Organochlorine Pesticides in Sediment of Zhang River Estuary Mangrove National Natural Reserve: The Implication of Its Source Change in China’s Mangroves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Extraction and Instrument Analysis
2.4. Quality Assurance and Quality Control
2.5. Data Collection
2.6. Data Analysis
3. Results and Discussion
3.1. OCPs in the Surface Sediment
3.1.1. Concentration of OCPs
3.1.2. Ecological Risk Assessment
3.1.3. Source of OCPs
3.2. OCPs Concentration in Mangrove Sediment of China
3.2.1. The Distribution of OCPs
3.2.2. The Potential Human Influences for HCH and DDT Residues
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lewis, M.; Pryor, R.; Wilking, L. Fate and effects of anthropogenic chemicals in mangrove ecosystems: A review. Environ. Pollut. 2011, 159, 2328–2346. [Google Scholar] [CrossRef] [PubMed]
- Vo, Q.T.; Kuenzer, C.; Vo, Q.M.; Moder, F.; Oppelt, N. Review of valuation methods for mangrove ecosystem services. Ecol. Indic. 2012, 23, 431–446. [Google Scholar] [CrossRef]
- Christensen, S.M.; Tarp, P.; Hjortsø, C.N. Mangrove forest management planning in coastal buffer and conservation zones, Vietnam: A multimethodological approach incorporating multiple stakeholders. Ocean Coast. Manag. 2008, 51, 712–726. [Google Scholar] [CrossRef]
- Qiu, Y.-W.; Qiu, H.-L.; Zhang, G.; Li, J. Bioaccumulation and cycling of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in three mangrove reserves of south China. Chemosphere 2019, 217, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.L.; Giesy, J.P.; Lam, P.K.S. Organochlorine Insecticides in Mudflats of Hong Kong, China. Arch. Environ. Contam. Toxicol. 2006, 50, 153–165. [Google Scholar] [CrossRef]
- Bodin, N.; N’Gom Ka, R.; Le Loc’h, F.; Raffray, J.; Budzinski, H.; Peluhet, L.; Tito de Morais, L. Are exploited mangrove molluscs exposed to Persistent Organic Pollutant contamination in Senegal, West Africa? Chemosphere 2011, 84, 318–327. [Google Scholar] [CrossRef]
- Ellison, A.M.; Farnsworth, E.J. Anthropogenic Disturbance of Caribbean Mangrove Ecosystems: Past Impacts, Present Trends, and Future Predictions. Biotropica 1996, 28, 549–565. [Google Scholar] [CrossRef]
- Duke, N.C.; Meynecke, J.-O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.; Ewel, K.C.; Field, C.D.; et al. A World Without Mangroves? Science 2007, 317, 41–42. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, W.; Zhang, Y.; Lin, G. Recent progresses in mangrove conservation, restoration and research in China. J. Plant Ecol. 2009, 2, 45–54. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Lacerda, L.D. Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean Coast. Manag. 2016, 125, 38–46. [Google Scholar] [CrossRef]
- Onyena, A.P.; Sam, K. A review of the threat of oil exploitation to mangrove ecosystem: Insights from Niger Delta, Nigeria. Glob. Ecol. Conserv. 2020, 22, e00961. [Google Scholar] [CrossRef]
- Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Farnsworth, E.J.; Fernando, E.S.; Kathiresan, K.; Koedam, N.E.; et al. The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern. PLoS ONE 2010, 5, e10095. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Wang, Z.; Zhang, Y.; Mao, D.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- Tam, N.F.Y. Pollution Studies on Mangroves in Hong Kong and Mainland China. In The Environment in Asia Pacific Harbours; Wolanski, E., Ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 147–163. [Google Scholar]
- Vane, C.H.; Harrison, I.; Kim, A.; Moss-Hayes, V.; Vickers, B.; Hong, K. Organic and metal contamination in surface mangrove sediments of South China. Mar. Pollut. Bull. 2009, 58, 134–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, L.C.M.; Matos, H.R.; Schaeffer-Novelli, Y.; Cunha-Lignon, M.; Bitencourt, M.D.; Koedam, N.; Dahdouh-Guebas, F. Anthropogenic activities on mangrove areas (São Francisco River Estuary, Brazil Northeast): A GIS-based analysis of CBERS and SPOT images to aid in local management. Ocean Coast. Manag. 2014, 89, 39–50. [Google Scholar] [CrossRef]
- Wu, H.; Peng, R.; Yang, Y.; He, L.; Wang, W.; Zheng, T.; Lin, G. Mariculture Pond Influence on Mangrove Areas in South China: Significantly Larger Nitrogen and Phosphorus Loadings from Sediment Wash-out than from Tidal Water Exchange. Aquaculture 2014, 426–427, 204–212. [Google Scholar] [CrossRef]
- Zhang, Z.-W.; Xu, X.-R.; Sun, Y.-X.; Yu, S.; Chen, Y.-S.; Peng, J.-X. Heavy metal and organic contaminants in mangrove ecosystems of China: A review. Environ. Sci. Pollut. Res. 2014, 21, 11938–11950. [Google Scholar] [CrossRef]
- Cai, M.; Liu, Y.; Chen, K.; Huang, D.; Yang, S. Quantitative analysis of anthropogenic influences on coastal water – A new perspective. Ecol. Indic. 2016, 67, 673–683. [Google Scholar] [CrossRef]
- Chen, K.; Liu, Y.; Huang, D.; Ke, H.; Chen, H.; Zhang, S.; Yang, S.; Cai, M. Anthropogenic activities and coastal environmental quality: A regional quantitative analysis in southeast China with management implications. Environ. Sci. Pollut. Res. 2018, 25, 3093–3107. [Google Scholar] [CrossRef]
- Wöhrnschimmel, H.; Scheringer, M.; Bogdal, C.; Hung, H.; Salamova, A.; Venier, M.; Katsoyiannis, A.; Hites, R.A.; Hungerbuhler, K.; Fiedler, H. Ten years after entry into force of the Stockholm Convention: What do air monitoring data tell about its effectiveness? Environ. Pollut. 2016, 217, 149–158. [Google Scholar] [CrossRef]
- Lin, T.; Li, J.; Xu, Y.; Liu, X.; Luo, C.; Cheng, H.; Chen, Y.; Zhang, G. Organochlorine pesticides in seawater and the surrounding atmosphere of the marginal seas of China: Spatial distribution, sources and air–water exchange. Sci. Total Environ. 2012, 435–436, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pei, N.; Sun, Y.; Li, J.; Li, X.; Yu, S.; Xu, X.; Hu, Y.; Mai, B. Halogenated organic pollutants in sediments and organisms from mangrove wetlands of the Jiulong River Estuary, South China. Environ. Res. 2019, 171, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Bayen, S. Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: A review. Environ. Int. 2012, 48, 84–101. