The Comparative Analysis of the Adaptability Level of Municipalities in the Nysa Kłodzka Sub-Basin to Flood Hazard
Abstract
:1. Introduction
- distinguished the municipalities with the highest and the lowest adaptability assessment?
- were characterized with the largest or the smallest variability?
- adopted values distinguishing a municipality that can be a role model for other municipalities.
2. Features Which Determine the Adaptability of a Municipality-as-SES to Flood Hazard
- The municipality is a socio-ecological system (SES), because it is two interdependent systems, a social system and an ecological system, whose functioning is conditioned by numerous connections [17,19,28]. The aim of such an SES is social development, including the durability of the ecological system. The implementation of this aim can be achieved by shaping the attitudes and social needs and satisfying them, as well as by providing the opportunities to implement ecosystem services [19,29].
- The adaptability of a municipality-as-SES threatened with floods is a (current) capability of the system to limit the adverse consequences of floods. It results from the adaptive potential of the system, that is the quality and quantity of the resources possessed by the system, which are useful for conducting actions in the event of a cataclysm and after it subsides. It also results from the adaptive capability of the system, that is its capability to activate these resources (adaptive potential) [19,29].
- The current adaptive capability and adaptive potential of a municipality-as-SES, and in consequence its adaptability, can be described as the result of a set of SES’s attributes/non-observable statistical features [19,29,30]. These features stimulate or break the process of shaping a municipality’s capability to keep its effectiveness and efficiency in an event of disturbance (the phenomenon of flood).
3. Materials and Methods
3.1. Research Area
3.2. Methods
- normalized values of the diagnostic variables characterizing were added, obtaining the sum of the form where —normalized value j—variable for the i municipality,
- for each k, where , normalization of the data was performed by the method of zeroed unitarization, obtaining the data (see Appendix B: Figure A3 and Figure A4).
- -
- the values of the statistical variable were determined as the sum of the normalized values of the data , i.e.
- -
- for each i, where , the normalization of the data was performed by the method of zeroed unitarization, obtaining the values of the variable (Figure 6).
4. Results
- The rural-urban municipality Bystrzyca Kłodzka three times scored first place in the classification of municipalities where the municipalities were compared according to their human capital (feature D3), their budget per citizen (feature D9), as well as diverse forms of land development (feature D11). Bystrzyca Kłodzka also obtained high scores in the classifications of municipalities, according to the municipal budget structure providing financing of adaptation actions (2nd place), and in the classification of municipalities according to cultural potential (3rd place). This municipality was classified first in the classification of municipal adaptability, however, in the case of classifications according to health capital and the threat of environmental contamination, its position was 16th. Therefore, it is obvious that the leader among the municipalities in the Nysa Kłodzka sub-basin may also use the experience of partner municipalities which are ahead of Bystrzyca Kłodzka in many other classifications when it comes to the process of shaping adaptability to flood hazard.
- The rural municipality Skoroszyce was classified last three times in the classification of the municipalities, where the municipalities were compared according to their civilization capital (feature D3), the ability to organize social life, including political life (feature D5), as well as cultural potential (feature D6). This municipality was also in far-reaching positions according to institutional potential (17th place) and the diverse form of land development (15th place). Skoroszyce, in the synthetic classification of adaptability to flood hazard, took the last (18th) position among all the analyzed municipalities. However, it has to be highlighted that there were two areas in which this municipality scored 4th place—the municipality’s ability to service its obligations (feature D8) and the threat of environmental contamination by objects of environmental flood risk (feature D12).
- The biggest dispersions of values for the analyzed non-measurable statistical features of the municipalities-as-SES to flood hazard were noticed for the features: D11—diverse forms of nature protection and D14—the ability to organize the external environment.
- The smallest dispersions of the values for the analyzed non-measurable statistical features of the municipalities-SES to flood hazard were noticed for the features: D7—the structure of the municipal budget and D8—the municipality’s ability to service its obligations (the municipality’s financial condition).
- It is worth emphasizing that the smallest changes of values for the non-measurable statistical features of the municipalities-as-SES were noticed in the areas for which the information regarding the diagnostic variables were aggregated on the county level; this is mainly reflected by feature D12—the threat of environmental contamination from the objects of environmental flood risk.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- ones that are not very diverse, i.e., those for which the absolute value of the classic coefficient of variation is less than 10%, as well as those of which the vast majority of realization is the same number;
- ones that are too strongly correlated, i.e., with similar information potential, by eliminating one variable from each pair of too closely related indicators; however, cases of apparent correlation were not taken into account.
