Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis
Abstract
:1. Introduction
2. Literature Review
3. Methods and Data
3.1. Methods
3.2. Data Collection
4. Results
5. Discussions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Year | |||||
---|---|---|---|---|---|
2005 | −2.96 | 0.87 | −2.98 | 4.01 | 0.96 |
2006 | −5.82 | 2.10 | 0.25 | 3.79 | 0.78 |
2007 | −3.19 | 0.22 | −1.52 | 1.50 | 0.89 |
2008 | 5.67 | −0.10 | −3.92 | 3.35 | 1.00 |
2009 | 6.54 | 0.02 | 1.39 | −1.20 | 1.25 |
2010 | 28.90 | −0.29 | −8.61 | 7.16 | 1.84 |
2011 | 2.49 | 3.02 | 1.72 | 5.80 | 2.37 |
2012 | −4.91 | 0.44 | −5.03 | 10.39 | 1.90 |
2013 | −21.20 | −0.14 | 1.23 | −1.45 | 2.86 |
2014 | −4.21 | −2.73 | −8.05 | 4.46 | −0.38 |
2015 | −23.11 | −1.85 | −3.25 | −0.27 | 0.87 |
Year | |||||
---|---|---|---|---|---|
2005 | −6.35 | 1.32 | −4.52 | 6.10 | 1.46 |
2006 | −8.02 | 3.13 | 0.37 | 5.65 | 1.17 |
2007 | 2.86 | 0.37 | −2.57 | 2.54 | 1.50 |
2008 | −4.51 | −0.15 | −6.17 | 5.27 | 1.56 |
2009 | 3.21 | 0.02 | 1.70 | −1.46 | 1.53 |
2010 | 12.91 | −0.28 | −8.28 | 6.89 | 1.76 |
2011 | 12.87 | 2.72 | 1.55 | 5.22 | 2.14 |
2012 | −16.80 | 0.40 | −4.50 | 9.30 | 1.70 |
2013 | 19.70 | −0.15 | 1.33 | −1.57 | 3.10 |
2014 | −20.45 | −3.53 | −10.40 | 5.77 | −0.49 |
2015 | −16.98 | −2.43 | −4.28 | −0.35 | 1.15 |
Year | |||||
---|---|---|---|---|---|
2005 | −3.30 | 0.77 | −2.66 | 3.58 | 0.86 |
2006 | −5.89 | 1.79 | 0.21 | 3.24 | 0.67 |
2007 | 13.26 | 0.26 | −1.81 | 1.79 | 1.05 |
2008 | 29.34 | −0.20 | −7.96 | 6.80 | 2.02 |
2009 | 1.79 | 0.04 | 3.05 | −2.63 | 2.74 |
2010 | −18.42 | −0.36 | −10.69 | 8.89 | 2.28 |
2011 | −7.57 | 2.17 | 1.23 | 4.16 | 1.70 |
2012 | −7.34 | 0.28 | −3.16 | 6.53 | 1.19 |
2013 | −3.77 | −0.09 | 0.82 | −0.97 | 1.92 |
2014 | 2.43 | −2.18 | −6.41 | 3.56 | −0.30 |
2015 | 8.02 | −2.31 | −4.06 | −0.34 | 1.09 |
Year | SO2 | NO2 | PM2.5 | |||
---|---|---|---|---|---|---|
2005–2010 | 2010–2015 | 2005–2010 | 2010–2015 | 2005–2010 | 2010–2015 | |
CI | 25.26 | −41.94 | 3.22 | −18.20 | 17.47 | −6.89 |
ES | 3.74 | −2.13 | 3.97 | −2.32 | 3.08 | −2.52 |
EI | −14.11 | −10.22 | −14.98 | −11.15 | −11.63 | −12.14 |
Y | 19.35 | 10.63 | 20.55 | 11.60 | 15.95 | 12.62 |
P | 7.76 | 4.65 | 8.236 | 5.074 | 6.39 | 5.52 |
References
- World Bank. Better Air Quality in Ulaanbaatar Begins in Ger Areas. 2018. Available online: https://www.worldbank.org/en/news/feature/2018/06/26/better-air-quality-in-ulaanbaatar-begins-in-ger-areas (accessed on 12 March 2020).
- Byamba, B.; Ishikawa, M. Municipal solid waste management in Ulaanbaatar, Mongolia: Systems analysis. Sustainability 2017, 9, 896. [Google Scholar] [CrossRef] [Green Version]
- World Weather Online. Ulaanbaatar Weather Averages. 2016. Available online: https://www.worldweatheronline.com/ulaanbaatar-weather-averages/ulaanbaatar/mn.aspx (accessed on 8 April 2019).
