Failure Mechanisms of Rheological Coal Roadway
Abstract
:1. Introduction
2. Engineering Project and Geological Setting
2.1. Project Overview
2.2. Rock Mass Properties
3. In-situ Measurement in the Roadway
3.1. Measurement Station Setting
3.2. Analysis of In-Situ Roadway Deformation
4. Numerical Model Development and its Validation
4.1. Numerical Model Establishment
4.2. The Properties of Support Materials
4.3. Selection of Constitutive Models
4.4. The Deformation of the Roadway by JG Support
5. The Analysis of Evolutionary Failure of Soft Coal Roadway
5.1. The Time Dependent-Behavior of Roadway Deformation
5.2. The Evolutionary Stress Distribution Around the Roadway
5.3. The Development of Plastic Zone Around Roadway With Time
6. Discussion and Suggestions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wagner, H. Deep mining: A rock engineering challenge. Rock Mech. Rock Eng. 2019, 52, 1417–1446. [Google Scholar] [CrossRef] [Green Version]
- He, M.-C.; Xie, H.-P.; Peng, S.-P.; Jiang, Y.-D. Study on rock mechanics in deep mining engineering. Yanshilixue Yu Gongcheng Xuebao Chin. J. Rock Mech. Eng. 2005, 24, 2803–2813. [Google Scholar]
- Xie, H.; Gao, M.; Zhang, R.; Peng, G.; Wang, W.; Li, A. Study on the mechanical properties and mechanical response of coal mining at 1000 m or deeper. Rock Mech. Rock Eng. 2019, 52, 1475–1490. [Google Scholar] [CrossRef]
- Li, S.C.; Wang, H.T.; Wang, Q.; Jiang, B.; Wang, F.-Q.; Guo, N.-B.; Liu, W.-J.; Ren, Y.-X. Failure mechanism of bolting support and high-strength bolt-grouting technology for deep and soft surrounding rock with high stress. J. Cent. South Univ. 2016, 23, 440–448. [Google Scholar] [CrossRef]
- Xiao, T.; Wang, X.; Zhang, Z. Stability control of surrounding rocks for a coal roadway in a deep tectonic region. Int. J. Min. Sci. Technol. 2014, 24, 171–176. [Google Scholar] [CrossRef]
- Wilson, A.H. The stability of underground workings in the soft rocks of the coal measures. Int. J. Min. Eng. 1983, 1, 91–187. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Zhang, J.; Qian, D. Stability control for the rheological roadway by a novel high-efficiency jet grouting technique in deep underground coal mines. Sustainability 2019, 11, 6494. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, G.; Zhang, J. Developing hybrid machine learning models for estimating the unconfined compressive strength of jet grouting composite: A comparative study. Appl. Sci. 2020, 10, 1612. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Zhang, J. Investigation on jet grouting support strategy for controlling time-dependent deformation in the roadway. Energy Sci. Eng. 2020, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; King, A.; Guo, H. Displacement, stress and seismicity in roadway roofs during mining-induced failure. Int. J. Rock Mech. Min. Sci. 2008, 45, 672–688. [Google Scholar] [CrossRef]
- He, M. Physical modeling of an underground roadway excavation in geologically 45 inclined rock using infrared thermography. Eng. Geol. 2011, 121, 165–176. [Google Scholar] [CrossRef]
- Meng, B.; Jing, H.; Chen, K.; Su, H. Failure mechanism and stability control of a large section of very soft roadway surrounding rock shear slip. Int. J. Min. Sci. Technol. 2013, 23, 127–134. [Google Scholar] [CrossRef]
- Coggan, J.; Gao, F.; Stead, D.; Elmo, D. Numerical modelling of the effects of weak immediate roof lithology on coal mine roadway stability. Int. J. Coal Geol. 2012, 90–91, 100–109. [Google Scholar] [CrossRef]
- Pellet, F.; Roosefid, M.; Deleruyelle, F. On the 3D numerical modelling of the time-dependent development of the damage zone around underground galleries during and after excavation. Tunn. Undergr. Space Technol. 2009, 24, 665–674. [Google Scholar] [CrossRef]
- Kanik, M.; Gurocak, Z.; Alemdag, S. A comparison of support systems obtained from the RMR89 and RMR14 by numerical analyses: Macka Tunnel project, NE Turkey. J. Afr. Earth Sci. 2015, 109, 224–238. [Google Scholar] [CrossRef]
- Yalcin, E.; Gurocak, Z.; Ghabchi, R.; Zaman, M. Numerical analysis for a realistic support design: Case study of the Komurhan tunnel in eastern Turkey. Int. J. Geomech. 2015, 16, 5015001. [Google Scholar] [CrossRef]
- Gao, F.; Stead, D.; Kang, H. Numerical simulation of squeezing failure in a coal mine roadway due to mining-induced stresses. Rock Mech. Rock Eng. 2015, 48, 1635–1645. [Google Scholar] [CrossRef]