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qi, S.; Yao, J.; Yang, D.; Xing, X.; Liu, H.; Qu, C. Contamination characteristics of organochlorine pesticides in multimatrix sampling of the Hanjiang River Basin, southeast China. Chemosphere 2016, 163, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Xu, Y.; Li, W.; Han, G.; Ling, B. PCBs and OCPs in human milk and selected foods from Luqiao and Pingqiao in Zhejiang, China. Sci. Total Environ. 2007, 378, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Ali, U.; Syed, J.H.; Malik, R.N.; Katsoyiannis, A.; Li, J.; Zhang, G.; Jones, K.C. Organochlorine pesticides (OCPs) in South Asian region: A review. Sci. Total Environ. 2014, 476–477, 705–717. [Google Scholar] [CrossRef]
- Weber, J.; Halsall, C.J.; Muir, D.; Teixeira, C.; Small, J.; Solomon, K.; Hermanson, M.; Hung, H.; Bidleman, T. Endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Arctic. Sci. Total Environ. 2010, 408, 2966–2984. [Google Scholar] [CrossRef]
- Stemmler, I.; Lammel, G. Cycling of DDT in the global environment 1950–2002: World ocean returns the pollutant. Geophys. Res. Lett. 2009, 36, L24602. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Huang, Q.; Qi, F.; Guo, J.; Lin, G. Utilization of exotic Spartina alterniflora by fish community in the mangrove ecosystem of Zhangjiang Estuary: Evidence from stable isotope analyses. Biol. Invasions 2015, 17, 2113–2121. [Google Scholar] [CrossRef]
- Li, M.S.; Mao, L.J.; Shen, W.J.; Liu, S.Q.; Wei, A.S. Change and fragmentation trends of Zhanjiang mangrove forests in southern China using multi-temporal Landsat imagery (1977–2010). Estuar. Coast. Shelf Sci. 2013, 130, 111–120. [Google Scholar] [CrossRef]
- Zhang, R.; Yan, C.; Liu, J. Effect of Mangroves on the Horizontal and Vertical Distributions of Rare Earth Elements in Sediments of the Zhangjiang Estuary in Fujian Province, Southeastern China. J. Coast. Res. 2013, 29, 1341–1350. [Google Scholar] [CrossRef]
- Xue, B.; Yan, C.; Lu, H.; Bai, Y. Mangrove-Derived Organic Carbon in Sediment from Zhangjiang Estuary (China) Mangrove Wetland. J. Coast. Res. 2009, 254, 949–956. [Google Scholar] [CrossRef]
- Chai, M.; Ding, H.; Shen, X.; Li, R. Contamination and ecological risk of polybrominated diphenyl ethers (PBDEs) in surface sediments of mangrove wetlands: A nationwide study in China. Environ. Pollut. 2019, 249, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Ding, H.; Zan, Q.; Li, R. Spatial variation and ecological risk assessment of heavy metals in mangrove sediments across China. Mar. Pollut. Bull. 2019, 143, 115–124. [Google Scholar] [CrossRef]
- Li, Y.F.; Cai, D.J.; Shan, Z.J.; Zhu, Z.L. Gridded Usage Inventories of Technical Hexachlorocyclohexane and Lindane for China with 1/6° Latitude by 1/4° Longitude Resolution. Arch. Environ. Contam. Toxicol. 2001, 41, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhao, L.; Fang, X.; Xu, J.; Li, Y.; Shi, Y.; Hu, J. Gridded usage inventories of chlordane in China. Front. Environ. Sci. Eng. 2013, 7, 10–18. [Google Scholar] [CrossRef]
- Burton, G.A., Jr. Sediment quality criteria in use around the world. Limnology 2002, 3, 65–76. [Google Scholar] [CrossRef]
