Study on Dynamic Total Factor Carbon Emission Efficiency in China’s Urban Agglomerations
Abstract
:1. Introduction
2. Economic Development and Carbon Emissions in the Four Urban Agglomerations
2.1. Economic Development Status
2.2. Status of Carbon Emissions
3. Research Methods and Data Sources
3.1. Measurement and Calculation of Carbon Emission Efficiency
3.2. Identification of Influencing Factors
3.3. Data Sources and Indicator Selection
4. Results and Analysis
4.1. Model Parameter Estimation
4.2. Spatiotemporal Evolution of Carbon Emission Efficiency
4.3. Characteristics of Influencing Factors
5. Conclusions and Implications
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Roland, G.; Tim, D.; Baklanov, A.; Gregory, R.; Tom, M. Megacities and large urban agglomerations in the coastal zone: Interactions between atmosphere, land, and marine ecosystems. AMBIO 2013, 42, 13–28. [Google Scholar]
- Tao, F.; Zhang, H.Q.; Hu, J.; Xia, X.H. Dynamics of green productivity growth for major Chinese urban agglomerations. Appl. Energy 2017, 196, 170–179. [Google Scholar] [CrossRef]
- Zhuang, M.; Baležentis, T.; Tian, Z.H.; Shao, S.H.; Geng, Y.; Wu, R. Environmental performance and regulation effect of china’s atmospheric pollutant emissions: Evidence from “Three regions and ten urban agglomerations”. Environ. Resour. Econ. 2019, 74, 211–242. [Google Scholar]
- Wang, C.; Engels, A.; Wang, Z.H. Overview of research on china’s transition to low-carbon development: The role of cities, technologies, industries and the energy system. Renew. Sust. Energy Rev. 2018, 81, 1350–1364. [Google Scholar] [CrossRef]
- Bai, Y.P.; Deng, X.Z.; Gibson, J.; Zhao, Z.; Xu, H. How does urbanization affect residential CO2 emissions? An analysis on urban agglomerations of China. J. Clean. Prod. 2019, 209, 876–885. [Google Scholar]
- Jin, G.; Chen, K.; Wang, P.; Guo, B.S.; Dong, Y.; Yang, J. Trade-offs in land-use competition and sustainable land development in the north China plain. Technol. Forecast. Soc. Change 2019, 141, 36–46. [Google Scholar] [CrossRef]
- Central Compilation & Translation Press. The 13th Five-Year Plan for Economic and Social Development of the People’s Republic of China. 2016. Available online: https://en.ndrc.gov.cn/newsrelease_8232/201612/P020191101481868235378.pdf. (accessed on 19 December 2019).
- GOV.CN. The Report of the 19th National Congress of the CPC, 18 October 2017. 2017. Available online: http://www.gov.cn/zhuanti/2017-10/27/content_5234876.htm. (accessed on 22 December 2019).
- Wang, S.; Wang, H.; Zhang, L.; Dang, J. Provincial carbon emissions efficiency and its influencing factors in China. Sustainability 2019, 11, 2355. [Google Scholar] [CrossRef] [Green Version]
- Jin, G.; Guo, B.S.; Deng, X.Z. Is there a decoupling relationship between CO2 emission reduction and poverty alleviation in China? Technol. Forecast. Soc. Change 2020, 151, 119856. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Liu, Y.; Tian, X.; Wang, Y.F.; Zhang, Y. CO2 emissions from the industrialization and urbanization processes in the manufacturing center Tianjin in China. J. Clean. Prod. 2017, 168, 867–875. [Google Scholar] [CrossRef]
- Liu, Q.; Lei, Q.; Xu, H.; Yuan, J. China’s energy revolution strategy into 2030. Resour. Conserv. Recycl. 2018, 128, 78–89. [Google Scholar] [CrossRef]
- Li, B.Z.; Yao, R.M. Urbanisation and its impact on building energy consumption and efficiency in China. Renew. Energy 2009, 34, 1994–1998. [Google Scholar] [CrossRef]
- Lin, B.Q.; Ouyang, X.L. Energy demand in China: Comparison of characteristics between the US and China in rapid urbanization stage. Energy Convers. Manag. 2014, 79, 128–139. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, S.D.; Zeng, Y.E.; Wu, B.W. Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China. Renew. Sustain. Energy Rev. 2016, 54, 1563–1579. [Google Scholar] [CrossRef]
- GOV.CN. China Submitted Intended Nationally Determined Contributions File to UNFCCC, 30 June 2015. 2015. Available online: http://www.gov.cn/xinwen/2015-06/30/content_2887337.htm. (accessed on 22 December 2019).
