Determinants of the Adoption of Sustainable Intensification in Southern African Farming Systems: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Criteria for Selecting Studies
2.2. Search Method and Strategy
2.3. Data Collection and Analysis
3. Method of Meta-analysis
4. Heterogeneity
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. PNAS 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardey, P.G.; Beddow, J.M.; Hurley, T.M.; Beatty, T.K.; Eidman, V.R. A bounds analysis of world food futures: Global agriculture through to 2050. Aust. J. Agric. Resour. Econ. 2014, 58, 571–589. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S. Climate change and food systems. Annu. Rev. Env. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- The Montpellier Panel. Sustainable Intensification: A New Paradigm for African Agriculture. 2013. Available online: https://europa.eu/capacity4dev/hunger-foodsecurity-nutrition/document/sustainable-intensification-new-paradigm-african-agriculture (accessed on 20 March 2019).
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, G.; Cyphers, D.; Phipps, T. Factors affecting the adoption of sustainable agricultural practices. Agric. Econ. Res. Rev. 1993, 22, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.R. Agricultural Sustainability and Technology Adoption: Issues and Policies for Developing Countries. Am. J. Agric. Econ. 2005, 87, 1325–1334. [Google Scholar] [CrossRef]
- Pretty, J.; Toulmin, C.; Williams, S. Sustainable intensification in African agriculture. Int. J. Agr. Sustain. 2011, 9, 5–24. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Coyne, D.; Gockowski, J.; Hauser, S.; Huising, J.; Masso, C.; Nziguheba, G.; Schut, M.; Van Asten, P. Sustainable intensification and the African smallholder farmer. Curr. Opin. Env. Sust. 2014, 8, 15–22. [Google Scholar] [CrossRef]
- Holden, S.T. Fertilizer and sustainable intensification in Sub-Saharan Africa. Glob. Food Security 2018, 18, 20–26. [Google Scholar] [CrossRef]
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Andersson, J.A.; Corbeels, M.; Kirkegaard, J.; Mortensen, D.; Erenstein, O.; Vanlauwe, B. Beyond conservation agriculture. Front. Plant Sci. 2015, 6, 870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassie, M.; Zikhali, P.; Pender, J.; Köhlin, G. The economics of sustainable land management practices in the Ethiopian highlands. J. Agric. Econ. 2010, 61, 605–627. [Google Scholar] [CrossRef]
- Mango, N.; Siziba, S.; Makate, C. The impact of adoption of conservation agriculture on smallholder farmers’ food security in semi-arid zones of southern Africa. Agric. Food Secur. 2017, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, E.O.; Blum, M.; Punt, M. The impact of extension and ecosystem services on smallholder’s credit constraint. J. Dev. Areas 2016, 50, 333–350. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, E.O.; Ola, O.; Buchenrieder, G. Does an agroforestry scheme with payment for ecosystem services (PES) economically empower women in sub-Saharan Africa? Ecosyst. Serv. 2018, 31, 1–11. [Google Scholar] [CrossRef]
- Benjamin, E.O.; Sauer, J. The cost effectiveness of payments for ecosystem services—Smallholders and agroforestry in Africa. Land Use Policy 2018, 71, 293–302. [Google Scholar] [CrossRef]
- Teklewold, H.; Kassie, M.; Shiferaw, B. Adoption of multiple sustainable agricultural practices in rural Ethiopia. J. Agric. Econ. 2013, 64, 597–623. [Google Scholar] [CrossRef]
- Firbank, L.G.; Attwood, S.; Eory, V.; Gadanakis, Y.; Lynch, J.M.; Sonnino, R.; Takahashi, T. Grand challenges in Sustainable intensification and ecosystem Services. Front. Sustain. Food Syst. 2018, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Gadanakis, Y.; Bennett, R.; Park, J.; Areal, F.J. Evaluating the sustainable intensification of arable farms. J. Environ. Manag. 2015, 150, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Garnett, T.; Godfray, C. Sustainable Intensification in Agriculture: Navigating a Course through Competing Food System Priorities; Food Climate Research Network and the Oxford Martin Programme on the Future of Food; Oxford Martin School: Oxford, UK, 2012; pp. 6–51. [Google Scholar]
- Moran, D.; Lucas, A.; Barnes, A. Mitigation win-win. Nat. Clim. Change 2013, 3, 611–613. [Google Scholar] [CrossRef]
- Shiferaw, B.; Tesfaye, K.; Kassie, M.; Abate, T.; Prasanna, B.M.; Menkir, A. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather Clim. Extremes 2014, 3, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Nhemachena, C.; Hassan, R. Micro-Level Analysis of Farmer’s Adaption to Climate Change in Southern Africa; International Food Policy Research Institute: Washington, DC, USA, 2007; pp. 1–29. [Google Scholar]
- Cooper, H.M. Scientific guidelines for conducting integrative research reviews. Rev. Educ. Res. 1982, 52, 291–302. [Google Scholar] [CrossRef]
- Martin, K.G. The Difference between Logistic and Probit Regression. 2008. Available online: https://www.theanalysisfactor.com/the-difference-between-logistic-and-probit-regression/ (accessed on 1 March 2019).