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Buchman, M.F. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 97-2; 0269-7491; Hazardous Materials Response and Assessment Division, National Oceanic and Atmospheric Administration: Seattle, WA, USA, 1999.
- CSBTS. Marine Sediment Quality (GB/T 18668-2002); China Environmental Science Press: Beijing, China, 2002. [Google Scholar]
- Willett, K.L.; Ulrich, E.M.; Hites, R.A. Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ. Sci. Technol. 1998, 32, 2197–2207. [Google Scholar] [CrossRef]
- Iwata, H.; Tanabe, S.; Sakai, N.; Tatsukawa, R. Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environ. Sci. Technol. 1993, 27, 1080–1098. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Li, Y.; Ya, M.; Luo, H.; Hong, H. Polybrominated diphenyl ethers, organochlorine pesticides, and polycyclic aromatic hydrocarbons in water from the Jiulong River Estuary, China: Levels, distributions, influencing factors, and risk assessment. Environ. Sci. Pollut. Res. 2017, 24, 8933–8945. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-Y.; Li, F.-B.; Yu, W.-M.; Li, Y.-T.; Yang, G.-Y.; Zhou, S.-G.; Zhang, T.-B.; Gao, Y.-X.; Wan, H.-F. Assessment of organochlorine pesticide contamination in relation to soil properties in the Pearl River Delta, China. Sci. Total Environ. 2013, 447, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Garmouma, M.; Poissant, L. Occurrence, temperature and seasonal trends of α-and γ-HCH in air (Québec, Canada). Atmos. Environ. 2004, 38, 369–382. [Google Scholar] [CrossRef]
- Walker, K.; Vallero, D.A.; Lewis, R.G. Factors influencing the distribution of lindane and other hexachlorocyclohexanes in the environment. Environ. Sci. Technol. 1999, 33, 4373–4378. [Google Scholar] [CrossRef]
- Sun, D.; Wei, Y.; Li, H.; Yi, X.; You, J. Insecticides in sediment cores from a rural and a suburban area in South China: A reflection of shift in application patterns. Sci. Total Environ. 2016, 568, 11–18. [Google Scholar] [CrossRef]
- Yang, D.; Qi, S.-H.; Zhang, J.-Q.; Tan, L.-Z.; Zhang, J.-P.; Zhang, Y.; Xu, F.; Xing, X.-L.; Hu, Y.; Chen, W.; et al. Residues of Organochlorine Pesticides (OCPs) in Agricultural Soils of Zhangzhou City, China. Pedosphere 2012, 22, 178–189. [Google Scholar] [CrossRef]
- Hitch, R.K.; Day, H.R. Unusual persistence of DDT in some western USA soils. Bull. Environ. Contam. Toxicol. 1992, 48, 259–264. [Google Scholar] [CrossRef]
- Doong, R.-A.; Peng, C.-K.; Sun, Y.-C.; Liao, P.-L. Composition and distribution of organochlorine pesticide residues in surface sediments from the Wu-Shi River estuary, Taiwan. Mar. Pollut. Bull. 2002, 45, 246–253. [Google Scholar] [CrossRef]
- Doong, R.-A.; Sun, Y.-C.; Liao, P.-L.; Peng, C.-K.; Wu, S.-C. Distribution and fate of organochlorine pesticide residues in sediments from the selected rivers in Taiwan. Chemosphere 2002, 48, 237–246. [Google Scholar] [CrossRef]