- Dong, F.; Long, R.; Li, Z.; Dai, Y. Analysis of carbon emission intensity, urbanization and energy mix: Evidence from China. Nat. Hazards 2016, 82, 1375–1391. [Google Scholar] [CrossRef]
- Chen, L.; Xu, L.; Yang, Z. Accounting carbon emission changes under regional industrial transfer in an urban agglomeration in China’s pearl river delta. J. Clean. Produc. 2017, 167, 110–119. [Google Scholar] [CrossRef]
- Wang, S.; Fang, C.; Sun, L.; Su, Y.; Chen, X.; Zhou, C.; Feng, K.; Hubacek, K. Decarbonizing china’s urban agglomerations. Ann. Am. Assoc. Geogr. 2019, 109, 266–285. [Google Scholar] [CrossRef]
- Kaya, Y.; Yokobori, K. Environment, Energy and Economy: Strategies for Sustainability; Brookings Institution: Washington, DC, USA, 1998; Volume 3, pp. 15–20. [Google Scholar]
- Mielnik, O.; Goldemberg, J. Communication the evolution of the “carbonization index” in developing countries. Energy Policy 1999, 27, 307–308. [Google Scholar] [CrossRef]
- Sun, J.W. The decrease of CO2 emission intensity is decarbonization at national and global levels. Energy Policy 2005, 33, 975–978. [Google Scholar] [CrossRef]
- Ramanathan, R. A multi-factor efficiency perspective to the relationships among world GDP, energy consumption and carbon dioxide emissions. Technol. Forecast. Soc. Change 2006, 73, 483–494. [Google Scholar] [CrossRef]
- Ramanathan, R. Combining indicators of energy consumption and CO2 emissions: A cross-country comparison. Int. J. Global Energ. Issues 2002, 17, 214–227. [Google Scholar] [CrossRef]
- Ramanathan, R. An analysis of energy consumption and carbon dioxide emissions in countries of the middle east and north Africa. Energy 2005, 30, 2831–2842. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. Slacks-based efficiency measures for modeling environmental performance. Ecol. Econ. 2006, 60, 111–118. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 2008, 189, 1–18. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Han, J.Y. Total factor carbon emission performance: A Malmquist index analysis. Energy Econ. 2010, 32, 194–201. [Google Scholar] [CrossRef]
- Reinhard, S.; Lovell, C.A.K.; Thijssen, G.J. Environmental efficiency with multiple environmentally detrimental variables: Estimated with SFA and DEA. Eur. J. Oper. Res. 2000, 121, 287–303. [Google Scholar] [CrossRef]
- Dong, F.; Li, X.; Long, R.; Liu, X. Regional carbon emission performance in China according to a stochastic frontier model. Renew. Sustain. Energy Rev. 2013, 28, 525–530. [Google Scholar] [CrossRef]
- Guo, X.D.; Zhu, L.; Fan, Y.; Xie, B.C. Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA. Energy Policy 2011, 39, 2352–2360. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Da, Y.B. The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renew. Sustain. Energy Rev. 2015, 41, 1255–1266. [Google Scholar] [CrossRef]
- Ma, H.Z.; Bai, Y.P.; Che, L. Spatio-Temporal Pattern Changes of Chinese Provincial Carbon Dioxide Emission Efficiency. Destech Transactions on Economics, Business and Management, 2017 (icem). Available online: http://www.dpi-proceedings.com/index.php/dtem/article/view/13212/12735 (accessed on 26 December 2019).