- depriving the titles in which the features are expressed;
- bringing the order of variable sizes to a state of comparability;
- the equality of the length of variability intervals of values of all normalized features (constancy of the range) and equality of the lower and upper limits of their variability interval, in particular the interval [0, 1];
- the ability to normalize the features of positive and negative values, or only the negative;
- the ability to normalize the features of the value that equals zero;
- not-negativeness of the value of the normalized features;
- the existence of simple formulas—within a given normalization formula—unifying the nature of the variables.
- formula for stimulants:
- formula for destimulants:
Appendix B
References
- Dumieński, G.; Lisowska, A.; Tiukało, A. The Measurement of the Adaptive Capacity of the Social-Ecological System towards Flood Hazard. In Proceedings of the 3rd Disaster Risk Reduction Conference, Warsaw, Poland, 12–13 October 2017; Rucińska, D., Porczek, M., Moran, S., Eds.; Faculty of Geography and Regional Studies, University of Warsaw: Warsaw, Poland, 2017; p. 41. [Google Scholar]
- Piniewski, M.; Marcinkowski, P.; Kundzewicz, Z.W. Trend detection in river flow indices in Poland. Acta Geophys. 2017, 66, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Burszta-Adamiak, E.; Licznar, P.; Zaleski, J. Criteria for identifying maximum rainfall determined by the peaks-over-threshold (POT) method under the Polish Atlas of Rainfall Intensities (PANDa) project. Meteorol. Hydrol. Water Manag. 2019, 2, 3–13. [Google Scholar] [CrossRef]
- Szalińska, W.; Tokarczyk, T. Drought hazard assessment in the process of drought risk management. Acta Sci. Pol. Form. Circumiectus 2018, 17, 217–229. [Google Scholar]
- Hu, M.; Zhang, X.; Li, Y.; Yang, H.; Tanka, K. Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area. J. Clean. Prod. 2019, 222, 373–380. [Google Scholar] [CrossRef]
- Laurien, F.; Hochrainer-Stigler, S.; Keating, A.; Campbell, K.; Mechler, R.; Czajkowski, J. A typology of community flood resilience. Reg. Environ. Chang. 2020, 20, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gallopin, G.C. Linkages between vulnerability, resilience, and adaptive capacity. Glob. Environ. Chang. 2006, 16, 293–303. [Google Scholar] [CrossRef]
- Mapy Zagrożenia i Ryzyka Powodziowego. Available online: http://mapy.isok.gov.pl (accessed on 10 January 2020).
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Intergovernmental Panel of Climate Change: Cambridge, UK, 2014; pp. 1757–1775.
- Działek, J.; Biernacki, W. Wrażliwość społeczna na klęski żywiołowe—Ujęcie teoretyczne i praktyka badawcza. Prace Geogr. 2014, 55, 27–41. [Google Scholar]
- Birkmann, J. Risk and vulnerability indicators at different scales: Applicability, usefulness and policy implication. Environ. Hazards 2007, 7, 20–31. [Google Scholar] [CrossRef]
- Działek, J.; Biernacki, W.; Konieczny, R.; Fiedeń, Ł.; Franczak, P.; Grzeszna, K.; Listwan-Franczak, K. Zanim Nadejdzie Powódź. Wpływ Wyobrażeń Przestrzennych, Wrażliwości Społecznej na Klęski żywiołowe oraz Komunikowania Ryzyka na Przygotowanie Społeczności Lokalnych do Powodzi; Instytut Geografii i Gospodarki Przestrzennej, Uniwersytet Jagielloński: Kraków, Poland, 2017. [Google Scholar]
- Kerstin, F.; Schneiderbauer, S.; Bubeck, P.; Kienberg, S.; Buth, M.; Zebisch, M.; Kahlenborn, W. The Vulnerability Sourcebook: Concept and Guidelines for Standardized Vulnerability Assessment; Deutsche Gesellschaft fur Internationale Zusammenarbeit (GIZ): Bonn, Germany; Echborn, Germany, 2014; p. 24. [Google Scholar]