- Shen, B. Coal mine roadway stability in soft rock: A case study. Rock Mech. Rock Eng. 2014, 47, 2225–2238. [Google Scholar] [CrossRef]
- Mark, C.; Gale, W.; Oyler, D.; Chen, J. Case history of the response of a longwall entry subjected to concentrated horizontal stress. Int. J. Rock Mech. Min. Sci. 2007, 44, 210–221. [Google Scholar] [CrossRef]
- Kulatilake, P.H.S.W.; Wu, Q.; Yu, Z.; Jiang, F. Investigation of stability of a tunnel in a deep coal mine in China. Int. J. Min. Sci. Technol. 2013, 23, 579–589. [Google Scholar] [CrossRef]
- Li, W.; Bai, J.; Peng, S.; Wang, X.; Xu, Y. Numerical modeling for yield pillar design: A case study. Rock Mech. Rock Eng. 2014, 48, 305–318. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, Q.; Xi, H. Numerical analysis of THM coupling of a deeply buried roadway passing through composite strata and dense faults in a coal mine. Bull. Eng. Geol. Environ. 2014, 73, 77–86. [Google Scholar] [CrossRef]
- Basarir, H.; Ferid Oge, I.; Aydin, O. Prediction of the stresses around main and tail gates during top coal caving by 3D numerical analysis. Int. J. Rock Mech. Min. Sci. 2015, 76, 88–97. [Google Scholar] [CrossRef]
- Li, G.; He, M.; Zhang, G.; Tao, Z. Deformation mechanism and excavation process of large span intersection within deep soft rock roadway. Min. Sci. Technol. 2010, 20, 28–34. [Google Scholar] [CrossRef]
- Tang, S.B.; Tang, C.A. Numerical studies on tunnel floor heave in swelling ground under humid conditions. Int. J. Rock Mech. Min. Sci. 2012, 55, 139–150. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, B.; Pan, R.; Li, S.C.; He, M.C.; Sun, H.-B.; Qin, Q.; Yu, H.C.; Luan, Y.C. Failure mechanism of surrounding rock with high stress and confined concrete support system. Int. J. Rock Mech. Min. Sci. 2018, 102, 89–100. [Google Scholar] [CrossRef]
- Coulter, S.; Martin, C.D. Effect of jet-grouting on surface settlements above the Aeschertunnel, Switzerland. Tunn. Undergr. Space Technol. 2006, 21, 542–553. [Google Scholar] [CrossRef]
- Shabanimashcool, M.; Li, C.C. Numerical modelling of longwall mining and stability analysis of the gates in a coal mine. Int. J. Rock Mech. Min. Sci. 2012, 51, 24–34. [Google Scholar] [CrossRef]
- Bai, Q.S.; Tu, S.H.; Wang, F.T.; Zhang, X.G.; Tu, H.S.; Yuan, Y. Observation and numerical analysis of the scope of fractured zones around gateroads under longwall influence. Rock Mech. Rock Eng. 2014, 47, 1939–1950. [Google Scholar] [CrossRef]
- Basarir, H.; Sun, Y.; Li, G. Gateway stability analysis by global-local modeling approach. Int. J. Rock Mech. Min. Sci. 2019, 113, 31–40. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Hoek, E.; Marinos, P.G.; Marinos, V.P. Characterisation and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses. Int. J. Rock Mech. Min. Sci. 2005, 42, 277–285. [Google Scholar] [CrossRef]
- Hoek, E.; Carranza-Torres, C.; Corkum, B. Hoek-Brown failure criterion-2002 edition. Proc. NARMS TAC 2002, 1, 267–273. [Google Scholar]
- Hoek, E.; Diederichs, M.S. Empirical estimation of rock mass modulus. Int. J. Rock Mech. Min. Sci. 2006, 43, 203–215. [Google Scholar] [CrossRef]
- Guan, Z.; Jiang, Y.; Tanabashi, Y. Rheological parameter estimation for the prediction of long-term deformations in conventional tunnelling. Tunn. Undergr. Space Technol. 2009, 24, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.-H.; Cao, P.; Lin, H. A kind of control technology for squeezing failure in deep roadways: A case study. Geomat. Nat. Hazards Risk 2017, 8, 1715–1729. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Shinjo, R. Numerical simulation of stress distributions and displacements around an entry roadway with igneous intrusion and potential sources of seam gas emission of the Barapukuria coal mine, NW Bangladesh. Int. J. Coal Geol. 2009, 78, 249–262. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, C.; Zhou, H.; Liu, N.; Zhang, Y.; Azhar, M.U.; Dai, F. The long-term safety of a deeply buried soft rock tunnel lining under inside-to-outside seepage conditions. Tunn. Undergr. Space Technol. 2017, 67, 132–146. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Tarifard, A.; Moridi, M.A. Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method. Tunn. Undergr. Space Technol. 2013, 38, 348–356. [Google Scholar] [CrossRef]