- Yan, D.; Lei, Y.; Li, L.; Song, W. Carbon emission efficiency and spatial clustering analyses in China’s thermal power industry: Evidence from the provincial level. J. Clean. Prod. 2017, 156, 518–527. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J.; Zhang, H. Total-factor carbon emission efficiency of china’s provincial industrial sector and its dynamic evolution. Renew. Sustain. Energy Rev. 2018, 94, 330–339. [Google Scholar] [CrossRef]
- Wang, B.; Sun, Y.; Wang, Z. Agglomeration effect of CO2 emissions and emissions reduction effect of technology: A spatial econometric perspective based on China’s province-level data. J. Clean. Prod. 2018, 204, 96–106. [Google Scholar] [CrossRef]
- Wang, C. Decomposing energy productivity change: A distance function approach. Energy 2007, 32, 1326–1333. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kashem, M.A. Carbon emissions, energy consumption and industrial growth in Bangladesh: Empirical evidence from ARDL cointegration and granger causality analysis. Energy Policy 2017, 110, 600–608. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, Z.; Zhang, H.; Tan, T.D. The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China. Natural Hazards 2014, 73, 579–595. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Wang, Z.Y.; Zhang, S.Z.; Ye, X.Y.; Jiang, H.M. Spatial econometric analysis of carbon emission intensity and its driving factors from energy consumption in China. Acta Geogr. Sin. 2013, 68, 418–1431. [Google Scholar]
- Xing, X.; Gu, W.; Liu, X. Apparel color preferences for different regions in China: The connection to personal values. Color Res. Appl. 2018, 43, 423–435. [Google Scholar] [CrossRef]
- Jin, B. Seeking balance: Resource conservation, environmental protection and industrial development. In China’s Path of Industrialization; Springer: Singapore, 2020; pp. 131–158. [Google Scholar]
- Kumbhakar, S.C.; Denny, M.; Fuss, M. Estimation and decomposition of productivity change when production is not efficient: A paneldata approach. Econom. Rev. 2000, 19, 312–320. [Google Scholar]
- Lin, B.Q.; Wang, X.L. Exploring energy efficiency in China’s iron and steel industry: A stochastic frontier approach. Energy Policy 2014, 72, 87–96. [Google Scholar] [CrossRef]
- Debreu, G. ‘The coefficient of resource utilization’. Econometrica 1951, 19, 273–292. [Google Scholar] [CrossRef]
- Farrell, M. ‘The measurement of productive efficiency’. J. R. Stat. Soc. 1957, 3, 253–290. [Google Scholar] [CrossRef]
- Bai, Y.P.; Deng, X.Z.; Zhang, Q.; Wang, Z. Measuring environmental performance of industrial sub–sectors in China: A stochastic metafrontier approach. Phys. Chem. Earth Part A/B/C 2017, 101, 3–12. [Google Scholar] [CrossRef]
- Bai, Y.P.; Deng, X.Z.; Jiang, S.; Zhang, Q.; Wang, Z. Exploring the relationship between urbanization and urban eco–efficiency: Evidence from prefecture–level cities in China. J. Clean. Prod 2018, 195, 1487–1496. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lovell, C.A.K.; Pasurka, C. Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. Rev. Econ. Stat. 1989, 71, 90–98. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Noh, D.W.; Weber, W. Characteristics of a polluting technology: Theory and practice. J. Econ. 2005, 126, 469–492. [Google Scholar] [CrossRef]