- Qiu, X.; Zhu, T. Using the o, p′-DDT/p, p′-DDT ratio to identify DDT sources in China. Chemosphere 2010, 81, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Zhu, T.; Yao, B.; Hu, J.; Hu, S. Contribution of dicofol to the current DDT pollution in China. Environ. Sci. Technol. 2005, 39, 4385–4390. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-Y.; Shen, R.-L.; Liang, Y.; Cheng, H.; Zeng, E.Y. Inputs of antifouling paint-derived dichlorodiphenyltrichloroethanes (DDTs) to a typical mariculture zone (South China): Potential impact on aquafarming environment. Environ. Pollut. 2011, 159, 3700–3705. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Li, Y.-F.; Wang, D.; Cai, D.; Yang, M.; Ma, J.; Hu, J. Endosulfan in China 1—gridded usage inventories. Environ. Sci. Pollut. Res. 2009, 16, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Huang, J.; Lu, Y.; Arai, S.; Iino, F.; Morita, M.; Yu, G. The pollution and ecological risk of endosulfan in soil of Huai’an city, China. Environ. Monit. Assess. 2012, 184, 7093–7101. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.J.; Lam, M.H.W.; Lam, P.K.S.; Richardson, B.J.; Man, B.K.W.; Li, A.M.Y. Concentrations of Persistent Organic Pollutants in Surface Sediments of the Mudflat and Mangroves at Mai Po Marshes Nature Reserve, Hong Kong. Mar. Pollut. Bull. 2000, 40, 1210–1214. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Ya, M.; Li, Y.; Hong, H. Distributions of organochlorine compounds in sediments from Jiulong River Estuary and adjacent Western Taiwan Strait: Implications of transport, sources and inventories. Environ. Pollut. 2016, 219, 519–527. [Google Scholar] [CrossRef]
- Tang, Y.; Fang, Z.; Yu, S. Heavy metals, polycyclic aromatic hydrocarbons and organochlorine pesticides in the surface sediments of mangrove swamps from coastal sites along the Leizhou Peninsula, South China. Acta Oceanol. Sin. 2008, 27, 42–53. [Google Scholar]
- Qiu, Y.-W.; Zhang, G.; Guo, L.-L.; Cheng, H.-R.; Wang, W.-X.; Li, X.-D.; Wai, O.W. Current status and historical trends of organochlorine pesticides in the ecosystem of Deep Bay, South China. Estuar. Coast. Shelf Sci. 2009, 85, 265–272. [Google Scholar] [CrossRef]
- Liu, H.; Qi, S.; Su, Q.; Fu, Y.; Wang, J.; Mu, Q. Compositive characteristics of organochlorine pesticides in surface sediments of Dongzhai Harbor, Hainan Island. China Environ. Sci. 2007, 27, 97–101. (In Chinese) [Google Scholar] [CrossRef]
- Wu, Q.; Leung, J.Y.; Yuan, X.; Huang, X.; Li, H.; Huang, Z.; Li, Y. Biological risk, source and pollution history of organochlorine pesticides (OCPs) in the sediment in Nansha mangrove, South China. Mar. Pollut. Bull. 2015, 96, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Huang, H.; Li, H.; Luo, J.; Zheng, H.; Sun, Y.; Yang, D.; Zhang, Y.; Qi, S. Residues of Organochlorine Pesticides (OCPs) in Water and Sediments from Nansha Mangrove Wetland. Environ. Sci. 2017, 38, 1431–1441. (In Chinese) [Google Scholar] [CrossRef]
- Kaiser, D.; Schulz-Bull, D.E.; Waniek, J.J. Profiles and inventories of organic pollutants in sediments from the central Beibu Gulf and its coastal mangroves. Chemosphere 2016, 153, 39–47. [Google Scholar] [CrossRef]
- Qu, C.; Qi, S.; Yang, D.; Huang, H.; Zhang, J.; Chen, W.; Yohannes, H.K.; Sandy, E.H.; Yang, J.; Xing, X. Risk assessment and influence factors of organochlorine pesticides (OCPs) in agricultural soils of the hill region: A case study from Ningde, southeast China. J. Geochem. Explor. 2015, 149, 43–51. [Google Scholar] [CrossRef]