- Sainoki, A.; Tabata, S.; Mitri, H.S.; Fukuda, D.; Kodama, J.-I. Time-dependent tunnel deformations in homogeneous and heterogeneous weak rock formations. Comput. Geotech. 2017, 92, 186–200. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, Q.; Xi, H.; Gong, G. Improved compound support system for coal mine tunnels in densely faulted zones: A case study of China’s Huainan coal field. Eng. Geol. 2018, 240, 10–20. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, Q.; Gong, G.; Wang, H. Application of a combined support system to the weak floor reinforcement in deep underground coal mine. Int. J. Rock Mech. Min. Sci. 2014, 71, 143–150. [Google Scholar] [CrossRef]
- Jiao, Y.Y.; Song, L.; Wang, X.Z.; Coffi Adoko, A. Improvement of the U-shaped steel sets for supporting the roadways in loose thick coal seam. Int. J. Rock Mech. Min. Sci. 2013, 60, 19–25. [Google Scholar] [CrossRef]
- Salimian, M.H.; Baghbanan, A.; Hashemolhosseini, H.; Dehghanipoodeh, M.; Norouzi, S. Effect of grouting on shear behavior of rock joint. Int. J. Rock Mech. Min. Sci. 2017, 98, 159–166. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Zhang, J.; Qian, D. Experimental and numerical investigation on a novel support system for controlling roadway deformation in underground coal mines. Energy Sci. Eng. 2019. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, J.; Li, G.; Wang, Y.; Sun, J.; Jiang, C. Optimized neural network using beetle antennae search for predicting the unconfined compressive strength of jet grouting coalcretes. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 801–813. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, J.; Li, G.; Ma, G.; Huang, Y.; Sun, J.; Wang, Y.; Nener, B. Determination of young’s modulus of jet grouted coalcretes using an intelligent model. Eng. Geol. 2019, 252, 43–53. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Basarir, H.; Karrech, A.; Azadi, M.R. Laboratory evaluation of shear strength properties for cement-based grouted coal mass. Arab. J. Geosci. 2019, 12, 690. [Google Scholar] [CrossRef]
Rock Mass | GSI | Density, kg/m3 | Poisson’s Ratio | Cohesion, MPa | Friction Angle, | Tensile Strength, MPa | Deformation Modulus, GPa |
---|---|---|---|---|---|---|---|
Sandstone | 67 | 2690 | 0.22 | 3.45 | 42 | 0.79 | 12.5 |
Mudstone | 35 | 2700 | 0.29 | 1.24 | 27 | 0.3 | 0.4 |
Coal | 30 | 1420 | 0.39 | 0.98 | 24 | 0.15 | 0.50 |
Mudstone | 34 | 2710 | 0.25 | 1.21 | 26 | 0.3 | 0.25 |
Sandstone | 60 | 2680 | 0.21 | 2.85 | 40 | 0.51 | 8.9 |
Parameters, Unit | Rock Bolt | U-shaped Sets | Shotcrete |
---|---|---|---|
Elastic modulus, GPa | 200 | 200 | 30 |
Poisson’s ratio | 0.3 | 0.25 | 0.15 |
Compressive strength, MPa | 400 | 400 | 40 |
Tensile strength, MPa | 400 | 400 | 3.8 |
Diameter/thickness, mm | 22 | 15 | 100 |
Unit weight, kN/m3 | - | - | 24 |
Length, mm | 2400 | - | - |
Pre-tensioning, kN | 80 | - | - |
ηM (MPa.h) | GM (MPa) | ηK (MPa.h) | GK (MPa) |
---|---|---|---|
3.38e6 | 1.36e2 | 6.09e8 | 2.21e2 |
Time (d) | 1 | 3 | 7 | 15 | 30 | 60 | 150 | 300 |
---|---|---|---|---|---|---|---|---|
Distance to peak stress (m) | 2.3 | 3.0 | 3.1 | 3.3 | 3.6 | 4.0 | 4.0 | 4.0 |
Factor of stress concentration | 1 | 1 | 1.16 | 1.27 | 1.33 | 1.36 | 1.36 | 1.34 |
Time (day) | 1 | 3 | 7 | 15 | 30 | 60 | 150 | 300 |
---|---|---|---|---|---|---|---|---|
The depth in roof (m) | 0.4 | 1.2 | 1.2 | 1.8 | 2.4 | 2.5 | 2.5 | 2.5 |
The depth in floor (m) | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 |
The depth in sidewalls (m) | 0.4 | 1.2 | 2.6 | 3.2 | 3.4 | 3.6 | 3.6 | 3.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Li, G.; Zhang, J.; Xu, J. Failure Mechanisms of Rheological Coal Roadway. Sustainability 2020, 12, 2885. https://doi.org/10.3390/su12072885
Sun Y, Li G, Zhang J, Xu J. Failure Mechanisms of Rheological Coal Roadway. Sustainability. 2020; 12(7):2885. https://doi.org/10.3390/su12072885
Chicago/Turabian StyleSun, Yuantian, Guichen Li, Junfei Zhang, and Jiahui Xu. 2020. "Failure Mechanisms of Rheological Coal Roadway" Sustainability 12, no. 7: 2885. https://doi.org/10.3390/su12072885
APA StyleSun, Y., Li, G., Zhang, J., & Xu, J. (2020). Failure Mechanisms of Rheological Coal Roadway. Sustainability, 12(7), 2885. https://doi.org/10.3390/su12072885