- Lyu, J.; Mo, S.; Luo, P.; Zhou, M.; Shen, B.; Nover, D. A quantitative assessment of hydrological responses to climate change and human activities at spatiotemporal within a typical catchment on the Loess Plateau, China. Quater. Inter. 2019, 527, 1–11. [Google Scholar] [CrossRef]
- Huo, A.; Yang, L.; Peng, J.; Cheng, Y.; Cheng, J. Spatial characteristics of the rainfall included landslide in the Chinese Loess Plateau. Hum. Ecol. Risk Assess. Inter. J. 2020. [Google Scholar] [CrossRef]
- Noy, I.; Yonson, R. Economic Vulnerability and Resilience to Natural Hazards: A Survey of Concepts and Measurements. Sustainability 2018, 10, 2850. [Google Scholar] [CrossRef] [Green Version]
- Dumieński, G.; Tiukało, A. Ocena podatności systemu społeczno-ekologicznego zagrożonego powodzią. Pr. Studia Geogr. 2016, 4, 7–23. [Google Scholar]
- Rucińska, D. Kwantyfikacja podatności na zagrożenia naturalne. Przegląd metod. Pr. Studia Geogr. 2015, 57, 43–53. [Google Scholar]
- Dumieński, G.; Lisowska, A.; Tiukało, A. Adaptability of a socio-ecological system. The case study of a Polish municipality at risk of flood. Pr. Geogr. 2019, 151, 25–48. [Google Scholar]
- Holling, C. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- UNSDR. UNISDR Terminology on Disaster Risk Reduction; United Nations International Strategy for Disaster Reduction: Geneva, Switezerland, 2009. [Google Scholar]
- RCB. Powódź. W Obliczu Zagrożenia; Rządowe Centrum Bezpieczeństwa: Warszawa, Poland, 2013. [Google Scholar]
- Kundzewicz, Z.W.; Lugeri, N.; Dankers, R.; Hirabayashi, Y.; Doll, P.; Pińskwar, P.; Dysarz, T.; Hochrainer, S.; Matczak, P. Assessing river flood risk and adaptation in Europe—Review of projections for the future. Miti. Adap. Strat. Glob. Chan. 2010, 15, 641–656. [Google Scholar] [CrossRef]
- Dyrektywa 2007/60/WE Parlamentu Europejskiego i Rady z dn. 23 października 2007 r. w sprawie oceny ryzyka powodziowego i zarządzania nim, L 288/27. Available online: hhttps://www.kzgw.gov.pl/files/dyrektywa-powodziowa/tekst_Dyrektywy_Powodziowej_PL.pdf (accessed on 8 April 2020).
- Aguiar, C.F.; Bentz, J.; Silva, J.M.N.; Fonseca, A.L.; Swart, R.; Duarte-Santos, F.; Penha-Lopes, G. Adaptation to climate change at local level in Europe: An overview. Environ. Sci. Policy 2018, 86, 38–63. [Google Scholar] [CrossRef]
- Dyrektywa 2000/60/WE Parlamentu Europejskiego i Rady z dnia 23 października 2000 r. ustanawiająca ramy wspólnotowego działania w dziedzinie polityki wodnej (Dz. U. UE L z dnia 22 grudnia 2000 r). Available online: http://geoportal.pgi.gov.pl/css/powiaty/prawo (accessed on 31 March 2020).
- Choryński, A. Adaptacja Wielkopolskich Gmin do Ekstremalnych Zdarzeń Pogodowych w Świetle Koncepcji Elastyczności (Resilience). Ph.D. Thesis, Wydział Socjologii, UAM, Poznań, Poland, 2019. [Google Scholar]
- Folke, C. Traditional knowledge in social-ecological system. Ecol. Soc. 2004, 9, 8. [Google Scholar] [CrossRef]
- Dumieński, G.; Mruklik, A.; Tiukało, A.; Lisowska, A. Preliminary research on adaptability of municipalities in the sub-basin of Nysa Kłodzka using multidimensional comparative analysis. ITM Web Conf. 2018, 23, 00008. [Google Scholar] [CrossRef] [Green Version]
- Dumieński, G.; Lisowska, A.; Tiukało, A. Badania ilościowe źródłem danych o adaptacyjności gmin zagrożonych powodzią w zlewni Nysy Kłodzkiej. Studia Reg. i Lokalne 2020. in review process. [Google Scholar]
- Bedryj, M.; Dumieński, G.; Tiukało, A. Potential threat to Polish lakes and reservoirs from contamination by objects of environmental flood risk. Limn. Rev. 2018, 18, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Biuro Koordynacji Projektu Ochrony Przeciwpowodziowej Dorzecza Odry i Wisły. Available online: http://odrapcu.com.pl (accessed on 5 January 2020).