- Kelley, G.A.; Kelley, K.S. Statistical models for meta-analysis: A brief tutorial. World J. Methodol. 2012, 2, 27. [Google Scholar] [CrossRef]
- Ialongo, C. Understanding the effect size and its measures. Biochem. Med. 2016, 26, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Borenstein, M.; Hedges, L.; Rothstein, H. Meta-Analysis: Fixed Effect vs. Random Effects. 2007. Available online: www.meta-analysis.com (accessed on 5 February 2019).
- Thompson, S.G.; Pocock, S.J. Can meta-analyses be trusted? Lancet 1991, 338, 1127–1130. [Google Scholar] [CrossRef]
- Veroniki, A.A.; Jackson, D.; Viechtbauer, W.; Bender, R.; Bowden, J.; Knapp, G.; Kuss, O.; Higgins, J.P.; Langan, D.; Salanti, G. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res. Synth. Methods 2015, 7, 55–79. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Thompson, S. Quantifying Heterogeneity in a Meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions. 2011. Available online: https://handbook-5-1.cochrane.org/chapter_12/12_4_1_confidence_intervals.htm (accessed on 5 February 2019).
- Knapp, G.; Biggerstaff, B.; Hartung, J. Assessing the amount of heterogeneity in random-effects meta-analysis. Biom. J. 2006, 48, 271–285. [Google Scholar] [CrossRef]
- Viechtbauer, W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J. Educ. Behav. Stat. 2005, 30, 261–293. [Google Scholar] [CrossRef]
- Novianti, P.W.; Rose, K.C.B.; van der Tweel, I. Estimation of between-trial variance in sequential meta-analyses: A simulation study. Contemp. Clin. Trials 2014, 37, 129–138. [Google Scholar] [CrossRef]
- Sidik, K.; Jonkman, J.N. A comparison of heterogeneity variance estimators in combining results of studies. Stat. Med. 2007, 26, 1964–1981. [Google Scholar]
- Altman, D.G.; Bland, J.M. How to obtain the confidence interval from a P value. Br. Med. J. 2011, 343, d2090. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G.; Bland, J.M. How to obtain the P value from a confidence interval. Br. Med. J. 2011, 343, d2304. [Google Scholar] [CrossRef] [Green Version]
- Du Prel, J.B.; Hommel, G.; Röhrig, B.; Blettner, M. Confidence interval or p-value? Part 4 of a series on evaluation of scientific publications. Dtsch. Arztebl. Int. 2009, 106, 335–339. [Google Scholar] [CrossRef]
- LaMorte, W.W. Confidence Intervals and P-Values. 2016. Available online: http://sphweb.bumc.bu.edu/otlt/MPHModules/EP/EP713_RandomError/EP713_RandomError6.html (accessed on 15 February 2019).
- Ryan, R. Heterogeneity and Subgroup Analysis in Cochrane Consumers and Communication Group Reviews: Planning the Analysis at Protocol Stage. 2016. Available online: https://cccrg.cochrane.org (accessed on 18 February 2019).
- Ngwira, A.; Johnsen, F.H.; Aune, J.B.; Mekuria, M.; Thierfelder, C. Adoption and extent of conservation agriculture practices among smallholder farmers in Malawi. J. Soil Water Conserv. 2014, 69, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Chompolola, A.; Kaonga, O. Adoption of conservation agriculture in Zambia—The case of Chongwe District. J. Sustain. Dev. 2016, 9, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Huedo-Medina, T.B.; Sanschez-Meca, J.; Marin-Martinez, F.; Botella, J. Assessing heterogeneity in Meta-analysis: Q statistics or I squared index? Psychol. Methods 2006, 11, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Zulu-Mbata, O.; Chapoto, A.; Hichaambwa, M. Determinants of Conservation Agriculture Adoption among Zambian Smallholder Farmers; IAPRI Working Papers; Indaba Agricultural Policy Research Institute: Lusaka, Zambia, 2016. [Google Scholar]
- Manda, J.; Alene, A.D.; Gardebroek, C.; Kassie, M.; Tembo, G. Adoption and impacts of sustainable agricultural practices on maize yields and incomes: Evidence from rural Zambia. J. Agric. Econ. 2016, 67, 130–153. [Google Scholar] [CrossRef]
- Mavunganidze, Z.; Madakadze, J.C.; Mutenje, M.J.; Nyamangara, J. Factors affecting the choice of conservation agriculture practices adopted by smallholder cotton farmers in Zimbabwe. Afr. J. Agric. Res. 2013, 8, 1641–1649. [Google Scholar]
- Bryson, J.C. Women and agriculture in sub-Saharan Africa: Implications for development (an exploratory study). J. Dev. Stud. 1981, 17, 29–46. [Google Scholar] [CrossRef]
- Raney, T.; Anríquez, G.; Croppenstedt, A.; Gerosa, S.; Lowder, S.K.; Matuschke, I.; Skoet, J.; Doss, C. The Role of Women in Agriculture. 2011. Available online: http://www.fao.org/3/a-am307e.pdf (accessed on 15 March 2019).