- Zhao, Z.; Jiang, Y.; Li, Q.; Cai, Y.; Yin, H.; Zhang, L.; Zhang, J. Spatial correlation analysis of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediments between Taihu Lake and its tributary rivers. Ecotoxicol. Environ. Saf. 2017, 142, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Bao, L.-J.; Maruya, K.A.; Snyder, S.A.; Zeng, E.Y. China’s water pollution by persistent organic pollutants. Environ. Pollut. 2012, 163, 100–108. [Google Scholar] [CrossRef]
- Li, H.; Zeng, E.Y.; You, J. Mitigating pesticide pollution in China requires law enforcement, farmer training, and technological innovation. Environ. Toxicol. Chem. 2014, 33, 963–971. [Google Scholar] [CrossRef]
- Grung, M.; Lin, Y.; Zhang, H.; Steen, A.O.; Huang, J.; Zhang, G.; Larssen, T. Pesticide levels and environmental risk in aquatic environments in China—A review. Environ. Int. 2015, 81, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Y.; Huo, X.; Zhu, Y. Why some restricted pesticides are still chosen by some farmers in China? Empirical evidence from a survey of vegetable and apple growers. Food Control. 2015, 51, 417–424. [Google Scholar] [CrossRef]
- Zeng, F.; Yang, D.; Xing, X.; Qi, S. Evaluation of Bayesian approaches to identify DDT source contributions to soils in Southeast China. Chemosphere 2017, 176, 32–38. [Google Scholar] [CrossRef]
- Huang, J.; Yang, J.; Rozelle, S. China’s agriculture: Drivers of change and implications for China and the rest of world. Agric. Econ. 2010, 41, 47–55. [Google Scholar] [CrossRef]
- Zhao, W.; Shen, H. A statistical analysis of China’s fisheries in the 12th five-year period. Aquac. Fish. 2016, 1, 41–49. [Google Scholar] [CrossRef]
- Asrat, S.; Yesuf, M.; Carlsson, F.; Wale, E. Farmers’ preferences for crop variety traits: Lessons for on-farm conservation and technology adoption. Ecol. Econ. 2010, 69, 2394–2401. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, X.; Tian, Y.; Tan, M. Structural change of agricultural land use intensity and its regional disparity in China. J. Geogr. Sci. 2009, 19, 545–556. [Google Scholar] [CrossRef]
- Shen, L.; Xia, B.; Dai, X. Residues of persistent organic pollutants in frequently-consumed vegetables and assessment of human health risk based on consumption of vegetables in Huizhou, South China. Chemosphere 2013, 93, 2254–2263. [Google Scholar] [CrossRef]
- Gong, X.; Qi, S.; Wang, Y.; Julia, E.B.; Lv, C. Historical contamination and sources of organochlorine pesticides in sediment cores from Quanzhou Bay, Southeast China. Mar. Pollut. Bull. 2007, 54, 1434–1440. [Google Scholar] [CrossRef]
Site | α-HCH | β-HCH | γ-HCH | δ-HCH | p,p’-DDD | p,p’-DDE | p,p’-DDT | Methoxychlor | Aldrin | Dieldrin | Endrin | Endrin Aldehyde | Hept. | Hept. Epoxide | α-endo | β-endo | Endo Sulfate | ∑OCPs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.083 | 0.133 | 0.009 | ND | 0.003 | 0.030 | 0.043 | ND | 0.007 | 0.087 | ND | ND | 0.280 | 0.003 | 0.004 | 0.077 | ND | 0.759 |