- Herold, D.M.; Lee, K.H. The influence of internal and external pressures on carbon management practices and disclosure strategies. Australas. J. Environ. Manag. 2018, 26, 63–81. [Google Scholar] [CrossRef]
- Herold, D.M.; Farr-Wharton, B.; Lee, K.H.; Groschopf, W. The interaction between institutional and stakeholder pressures: Advancing a framework for categorising carbon disclosure strategies. Bus. Strategy Environ. 2018, 2, 1–14. [Google Scholar] [CrossRef]
Urban Agglomeration | Number of Prefecture-Level Cities | Prefecture-Level Cities | Reference |
---|---|---|---|
Beijing-Tianjin-Hebei (BTH) | 13 | Beijing; Tianjin; Baoding, Tangshan, Langfang, Shijiazhuang, Handan, Qinhuangdao, Zhangjiakou, Chengde, Cangzhou, Xingtai, and Hengshui | 2015 Outline of Beijing-Tianjin-Hebei Coordinated Development Plan |
Yangtze River Delta (YRD) | 26 | Shanghai; Nanjing, Wuxi, Changzhou, Suzhou, Nantong, Yancheng, Yangzhou, Zhenjiang, Taizhou, Jiangsu Province; Hangzhou, Ningbo, Jiaxing, Huzhou, Shaoxing, Zhejiang, Jinhua, Zhoushan, Taizhou; Hefei, Wuhu, Ma’anshan, Tongling, Anqing, Luzhou, Chizhou, and Xuancheng | 2016 Yangtze River Delta Urban Agglomeration Development Plan |
Pearl River Delta (PRD) | 9 | Guangzhou, Shenzhen, Foshan, Zhongshan, Huizhou, Dongguan, Zhuhai, Jiangmen, and Zhaoqing of Guangdong Province | 2008 Outline of the Reform and Development Plan of the Pearl River Delta Region |
Chengyu (CY) | 16 | Chongqing; Chengdu, Zigong, Luzhou, Deyang, Mianyang, Suining, Neijiang, Leshan, Nanchong, Meishan, Yibin, Guang’an, Ya’an, Ziyang, and Dazhou | 2016 Chengdu-Chongqing Urban Agglomeration Development Plan |
Variable Name | Description | Unit | Sample Size | Average | Variance | Min | Max | |
---|---|---|---|---|---|---|---|---|
C | CO2 | Energy carbon emissions | 10,000 tons | 704 | 5.37 × 103 | 5.25 × 103 | 3.75 × 102 | 2.66 × 104 |
Y | GDP | GDP | 100 million yuan | 704 | 3.13 × 103 | 4.23 × 103 | 1.30 × 102 | 2.81 × 104 |
P | Capital | Investment in fixed assets | 100 million yuan | 704 | 1.37 × 106 | 1.24 × 107 | 69.8 | 1.74 × 108 |
L | Labor force | Employed population | Ten thousand people | 704 | 3.05 × 102 | 3.13 × 102 | 8.41 | 1.72 × 103 |
E | Energy | Total energy consumption | 10,000 tons of standard coal | 704 | 2.20 × 103 | 2.21 × 103 | 1.57 × 102 | 1.17 × 104 |
x1 | Economic level | GDP per capita | 1.02 million yuan/person | 704 | 4.35 × 10−2 | 2.87 × 10−2 | 4.21 × 10−3 | 1.64 × 10−1 |
x2 | Urbanization rate | Proportion of urban population | % | 704 | 5.27 × 10−1 | 1.92 × 10−1 | 1.78 × 10−1 | 1.00 |
x3 | Industrial structure | Proportion of GDP in the secondary and tertiary industries | % | 704 | 9.03 × 10−1 | 7.48 × 10−2 | 6.80 × 10−1 | 1.00 |
x4 | Industrial agglomeration | Gross output value of industrial enterprises above designated size | 106 million yuan | 704 | 5.54 × 10−1 | 6.47 × 10−1 | 7.01 × 10−3 | 3.24 |
x5 | Ecological level | Municipal wastewater treatment rate | % | 704 | 66.7 | 23.5 | 6.41 | 99.8 |