- Saito, K.A.; Mekonnen, H.; Spurling, D. Raising the Productivity of Women Farmers in Sub-Saharan Africa; The World Bank: Washington, DC, USA, 1994; pp. 1–118. [Google Scholar]
- Benjamin, E.O. Adverse selections and microfinance in rural Africa: Signalling through environmental services. Enterp. Dev. Microfinance 2013, 24, 28–39. [Google Scholar] [CrossRef]
- Benjamin, E.O.; Blum, M. Participation of smallholders in agrofoestry agri-environmental scheme: A lesson from the rural mount Kenyan region. J. Dev. Areas 2015, 49, 127–143. [Google Scholar] [CrossRef]
Stata Command | Estimation Methods for (1) | Estimation Methods for CI of | Significance Test (P Value) for (2) |
---|---|---|---|
metan | DL | Wald-type | Available |
metaan | DL, ML, REML | Wald-type, PL | Not Available |
Determinants | DL Model | ML Model | REML Model | PL Model |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Age | 0.058(1) * (3) | 0.119 | 0.119 | 0.119 |
(0.023, 0.092) (2) | (−0.075, 0.313) | (−0.079, 0.316) | (−0.082, 0.319) | |
(0.069) (4) | −0.388 | −0.395 | −0.401 | |
Arable Land | −0.203* | 0.402 | −0.202 | −0.202 |
(−0.402, −0.004) | (−0.063, 0.867) | (−0.66, 0.256) | (−0.668, 0.266) | |
−0.398 | −0.93 | −0.916 | −0.934 | |
Education | −0.034 | −0.033 | −0.032 | −0.033 |
(−0.149, 0.080) | (−0.44, 0.374) | (−0.447, 0.383) | (−0.451, 0.393) | |
−0.229 | −0.814 | −0.83 | −0.845 | |
Extension | 0.005 | 3 | 0.003 | 0.003 |
(−0.027, 0.036) | (−0.011, 0.017) | (−0.012, 0.019) | (−0.014, 0.020) | |
−0.063 | −0.028 | −0.031 | −0.034 | |
Gender | −0.503* | −0.509* | −0.507* | −0.509* |
(−0.866, −0.140) | (−0.844, −0.173) | (−0.849, −0.165) | (−0.852, −0.155) | |
−0.726 | −0.671 | −0.684 | −0.697 | |
Household Size | −0.07 | −0.079 | −0.078 | −0.079 |
(−0.154, 0.014) | (−0.278, 0.12) | (−0.282, 0.125) | (−0.285, 0.132) | |
−0.168 | −0.398 | −0.407 | −0.417 | |
Income | −0.011 | −0.009 | −0.005 | −0.009 |
(−0.186, 0.163) | (−0.192, 0.175) | (−0.199, 0.188) | (−0.200, 0.209) | |
−0.349 | −0.367 | −0.387 | −0.409 | |
Membership | 0.398* | 0.402 | 0.402 | 0.402 |
(0.180, 0.616) | (−0.063, 0.867) | (−0.078, 0.882) | (−0.092, 0.896) | |
−0.436 | −0.93 | −0.96 | −0.988 | |
Credit | 0.156* | 0.159* | 0.16* | 0.159* |
(0.072, 0.241) | (0.043, 0.276) | (0.036, 0.283) | (0.031, 0.290) | |
−0.169 | −0.233 | −0.247 | −0.259 |
Rankings of Significance (1) | Determinants | P Values for Significance Test of ES = 0 | Rankings of Precision (2) | Determinants | Widths of 95% CI (3) |
---|---|---|---|---|---|
1 | Membership | 0.000*** (4) | 1 | Extension | 0.063 |
2 | Credit | 0.000*** | 2 | Age | 0.069 |
3 | Age | 0.001** (5) | 3 | Education | 0.157 |
4 | Gender | 0.007** | 4 | Household Size | 0.168 |
5 | Arable Land | 0.046* (6) | 5 | Credit | 0.169 |
6 | Household Size | 0.102 | 6 | Income | 0.349 |
7 | Education | 0.556 | 7 | Arable Land | 0.398 |
8 | Extension | 0.778 | 8 | Membership | 0.436 |
9 | Income | 0.900 | 9 | Gender | 0.726 |
Determinants | DL Model | ML Model | REML Model | PL Model |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Age | 96.20% | 99.91% | 99.91% | 99.91% |