- World Bank. Ulaanbaatar’s Air Pollution Crisis: Summertime Complacency Won’t Solve the Wintertime Problem. 2010. Available online: https://blogs.worldbank.org/eastasiapacific/ulaanbaatar-s-air-pollution-crisis-summertime-complacency-won-t-solve-the-wintertime-problem (accessed on 19 March 2020).
- World Bank. Mongolia’s Growing Shantytowns: The Cold and Toxic Ger Districts. 2009. Available online: https://blogs.worldbank.org/eastasiapacific/mongolias-growing-shantytowns-the-cold-and-toxic-ger-districts (accessed on 11 March 2020).
- Amarsaikhan, D.; Battsengel, V.; Nergui, B.; Ganzorig, M.; Bolor, G. A study on air pollution in Ulaanbaatar City, Mongolia. GEP 2014, 2, 123–128. [Google Scholar] [CrossRef]
- Davy, P.K.; Guchin, G.; Markwitz, A. Air particulate matter pollution in Ulaanbaatar, Mongolia: Determination of composition, source contributions and source locations. Atmos. Pollut. Res. 2011, 2, 126–137. [Google Scholar] [CrossRef] [Green Version]
- National Geographic. Kids Suffer Most in One of Earth’s Most Polluted Cities. 2019. Available online: https://www.nationalgeographic.com/environment/2019/03/mongolia-air-pollution/ (accessed on 12 March 2020).
- World Data Atlas. Mongolia- Fossil Fuel Energy Consumption as a Share of Total Energy Consumption. 2004. Available online: https://knoema.com/atlas/Mongolia/Fossil-fuel-energy-consumption (accessed on 1 December 2019).
- World Health Organization (WHO). Air Quality Guidelines- Global Update. 2005. Available online: https://www.who.int (accessed on 3 December 2019).
- Franklin, M.; Chau, K.; Kalashnikova, V.O.; Garay, J.M.; Enebish, T.; Sorek-Hamer, M. Using multi-angle imaging spectroradiometer aerosol mixture properties for air quality assessment in Mongolia. Remote Sens. 2018, 10, 1317. [Google Scholar] [CrossRef] [Green Version]
- Guttikunda, S.; Lodoisamba, S.; Bulgansaikhan, B.; Dashdondog, B. Particulate Pollution in Ulaanbaatar, Mongolia. Air Qual. Atmos. Health 2013, 6, 589–601. [Google Scholar] [CrossRef]
- World Bank, Development Research Center of the State Council. Urban China: Toward Efficient, Inclusive, and Sustainable Urbanization. 2014. Available online: https://www.worldbank.org/en/country/china/publication/urban-china-toward-efficient-inclusive-sustainable-urbanization (accessed on 15 October 2019).
- Guttikunda, S. Urban Air Pollution Analysis for Ulaanbaatar. The World Bank. 2017. Available online: http://documents.worldbank.org/curated/en/900891468276852126/pdf/660820v10revis00Mongolia0Report0Web.pdf (accessed on 23 May 2019).
- Hauck, M. Epiphytic lichens indicate recent increase in air pollution in the Mongolian capital Ulan Bator. Lichenologist 2008, 40, 165–168. [Google Scholar] [CrossRef]
- Nishikawa, M.; Matsui, I.; Batdorj, D.; Jugder, D.; Mori, I.; Shimizu, A.; Sugimoto, N.; Takahashi, K. Chemical composition of urban airborne particulate matter in Ulaanbaatar. Atmos. Environ. 2011, 45, 5710–5715. [Google Scholar] [CrossRef]
- Nishikawa, M.; Matsui, I.; Mori, I.; Batdorj, D.; Sarangerel, E.; Onishi, K.; Shimizu, A.; Sugimoto, N. Chemical characteristics of airborne particulate matter during the winter season in Ulaanbaatar. Earozoru Kenyu 2015, 30, 126–133. [Google Scholar] [CrossRef]
- Zhu, S.; Horne, J.; Mac Kinnon, M.; Samuelsen, G.; Dabdub, D. Comprehensively assessing the drivers of future air quality in California. Environ. Int. 2019, 125, 386–398. [Google Scholar] [CrossRef]
- Mac Kinnon, M.; Zhu, S.; Carreras-Sospedra, M.; Soukup, J.V.; Dabdub, D.; Samuelsen, G.S.; Brouwer, J. Considering future regional air quality impacts of the transportation sector. Energy Policy 2019, 124, 63–80. [Google Scholar] [CrossRef]
- Ji, X.; Yao, Y.; Long, X. What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective. Energy Policy 2018, 119, 458–472. [Google Scholar] [CrossRef]
- National Statistical Information Service, Ulaanbaatar, Mongolia. Average Concentration of Air Pollution by Station. Available online: http://www.1212.mn/tables.aspx?tbl_id=DT_NSO_2400_015V2&IND_AIR_select_all=0&IND_AIRSingleSelect=&IND_AIR1_select_all=0&IND_AIR1SingleSelect=_19&YearM_select_all=0&YearMSingleSelect=_201909&viewtype= (accessed on 14 March 2020).