- SWECO Poland. Available online: http://sweco.pl (accessed on 15 February 2020).
- Measuring Vulnerability to Promote Disaster-Resilient Societies: Conceptual Frameworks and Definitions. In Measuring Vulnerability to Natural Hazards: toward Disaster Resilient Societies; Birkmann, J. (Ed.) United Nations University: New York, NY, USA, 2006. [Google Scholar]
- Hellwig, Z. Wielowymiarowa analiza porównawcza i jej zastosowanie w badaniach wielocechowych obiektów gospodarczych. In Metody i Modele Ekonomiczno-Matematyczne w Doskonaleniu Zarządzania Gospodarką Socjalistyczną; Welfe, A., Ed.; PWE: Warsaw, Poland, 1981; p. 57. [Google Scholar]
- Rencher, A.C. Methods of Multivariate Analysis; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Giri, N.C. Multivariate Statistical Analysis; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Yang, J.; Zhang, H.; Ren, C.; Nan, Z.; Wei, X.; Li, C. A Cross-Reconstruction Method for Step-Changed Runoff Series to Implement Frequency Analysis under Changing Environment. Int. J. Environ. Res. Public Health 2019, 16, 4345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panek, T. Statystyczne Metody Wielowymiarowej Analizy Porównawczej; Oficyna Wydawnicza SGH: Warszawa, Poland, 2009. [Google Scholar]
- Panek, T.; Zwierzchowski, J. Statystyczne Metody Wielowymiarowej Analizy Porównawczej, Teoria Zastosowania; Oficyna Wydawnicza SGH: Warszawa, Poland, 2013. [Google Scholar]
- Kukuła, K. Metoda unitaryzacji zerowanej na tle wybranych metod normowania cech diagnostycznych. Acta Sci. Acad. Ostroviensis 1999, 4, 5–31. [Google Scholar]
- Dębkowska, K.; Jarocka, K. The impact of the methods of the data normalization on the result of linear ordering 2013. Acta Univer. Lodziensis. Folia Oeconomika 2013, 286, 181–188. [Google Scholar]
- Jarocka, M. Wybór formuły normalizacyjnej w analizie porównawczej obiektów wielocechowych. Econ. Manag. 2015, 1, 113–126. [Google Scholar]
- Walczykiewicz, T. Metodyka Kwantyfikacji Wrażliwości Jako Jednego z Czynników Wpływających na Ryzyko Powodziowe; Zasób własny IMGW-PIB: Warszawa, Poland, 2014. [Google Scholar]
- Scherzer, S.; Lujala, P.; Rod, J.K. A community resilience index for Norway: An adaptation of the Baseline Resilience Indicators for Communities (BRIC). Int. J. Disaster Risk Reduct. 2019, 36, 101107. [Google Scholar] [CrossRef]
- Cai, H.; Lam, N.S.N.; Qiang, Y.; Zou, L.; Correll, R.M.; Mihunov, V. A synthesis of disaster resilience measurement methods and indices. Int. J. Disaster Risk Reduct. 2018, 31, 844–855. [Google Scholar] [CrossRef]
- Sharifi, A. A critical review of selected tools for assessing community resilience. Ecol. Indic. 2016, 69, 629–647. [Google Scholar] [CrossRef] [Green Version]
No. of Features: | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