Arable Land | 98.80% | 99.51% | 99.97% | 99.76% |
Education | 97.50% | 99.83% | 99.83% | 99.83% |
Extension | 80.30% | 34.45% | 40.64% | 34.45% |
Gender | 97.90% | 97.51% | 97.62% | 97.51% |
Household Size | 94.30% | 99.07% | 99.11% | 99.07% |
Income | 76.50% | 79.03% | 81.55% | 79.03% |
Membership | 97.40% | 99.51% | 99.54% | 99.51% |
Credit | 95.20% | 97.72% | 98.00% | 97.72% |
Determinants | More Convergent | Less Convergent | Overall |
---|---|---|---|
Age | 93.10% | 98.50% | 96.20% |
Arable Land | 70.20%(1) | 99.60% | 98.80% |
Education | 64.30% | 99.30% | 97.50% |
Extension | 0.00% | 82.20% | 80.30% |
Gender | 0.00% | 98.40% | 97.90% |
Household Size | 50.00% | 99.00% | 94.30% |
Income | 69.40% | 75.30% | 76.50% |
Membership | 90.30% | 99.40% | 97.40% |
Credit | 78.70% | 96.30% | 95.20% |
Determinants | More Convergent | Less Convergent | Overall |
---|---|---|---|
Age | 0.022 | 0.442 | 0.058** |
(−0.002, 0.046) | (−0.447, 1.331) | (0.023, 0.092) | |
(n = 25)(1) | (n = 8) | (n = 33) | |
Arable Land | 0.092***(2) | −1.233 | −0.203* |
(0.048, 0.135) | (−3.416, 0.949) | (−0.402, −0.004) | |
(n = 18) | (n = 5) | (n = 23) | |
Education | 0.083*** | −0.139 | −0.034 |
(0.051, 0.115) | (−2.084, 1.806) | (−0.149, 0.080) | |
(n = 21) | (n = 8) | (n = 29) | |
Extension | 0.013**(3) | 0.038 | 0.005 |
(0.003, 0.022) | (−0.107, 0.183) | (−0.027, 0.036) | |
(n = 5) | (n = 15) | (n = 20) | |
Gender | −0.762*** | −0.404 | −0.503** |
(−0.915, -0.609) | (−0.867, 0.058) | (−0.866, -0.140) | |
(n = 7) | (n = 18) | (n = 25) | |
Household Size | 0.053*** | −0.446 | −0.07 |
(0.022, 0.084) | (−1.297, 0.406) | (−0.154, 0.014) | |
(n = 22) | (n = 5) | (n = 27) | |
Income | −0.022 | 0.005 | −0.011 |
(−0.235, 0.191) | (−0.232, 0.241) | (−0.186, 0.163) | |
(n = 2) | (n = 13) | (n = 15) | |
Membership | 0.215** | 0.69 | 0.398*** |
(0.081, 0.348) | (−1.540. 2.919) | (0.180, 0.616) | |
(n = 12) | (n = 4) | (n = 16) | |
Credit | 0.188** | 0.136*(4) | 0.156*** |
(0.054, 0.321) | (0.030, 0.243) | (0.072, 0.241) | |
(n = 12) | (n = 4) | (n = 16) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Ola, O.; Benjamin, E.O. Determinants of the Adoption of Sustainable Intensification in Southern African Farming Systems: A Meta-Analysis. Sustainability 2020, 12, 3276. https://doi.org/10.3390/su12083276
Guo Q, Ola O, Benjamin EO. Determinants of the Adoption of Sustainable Intensification in Southern African Farming Systems: A Meta-Analysis. Sustainability. 2020; 12(8):3276. https://doi.org/10.3390/su12083276
Chicago/Turabian StyleGuo, Qian, Oreoluwa Ola, and Emmanuel O. Benjamin. 2020. "Determinants of the Adoption of Sustainable Intensification in Southern African Farming Systems: A Meta-Analysis" Sustainability 12, no. 8: 3276. https://doi.org/10.3390/su12083276
APA StyleGuo, Q., Ola, O., & Benjamin, E. O. (2020). Determinants of the Adoption of Sustainable Intensification in Southern African Farming Systems: A Meta-Analysis. Sustainability, 12(8), 3276. https://doi.org/10.3390/su12083276