- Zhang, M.; Mu, H.; Ning, Y.; Song, Y. Decomposition of energy-related CO2 emission over 1991-2006 in China. Ecol. Econ. 2009, 68, 2122–2128. [Google Scholar] [CrossRef]
- Andreoni, V.; Galmarini, S. Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption. Energy 2012, 44, 682–691. [Google Scholar] [CrossRef]
- Wu, Y.; Chau, K.; Lu, W.; Shen, L.; Shuai, C.; Chen, J. Decoupling relationship between economic output and carbon emission in the Chinese construction industry. Environ. Impact Assess.Rev. 2018, 71, 60–69. [Google Scholar] [CrossRef]
- Guan, D.; Su, X.; Zhang, Q.; Peters, G.P.; Liu, Z.; Lei, Y. The socioeconomic drivers of China’s primary PM2.5 emissions. Environ. Res. 2014, 9, 024010. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wang, S.; Zhang, W.; Li, J.; Zhou, Y. Impacts of energy consumption, energy structure, and treatment technology on SO2 emissions: A multi-scale LMDI decomposition analysis in China. Appl. Energy 2016, 184, 714–726. [Google Scholar] [CrossRef]
- Chang, M.; Zheng, J.; Inoue, Y.; Tian, X.; Chen, Q.; Gan, T. Comparative analysis on the socioeconomic drivers of industrial air-pollutant emissions between Japan and China: Insights for the further-abatement period based on the LMDI method. J. Clean. Prod. 2018, 1189, 240–250. [Google Scholar] [CrossRef]
- Lyu, W.; Li, Y.; Guan, D.; Zhao, H.; Zhang, Q.; Liu, Z. Driving forces of Chinese primary air pollution emissions: An index decomposition analysis. J. Clean. Prod. 2016, 133, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Dai, H.; Dong, H.; Hanaoka, T.; Masui, T. Economic impacts from PM2.5 pollution-related health effects in China: A provincial-level analysis. Environ. Sci. Technol. 2016, 50, 4836–4843. [Google Scholar] [CrossRef]
- Zhang, Y.; Shuai, C.; Bian, J.; Chen, X.; Wu, Y.; Shen, L. Socioeconomic factors of PM2.5 concentrations in 152 Chinese cities: Decomposition analysis using LMDI. J. Clean. Prod. 2019, 218, 96–107. [Google Scholar] [CrossRef]
- Hoekstra, R.; Van Den Bergh, J.C.J.M. Comparing structural decomposition analysis and index. Energy Econ. 2003, 25, 39–64. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Econ. 2012, 34, 177–188. [Google Scholar] [CrossRef]
- Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Wang, H.; Ang, B.W.; Su, B. Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues. Energy 2017, 123, 47–63. [Google Scholar] [CrossRef]
- Dietzenbacher, E.; Hoen, A.; Los, B. Labor productivity in Western Europe 1975-1985: An intercountry, interindustry analysis. J.Reg.Sci. 2000, 40, 425–452. [Google Scholar] [CrossRef]
- Rose, A.; Chen, C.Y. Source of change in energy use in the US economy, 1972-1982: A structural decomposition analysis. Resour. Energy Econ. 1991, 13, 1–21. [Google Scholar] [CrossRef]
- Cansino, M.J.; Roman, R.; Ordonez, M. Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis. Energy Policy 2016, 89, 150–159. [Google Scholar] [CrossRef]
- Yamakawa, A.; Peters, G.P. Structural decomposition analysis of greenhouse gas emissions in Norway 1990-2002. Econ. Syst. Res. 2011, 23, 303–318. [Google Scholar] [CrossRef]
- Ang, B.W.; Zhang, F.Q. A survey of index decomposition analysis in energy and environmental studies. Energy 2000, 25, 1149–1176. [Google Scholar] [CrossRef]
- Bhattacharyya, S.C.; Ussanarassame, A. Decomposition of energy and CO2 intensities of Thai industry between 1981 and 2000. Energy Econ. 2004, 26, 765–781. [Google Scholar] [CrossRef]
- Hammond, G.P.; Norman, J.B. Decomposition analysis of energy-related carbon emissions from UK manufacturing. Energy 2012, 41, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Enkhtsolmon, O.; Matsumoto, T.; Tseveen, E. Cost benefit analysis of air pollution abatement options in the Ger Area, Ulaanbaatar, and health benefits using contingent valuation. IJESD 2016, 7, 330–334. [Google Scholar] [CrossRef] [Green Version]
- Lim, M.; Myagmarchuluun, S.; Ban, H.; Hwang, Y.; Ochir, C.; Lodoisamba, D.; Lee, K. Characteristics of indoor PM2.5 concentrations in gers using coal stoves in Ulaanbaatar, Mongolia. Int. J. Environ. Res. Public Health 2018, 15, 2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Gao, Z.; Geng, Y.; Wu, R.; Chen, W.; Tian, X. Analysis of energy-related CO2 emissions in China’s pharmaceutical industry and its driving forces. J. Clean. Prod. 2019, 223, 94–108. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A Practical Guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- World Energy Balances. Total Final Consumption by Source, Mongolia 1990–2019. 2019. Available online: https://www.iea.org/data-and-statistics?country=MONGOLIA&fuel=Energy%20consumption&indicator=Total%20final%20consumption%20(TFC)%20by%20source (accessed on 19 July 2019).