2 | 0.040 | ND | 0.033 | 0.067 | 0.007 | ND | 0.081 | ND | 0.007 | 0.154 | ND | ND | 0.020 | ND | 0.004 | 0.170 | ND | 0.583 |
3 | 0.025 | ND | 0.016 | ND | 0.005 | ND | 0.108 | ND | 0.033 | 0.118 | ND | ND | 0.038 | ND | 0.010 | 0.114 | ND | 0.467 |
4 | 0.044 | 0.816 | 0.013 | 0.033 | 0.008 | 0.110 | 0.234 | 0.099 | 0.019 | 0.239 | 0.047 | 0.294 | 0.028 | ND | 0.013 | 0.187 | 1.034 | 3.218 |
5 | 0.124 | ND | 0.118 | 0.168 | 0.007 | 0.228 | 0.051 | 0.098 | 0.029 | 0.165 | 0.017 | 0.322 | 0.008 | ND | 0.010 | 0.162 | 0.478 | 1.985 |
6 | 0.026 | ND | 0.024 | 0.051 | 0.012 | 0.304 | 0.232 | 0.076 | 0.024 | 0.372 | ND | 0.763 | 0.009 | ND | 0.021 | 0.279 | 3.025 | 5.218 |
7 | ND | 0.596 | 0.023 | ND | ND | 0.897 | 0.076 | 0.279 | 0.079 | 0.536 | ND | 0.629 | 0.013 | 0.010 | 0.048 | ND | 1.407 | 4.593 |
8 | 0.009 | 0.203 | 0.041 | 0.030 | 0.002 | 0.368 | 4.373 | 0.223 | 0.046 | 0.934 | ND | 0.566 | 0.078 | 0.004 | 0.056 | 0.043 | 1.924 | 8.900 |
9 | 0.233 | ND | 0.102 | 0.043 | ND | 0.466 | 3.255 | 0.976 | 0.035 | 1.030 | 0.233 | 3.412 | 0.046 | ND | 0.017 | ND | 12.71 | 22.56 |
10 | 0.040 | ND | 0.023 | ND | ND | ND | ND | ND | 0.036 | 0.180 | ND | 0.524 | 0.007 | ND | 0.012 | ND | ND | 0.822 |
11 | 0.011 | ND | 0.005 | ND | 0.002 | ND | 0.135 | 0.018 | 0.072 | 0.070 | 0.007 | 0.337 | 0.012 | ND | 0.004 | 0.043 | 1.093 | 1.809 |
12 | 0.021 | ND | 0.031 | 0.021 | ND | 0.073 | 0.048 | 0.025 | 0.004 | 0.091 | ND | 0.274 | 0.015 | 0.002 | 0.017 | ND | 0.628 | 1.250 |
13 | 0.028 | ND | 0.029 | 0.033 | 0.001 | 0.068 | 0.096 | 0.012 | 0.005 | 0.180 | ND | 0.165 | 0.013 | 0.007 | 0.023 | 0.032 | ND | 0.692 |
14 | 0.011 | ND | 0.040 | ND | ND | 0.121 | ND | ND | 0.028 | 0.138 | ND | 0.621 | 0.006 | ND | 0.009 | ND | ND | 0.974 |
15 | 0.023 | ND | 0.027 | 0.516 | 0.016 | ND | 0.472 | 0.020 | 0.031 | 0.026 | ND | 0.976 | 0.043 | 0.019 | 0.012 | 0.387 | 1.627 | 4.195 |
16 | ND | ND | 0.008 | ND | ND | ND | ND | ND | 0.007 | 0.134 | ND | 0.134 | 0.003 | ND | 0.006 | ND | ND | 0.292 |
17 | 0.077 | ND | 0.034 | ND | ND | ND | ND | ND | 0.010 | 0.103 | ND | 0.126 | ND | ND | ND | ND | ND | 0.350 |
18 | 0.042 | 0.171 | 0.015 | 0.028 | ND | 0.024 | ND | ND | ND | 0.153 | ND | 0.220 | 0.033 | 0.002 | 0.034 | ND | 0.759 | 1.481 |
Compound | ERL a | ERM a | TEL b | PEL b | M-TEL c | CMSQ I d |
---|---|---|---|---|---|---|
γ-HCH | - | - | 0.94 | 1.38 | 0.32 | - |
∑HCHs | - | - | - | - | - | 500 |
p,p’-DDD | 2 | 20 | 3.54 | 8.51 | 1.22 | - |
p,p’-DDE | 2.2 | 27 | 1.42 | 6.75 | 2.07 | - |
p,p’-DDT | 1 | 7 | 1.79 | - | 1.19 | - |
∑DDTs | 1.58 | 46.1 | 7 | 4450 | 3.89 | 20 |
Dieldrin | 0.02 | 8 | 2.85 | 2.85 | 0.72 | - |
Endrin | 0.02 | 45 | 2.67 | 62.4 | - | - |
Heptachlor epoxide | - | - | 0.6 | 2.74 | - | - |
Area | Abbr. | Province | Sampling Time | ∑HCHs | ∑DDTs | ∑OCPs | Source | |||
---|---|---|---|---|---|---|---|---|---|---|
Range | Mean | Range | Mean | Range | Mean | |||||
Deep Bay a | DPB | Guangdong/Hong Kong | Feb. 2004 | 0.22–1.07 | 0.50 | 2.92–82.3 | 20.2 | 3.91–84.5 | 23.2 | [62] |
Dongzhai Harbor b | DZH | Hainan | Sep. 2005 | 0.06–2.30 | 0.53 | 0.09–2.13 | 0.57 | 0.31–7.36 | 1.96 | [63] |
