultimate Beginner’s Guide About Blockchain Wallet, Mining, Bitcoin, Ethereum, Litecoin, Zcash, Monero, Ripple, Dash, IOTA and Smart Contracts; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2017; ISBN 978-1-981522-02-6. [Google Scholar]
- Turk, Ž.; Klinc, R. Potentials of blockchain technology for construction management. In Proceedings of the Construction Conference 2017, CCC 2017, Primosten, Croat, 19–22 June 2017; Volume 196, pp. 638–645. [Google Scholar]
- Von Haller Grønbæk, M. Blockchain 2.0, Smart Contracts and Challenges. Available online: https://www.twobirds.com/en/news/articles/2016/uk/blockchain-2-0-smart-contracts-and-challenges (accessed on 15 March 2019).
- Szabo, N. Formalizing and Securing Relationships on Public Networks. Available online: https://ojphi.org/ojs/index.php/fm/article/view/548 (accessed on 15 March 2019).
- Ma, Z.; Ren, Y. Integrated application of BIM and GIS: An overview. In Proceedings of the Construction Conference 2017, CCC 2017, Primosten, Croat, 19–22 June 2017; Volume 196, pp. 1072–1079. [Google Scholar]
- Irizarry, J.; Karan, E.P.; Jalaei, F. Integrating BIM and GIS to improve the visual monitoring of construction supply chain management. Autom. Constr. 2013, 31, 241–254. [Google Scholar] [CrossRef]
- Ohori, K.; Biljecki, F.; Kumar, K.; Ledoux, H.; Stoter, J. Modeling cities and landscapes in 3D with CityGML. In Building Information Modeling: Technology Foundations and Industry Practice; Springer: Berlin/Heidelberg, Germany, 2018; pp. 199–215. ISBN 978-3-319-92861-6. [Google Scholar]
- Al-Saggaf, A.; Jrade, A. Benefits of integrating BIM And GIS in construction management and control. In Proceedings of the 5th International Construction Specialty Conference of the Canadian Society for Civil Engineering (ICSC), Vancouver, BC, Canada, 7–10 June 2015. [Google Scholar]
- Mignard, C.; Nicolle, C. Merging BIM and GIS using ontologies application to urban facility management in ACTIVe3D. Spec. Issue Role Ontol. Future Web-Based Ind. Enterp. 2014, 65, 1276–1290. [Google Scholar] [CrossRef]
- Aziz, R.F.; Hafez, S.M. Applying lean thinking in construction and performance improvement. Alex. Eng. J. 2013, 52, 679–695. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, D.; Caiado, R.; Tortorella, G.; Ivson, P.; Meirino, M. Digital obeya room: Exploring the synergies between BIM and lean for visual construction management. Innov. Infrastruct. Solut. 2018, 3, 19. [Google Scholar] [CrossRef]
- Mazlum, S.K.; Pekeriçli, M.K. Lean design management—An evaluation of waste items for architectural design process. METU J. Fac. Archit. 2016, 33, 1–20. [Google Scholar] [CrossRef]
- Liker, J.K. The Toyota Way: 14 Management Principles from the World’s Greatest Manufacturer; Safari Books Online; McGraw-Hill: New York, NY, USA, 2004; ISBN 0-07-139231-9. [Google Scholar]
- Ohno, T. Toyota Production System: Beyond Large-Scale Production; Productivity Press: Cambridge, UK, 1988; ISBN 0-915299-14-3. [Google Scholar]
- Giovanny Sanchez-Rivera, O.; Alberto Galvis-Guerra, J.; Porras-Diaz, H.; Damian Ardila-Chacon, Y.; Augusto Martinez-Martinez, C. BrIM 5D models and lean construction for planning work activities in reinforced concrete bridges. Rev. Fac. Ing. Univ. Pedagog. Tecnol. Colomb. 2017, 26, 39–50. [Google Scholar]
- Sacks, R.; Radosavljevic, M.; Barak, R. Requirements for building information modeling based lean production management systems for construction. Autom. Constr. 2010, 19, 641–655. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Zhang, D.; Li, J. A dedicated collaboration platform for integrated project delivery. Autom. Constr. 2018, 86, 199–209. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Wu, G. Modular and offsite construction of piping: Current barriers and route. Appl. Sci. 2017, 7, 547. [Google Scholar] [CrossRef] [Green Version]
- Abanda, F.H.; Tah, J.H.M.; Cheung, F.K.T. BIM in off-site manufacturing for buildings. J. Build. Eng. 2017, 14, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Volk, R.; Stengel, J.; Schultmann, F. Building information modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Akinade, O.O.; Oyedele, L.O.; Omoteso, K.; Ajayi, S.O.; Bilal, M.; Owolabi, H.A.; Alaka, H.A.; Ayris, L.; Henry Looney, J. BIM-based deconstruction tool: Towards essential functionalities. Int. J. Sustain. Built Environ. 2017, 6, 260–271. [Google Scholar] [CrossRef]
- Liu, H.; Singh, G.; Lu, M.; Bouferguene, A.; Al-Hussein, M. BIM-based automated design and planning for boarding of light-frame residential buildings. Autom. Constr. 2018, 89, 235–249. [Google Scholar] [CrossRef]
- Webinar: 2016 Level of Development Specification Update; BIMForum: Alexandria, VA, USA, 25 August 2016.
- Cuccurullo, C.; Aria, M.; Sarto, F. Foundations and trends in performance management. A twenty-five years bibliometric analysis in business and public administration domains. Scientometrics 2016, 108, 595–611. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbarieh, A.; Jayasinghe, L.B.; Waldmann, D.; Teferle, F.N. BIM-Based End-of-Lifecycle Decision Making and Digital Deconstruction: Literature Review. Sustainability 2020, 12, 2670. https://doi.org/10.3390/su12072670
Akbarieh A, Jayasinghe LB, Waldmann D, Teferle FN. BIM-Based End-of-Lifecycle Decision Making and Digital Deconstruction: Literature Review. Sustainability. 2020; 12(7):2670. https://doi.org/10.3390/su12072670
Chicago/Turabian StyleAkbarieh, Arghavan, Laddu Bhagya Jayasinghe, Danièle Waldmann, and Felix Norman Teferle. 2020. "BIM-Based End-of-Lifecycle Decision Making and Digital Deconstruction: Literature Review" Sustainability 12, no. 7: 2670. https://doi.org/10.3390/su12072670
APA StyleAkbarieh, A., Jayasinghe, L. B., Waldmann, D., & Teferle, F. N. (2020). BIM-Based End-of-Lifecycle Decision Making and Digital Deconstruction: Literature Review. Sustainability, 12(7), 2670. https://doi.org/10.3390/su12072670