name of non-measurable statistical features of a municipality-SES determining it’s adaptability | Health capital | Educational capital | Civilisational capital | Ability to identify crisis situations | Ability to organize social life… | Cultural potential | Relevance of… | Municipality’s ability to operate… | Municipal budget per capita | Variability of forms of development | Diversity of forms of environmental… | Risk of environmental … | Institutional potential | Ability to organize local… | Ability to organize… | |
No. | municipality | Position of the municipality’s in the classification | ||||||||||||||
1 | Międzylesie | 7 | 11 | 8 | non-significant feature in the analyzed population of municipalities | 9 | 12 | 6 | 10 | 7 | 15 | 5 | 11 | 4 | 2 | 3 |
2 | Bystrzyca Kłodzka | 16 | 7 | 1 | 7 | 3 | 2 | 6 | 1 | 1 | 4 | 16 | 10 | 10 | 4 | |
3 | Kłodzko (r.m.) | 14 | 14 | 5 | 16 | 10 | 5 | 11 | 2 | 17 | 7 | 14 | 7 | 11 | 2 | |
4 | Kłodzko (u.m.) | 1 | 3 | 3 | 8 | 2 | 3 | 14 | 18 | 10 | 16 | 17 | 2 | 6 | 13 | |
5 | Bardo | 8 | 16 | 9 | 4 | 7 | 10 | 16 | 6 | 13 | 8 | 7 | 15 | 9 | 18 | |
6 | Kamieniec Ząbkowicki | 6 | 18 | 12 | 5 | 15 | 7 | 17 | 5 | 16 | 9 | 2 | 5 | 4 | 8 | |
7 | Ziębice | 12 | 17 | 7 | 17 | 14 | 8 | 5 | 14 | 4 | 10 | 8 | 18 | 1 | 11 | |
8 | Paczków | 11 | 8 | 6 | 10 | 8 | 17 | 7 | 4 | 12 | 17 | 3 | 9 | 15 | 17 | |
9 | Otmuchów | 17 | 13 | 16 | 1 | 16 | 12 | 1 | 9 | 9 | 13 | 15 | 6 | 5 | 7 | |
10 | Nysa | 4 | 4 | 14 | 13 | 1 | 11 | 3 | 17 | 18 | 11 | 18 | 13 | 8 | 5 | |
11 | Łambinowice | 15 | 6 | 2 | 12 | 6 | 18 | 8 | 12 | 5 | 12 | 12 | 3 | 14 | 10 | |
12 | Skoroszyce | 9 | 15 | 18 | 18 | 18 | 14 | 4 | 11 | 14 | 15 | 4 | 17 | 12 | 12 | |
13 | Niemodlin | 3 | 2 | 15 | 15 | 9 | 9 | 9 | 15 | 8 | 6 | 9 | 8 | 7 | 16 | |
14 | Popielów | 18 | 5 | 11 | 3 | 4 | 13 | 18 | 10 | 2 | 2 | 1 | 12 | 17 | 1 | |
15 | Grodków | 10 | 1 | 17 | 6 | 5 | 4 | 2 | 8 | 6 | 3 | 13 | 1 | 16 | 9 | |
16 | Olszanka | 5 | 10 | 4 | 2 | 11 | 15 | 15 | 13 | 7 | 14 | 5 | 11 | 3 | 14 | |
17 | Lewin Brzeski | 13 | 9 | 13 | 14 | 13 | 16 | 13 | 16 | 11 | 1 | 10 | 14 | 18 | 6 | |
18 | Skarbimierz | 2 | 12 | 10 | 11 | 17 | 1 | 12 | 3 | 3 | 18 | 6 | 16 | 13 | 15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumieński, G.; Mruklik, A.; Tiukało, A.; Bedryj, M. The Comparative Analysis of the Adaptability Level of Municipalities in the Nysa Kłodzka Sub-Basin to Flood Hazard. Sustainability 2020, 12, 3003. https://doi.org/10.3390/su12073003
Dumieński G, Mruklik A, Tiukało A, Bedryj M. The Comparative Analysis of the Adaptability Level of Municipalities in the Nysa Kłodzka Sub-Basin to Flood Hazard. Sustainability. 2020; 12(7):3003. https://doi.org/10.3390/su12073003
Chicago/Turabian StyleDumieński, Grzegorz, Agnieszka Mruklik, Andrzej Tiukało, and Marta Bedryj. 2020. "The Comparative Analysis of the Adaptability Level of Municipalities in the Nysa Kłodzka Sub-Basin to Flood Hazard" Sustainability 12, no. 7: 3003. https://doi.org/10.3390/su12073003
APA StyleDumieński, G., Mruklik, A., Tiukało, A., & Bedryj, M. (2020). The Comparative Analysis of the Adaptability Level of Municipalities in the Nysa Kłodzka Sub-Basin to Flood Hazard. Sustainability, 12(7), 3003. https://doi.org/10.3390/su12073003