Dongzhai Harbor c | DZH | Hainan | Aug. 2014 | 0.01–0.09 | 0.05 | 1.15–2.90 | 2.10 | 1.07–3.97 | 2.90 | [4] |
Sanya coast | SYC | 0.01–0.14 | 0.07 | 2.17–7.67 | 3.02 | 2.32–9.48 | 4.21 | |||
Jiulong River Estuary d | JRE | Fujian | May and Jun. 2009 | 0.31–1.85 | 1.05 | 1.28–91.2 | 37.7 | 13.6–106 | 50.7 | [60] |
Jiulong River Estuary | JRE | Fujian | Oct. 2013 | – | – | 21–84 | 52 | – | – | [23] |
Leizhou Peninsula b | LZP | Guangdong | Jul. and Nov. 2005 | – | 0.07 | 0.75–112 | 27.8 | – | 28.9 | [61] |
Mai Po Marshes e | MPM | Guangdong/Hong Kong | 1997 | 9.7–28.5 | 16.2 | 3.4–14.2 | 8.2 | 29.1–73.9 | 45.0 | [59] |
Mai Po Marshes f | MPM | Guangdong/Hong Kong | Jun. 2002 | 0.44–8.96 | 4.35 | 2.0–31 | 16.2 | 6.89–73.7 | 39.5 | [5] |
Jan. 2003 | 0.20–8.58 | 3.12 | 1.4–19 | 17.5 | 10.6–95.7 | 58.8 | ||||
Nanliu Estuary | NLE | Guangxi | Dec. 2011 | – | – | 2.9–3.7 | ~3 | – | – | [66] |
Nansha Wetland b | NSW | Guangdong | Dec. 2011 | 0.36–0.62 | 0.51 | 5.61–7.50 | 6.5 | – | ~7 | [64] |
Nansha Wetland b | NSW | Guangdong | Mar. 2015 | 0.67–7.29 | 3.35 | 2.37–9.40 | 5.23 | 3.1–16.0 | 8.58 | [65] |
Zhang River Estuary g | ZRE | Fujian | Apr. 2007 | 0.01–0.91 | 0.24 | ND–4.74 | 0.66 | 0.29–25.4 | 4.50 | This study |
Model | β | t-Value | p-Value | Accumulated | |
---|---|---|---|---|---|
R | R2 | ||||
Constant | 6.349 | 1.551 | 0.147 | ||
Variables entered | |||||
Fruit | 0.102 | 3.145 | 0.008 | 0.672 | 0.452 |
Variables removed | |||||
Grain | −0.539 | −1.258 | 0.234 | ||
Oilseed | 0.124 | 0.451 | 0.661 | ||
Sugarcane | 0.055 | 0.244 | 0.812 | ||
Vegetable | −0.167 | −0.561 | 0.586 | ||
Aquaculture | −0.463 | −0.762 | 0.462 | ||
Catch yield | 0.141 | 0.482 | 0.639 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Cai, M.; Wang, Y.; Chen, B.; Li, X.; Qiu, C.; Huang, S.; Sun, J.; Liu, X.; Qian, B.; et al. Organochlorine Pesticides in Sediment of Zhang River Estuary Mangrove National Natural Reserve: The Implication of Its Source Change in China’s Mangroves. Sustainability 2020, 12, 3016. https://doi.org/10.3390/su12073016
Chen K, Cai M, Wang Y, Chen B, Li X, Qiu C, Huang S, Sun J, Liu X, Qian B, et al. Organochlorine Pesticides in Sediment of Zhang River Estuary Mangrove National Natural Reserve: The Implication of Its Source Change in China’s Mangroves. Sustainability. 2020; 12(7):3016. https://doi.org/10.3390/su12073016
Chicago/Turabian StyleChen, Kai, Minggang Cai, Yun Wang, Bin Chen, Xiaomeng Li, Canrong Qiu, Shuiying Huang, Jionghui Sun, Xiaoyan Liu, Bihua Qian, and et al. 2020. "Organochlorine Pesticides in Sediment of Zhang River Estuary Mangrove National Natural Reserve: The Implication of Its Source Change in China’s Mangroves" Sustainability 12, no. 7: 3016. https://doi.org/10.3390/su12073016
APA StyleChen, K., Cai, M., Wang, Y., Chen, B., Li, X., Qiu, C., Huang, S., Sun, J., Liu, X., Qian, B., & Ke, H. (2020). Organochlorine Pesticides in Sediment of Zhang River Estuary Mangrove National Natural Reserve: The Implication of Its Source Change in China’s Mangroves. Sustainability, 12(7), 3016. https://doi.org/10.3390/su12073016