x6 | External dependence | The proportion of total exports and total GDP | % | 704 | 3.92 × 10−2 | 4.86 × 10−2 | 2.48 × 10−6 | 2.67 × 10−1 |
x7 | External dependence | Actual amount of foreign capital used in the year | $10 million | 704 | 1.78 × 10−1 | 3.10 × 10−1 | 4.57 × 10−4 | 3.08 |
Coefficient | Variable | Coef. Value | Std. Err. | z | P > |z| |
---|---|---|---|---|---|
β0 | _cons | 0.3913 ** | 0.1794 | 2.18 | 0.029 |
βk | lnK | −0.0104 | 0.0264 | −0.39 | 0.694 |
βl | lnL | −0.0584 ** | 0.0245 | −2.38 | 0.017 |
βe | lnE | −1.0397 *** | 0.0775 | −13.41 | 0.000 |
βy | lnY | −0.0891 ** | 0.0491 | −1.81 | 0.070 |
βc | lnC | 0.9109 ** | - | - | - |
βkl | lnK*lnL | −0.0116 *** | 0.0035 | −3.33 | 0.001 |
βke | lnK*lnE | −0.0093 | 0.0110 | −0.84 | 0.399 |
βky | lnK*lnY | 0.0094 ** | 0.0040 | 2.33 | 0.020 |
βkc | lnK*lnC | 0.0094 ** | - | - | - |
βle | lnL*lnE | −0.0587 *** | 0.0093 | −6.31 | 0.000 |
βly | lnL*lnY | 0.0342 *** | 0.0062 | 5.48 | 0.000 |
βlc | lnL*lnC | 0.0342 *** | - | - | - |
βey | lnE*lnY | 0.0077 | 0.0272 | 0.28 | 0.776 |
βec | lnE*lnC | 0.0077 | - | - | - |
βyc | lnY*lnC | 0.0258 | - | - | - |
1/2βkk | 1/2lnK*lnK | −0.0090 | 0.0067 | −1.35 | 0.177 |
1/2βll | 1/2lnL*lnL | −0.0006 | 0.0008 | −0.71 | 0.478 |
1/2βee | 1/2lnE*lnE | 0.0058 ** | 0.0024 | 2.42 | 0.016 |
1/2βyy | 1/2lnY*lnY | 0.0258 | 0.0268 | 0.96 | 0.335 |
1/3βcc | 1/2lnC*lnC | 0.0258 | - | - | - |
Number of obs = 704 | Wald chi2(14) = 73875.77 | ||||
Log likelihood = 1652.568 | Prob > chi2 = 0.000 |
Variables | Coef. | Std. Err. | t | P-value | [95% Conf. Interval] | |
---|---|---|---|---|---|---|
x1 | 1.0376 *** | 0.0840 | 12.3500 | 0.0000 | 0.8726 | 1.2026 |
x2 | 0.0695 *** | 0.0155 | 4.4800 | 0.0000 | 0.0390 | 0.1000 |
x3 | 0.0583 * | 0.0345 | 1.6900 | 0.0910 | −0.0094 | 0.1260 |
x4 | 0.0053 | 0.0056 | 0.9400 | 0.3470 | −0.0057 | 0.0163 |
x5 | −0.0005 *** | 0.0001 | −5.3600 | 0.0000 | −0.0006 | −0.0003 |
x6 | 0.2589 *** | 0.0428 | 6.0500 | 0.0000 | 0.1749 | 0.3429 |
x7 | 0.0073 | 0.0098 | 0.7400 | 0.4600 | −0.0120 | 0.0265 |
_cons | 0.7668 *** | 0.0284 | 27.0400 | 0.0000 | 0.7112 | 0.8225 |
/sigma | 0.0413815 | 0.0011027 | ||||
Log likelihood = 122.0705 | ||||||
Pro > chi2 = 0.0000 | ||||||
LR chi2(7) = 77.56 | ||||||
Pseudo R2 = −0.4656 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Jin, G.; Li, J.; Wang, C.; Xu, N. Study on Dynamic Total Factor Carbon Emission Efficiency in China’s Urban Agglomerations. Sustainability 2020, 12, 2675. https://doi.org/10.3390/su12072675
Zhang F, Jin G, Li J, Wang C, Xu N. Study on Dynamic Total Factor Carbon Emission Efficiency in China’s Urban Agglomerations. Sustainability. 2020; 12(7):2675. https://doi.org/10.3390/su12072675
Chicago/Turabian StyleZhang, Fan, Gui Jin, Junlong Li, Chao Wang, and Ning Xu. 2020. "Study on Dynamic Total Factor Carbon Emission Efficiency in China’s Urban Agglomerations" Sustainability 12, no. 7: 2675. https://doi.org/10.3390/su12072675
APA StyleZhang, F., Jin, G., Li, J., Wang, C., & Xu, N. (2020). Study on Dynamic Total Factor Carbon Emission Efficiency in China’s Urban Agglomerations. Sustainability, 12(7), 2675. https://doi.org/10.3390/su12072675