- World Bank National Accounts Data. GDP (current US$)-Mongolia. 2018. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=MN (accessed on 23 December 2019).
- Statistic Department of Ulaanbaatar. Population by Khoroo. 2018. Available online: http://ubstat.mn/JobTables.aspx (accessed on 23 March 2019).
- Sharma, N. The Decoupling of GDP and Energy Growth: A CEO Guide 2019. Available online: https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/the-decoupling-of-gdp-and-energy-growth-a-ceo-guide (accessed on 9 December 2019).
- National Statistical Information Service, Ulaanbaatar, Mongolia. Population Growth. 2018. Available online: http://www.1212.mn/stat.aspx?LIST_ID=976_L03 (accessed on 23 January 2019).
- Green Development Strategic Action Plan for Ulaanbaatar. British Embassy Ulaanbaatar and The Asia Foundation. 2020. Available online: https://asiafoundation.org/resources/pdfs/GreenDevelopment%20StrategicActionPlanforUlaanbaatar2020.pdf (accessed on 10 January 2020).
- Urban Air Pollution Analysis for Ulaanbaatar, Mongolia. 2008. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1288328 (accessed on 19 March 2020).
- Cousins, S. Bulletin of the World Health Organization. Air Pollution in Mongolia. 2008. Available online: https://www.who.int/bulletin/volumes/97/2/19-020219/en/ (accessed on 10 January 2020).
- International Energy Agency. Renewables Share in Final Energy Consumption (SDG 7.2) in Mongolia. 2016. Available online: https://www.iea.org/data-and-statistics?country=MONGOLIA&fuel=Renewables%20and%20waste&indicator=Renewable%20share%20in%20final%20energy%20consumption%20(SDG%207.2)%20 (accessed on 23 May 2019).
- Geng, Y.; Sarkis, J.; Wang, X.B.; Zhao, H.Y.; Zhong, Y.G. Regional application of ground source heat pump in China: A case of Shenyang. Renew. Sustain. Energ. Rev. 2013, 18, 95–102. [Google Scholar] [CrossRef]
Variable | Determinant | Unit | Description | Description and Definition |
---|---|---|---|---|
CI | C/F | g/m3 (micrograms per cubic meter)/kilotons of oil equivalent (ktoe) | Pollution intensity | measures the amount of air pollutant concentrated per unit of fossil fuel |
F/E | ktoe/ktoe | Energy structure | stands for the energy structure effect | |
E/GDP | ktoe/billion dollar | Energy intensity | measures the energy consumption per unit of GDP, representing the energy intensity effect | |
GDP/P | billion dollar/thousand people | Economic growth | presents the economic growth scale; for example, measures the GDP per capita of P | |
P | thousand people | Population growth | measures the population growth |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enkhbat, E.; Geng, Y.; Zhang, X.; Jiang, H.; Liu, J.; Wu, D. Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis. Sustainability 2020, 12, 3185. https://doi.org/10.3390/su12083185
Enkhbat E, Geng Y, Zhang X, Jiang H, Liu J, Wu D. Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis. Sustainability. 2020; 12(8):3185. https://doi.org/10.3390/su12083185
Chicago/Turabian StyleEnkhbat, Enkhjargal, Yong Geng, Xi Zhang, Huijuan Jiang, Jingyu Liu, and Dong Wu. 2020. "Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis" Sustainability 12, no. 8: 3185. https://doi.org/10.3390/su12083185
APA StyleEnkhbat, E., Geng, Y., Zhang, X., Jiang, H., Liu, J., & Wu, D. (2020). Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis. Sustainability, 12(8), 3185. https://doi.org/10.3390/su12083185