The Price-Volume Relationship of the Shanghai Stock Index: Structural Change and the Threshold Effect of Volatility
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Linear VAR
3.2. Threshold VAR
3.3. Research Design
4. Data
5. Empirical Results and Discussion
5.1. Overall Price-Volume Relationship in China’s Stock Market
5.2. Test of Structural Change
5.2.1. Estimation of Time Thresholds
5.2.2. The structural Change Characteristics of the Price-Volume Relation
5.3. The Threshold Effect of Market Volatility on Price-Volume Relation
5.3.1. Estimation of Volatility Thresholds
5.3.2. The Threshold Effect of Market Volatility on the Price-Volume Relationship
5.4. Robustness Checks
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karpoff, J.M. The relation between price changes and trading volume: A survey. J. Financ. Quant. Anal. 1987, 22, 109–126. [Google Scholar] [CrossRef]
- Gallant, A.R.; Rossi, P.E.; Tauchen, G. Stock prices and volume. Rev. Financ. Stud. 1992, 5, 199–242. [Google Scholar] [CrossRef] [Green Version]
- Chuang, C.C.; Kuan, C.M.; Lin, H.Y. Causality in quantiles and dynamic stock return–volume relations. J. Bank. Financ. 2009, 33, 1351–1360. [Google Scholar] [CrossRef]
- Copeland, T.E. A model of asset trading under the assumption of sequential information arrival. J. Financ. 1976, 31, 1149–1168. [Google Scholar] [CrossRef]
- Jennings, R.H.; Starks, L.T.; Fellingham, J.C. An equilibrium model of asset trading with sequential information arrival. J. Financ. 1981, 36, 143–161. [Google Scholar] [CrossRef]
- Epps, T.W.; Epps, M.L. The stochastic dependence of security price changes and transaction volumes: Implications for the mixture-of-distributions hypothesis. Econom. J. Econom. Soc. 1976, 44, 305–321. [Google Scholar] [CrossRef]
- Clark, P.K. A subordinated stochastic process model with finite variance for speculative prices. Econom. J. Econom. Soc. 1973, 41, 135–155. [Google Scholar] [CrossRef]
- Campbell, J.Y.; Grossman, S.J.; Wang, J. Trading volume and serial correlation in stock returns. Q. J. Econ. 1993, 108, 905–939. [Google Scholar] [CrossRef] [Green Version]
- Blume, L.; Easley, D.; O’hara, M. Market statistics and technical analysis: The role of volume. J. Financ. 1994, 49, 153–181. [Google Scholar] [CrossRef]
- Wang, J. A model of competitive stock trading volume. J. Political Econ. 1994, 102, 127–168. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, X.; Liang, X. Information-driven trade and price–volume relationship in artificial stock markets. Phys. A Stat. Mech. Appl. 2015, 430, 73–80. [Google Scholar] [CrossRef]
- Wang, K.; Yang, H. The price-volume relationship caused by asset allocation based on Kelly criterion. Phys. A Stat. Mech. Appl. 2018, 503, 1–8. [Google Scholar] [CrossRef]
- Lee, C.F.; Rui, O.M. Does trading volume contain information to predict stock returns? Evidence from China’s stock markets. Rev. Quant. Financ. Account. 2000, 14, 341–360. [Google Scholar] [CrossRef]
- Chen, G.; Firth, M.; Rui, O.M. The dynamic relation between stock returns, trading volume, and volatility. Financ. Rev. 2001, 36, 153–174. [Google Scholar] [CrossRef]
- Lee, B.S.; Rui, O.M. The dynamic relationship between stock returns and trading volume: Domestic and cross-country evidence. J. Bank. Financ. 2002, 26, 51–78. [Google Scholar] [CrossRef]
- Rashid, A. Stock prices and trading volume: An assessment for linear and nonlinear Granger causality. J. Asian Econ. 2007, 18, 595–612. [Google Scholar] [CrossRef]
- Pisedtasalasai, A.; Gunasekarage, A. Causal and dynamic relationships among stock returns, return volatility and trading volume: Evidence from emerging markets in South-East Asia. Asia-Pac. Financ. Mark. 2007, 14, 277–297. [Google Scholar] [CrossRef]
- Azad, A.S.; Azmat, S.; Fang, V.; Edirisuriya, P. Unchecked manipulations, price–volume relationship and market efficiency: Evidence from emerging markets. Res. Int. Bus. Financ. 2014, 30, 51–71. [Google Scholar] [CrossRef]
- Chuang, W.I.; Liu, H.H.; Susmel, R. The bivariate GARCH approach to investigating the relation between stock returns, trading volume, and return volatility. Glob. Financ. J. 2012, 23, 1–15. [Google Scholar] [CrossRef]
- Wang, Z.; Qian, Y.; Wang, S. Dynamic trading volume and stock return relation: Does it hold out of sample? Int. Rev. Financ. Anal. 2018, 58, 195–210. [Google Scholar] [CrossRef]
- Chen, S.S. Revisiting the empirical linkages between stock returns and trading volume. J. Bank. Financ. 2012, 36, 1781–1788. [Google Scholar] [CrossRef] [Green Version]
- Patra, S.; Bhattacharyya, M. Does volume really matter? A risk management perspective using cross-country evidence. Int. J. Financ. Econ. 2019, 1–18. [Google Scholar] [CrossRef]
- Saatcioglu, K.; Starks, L.T. The stock price–volume relationship in emerging stock markets: The case of Latin America. Int. J. Forecast. 1998, 14, 215–225. [Google Scholar] [CrossRef]
- Rojas, E.; Kristjanpoller, W. Price-volume ratio analysis by causality and day-of-the-week effect for the Latin American stock markets. Lecturas de Economía 2015, 83, 9–31. [Google Scholar]
- Rzayev, K.; Ibikunle, G. A state-space modeling of the information content of trading volume. J. Financ. Mark. 2019, 46, 1–19. [Google Scholar] [CrossRef]
- Hiemstra, C.; Jones, J.D. Testing for linear and nonlinear Granger causality in the stock price-volume relation. J. Financ. 1994, 49, 1639–1664. [Google Scholar]
- Lin, H.Y. Dynamic stock return–volume relation: Evidence from emerging Asian markets. Bull. Econ. Res. 2013, 65, 178–193. [Google Scholar] [CrossRef]
- Gebka, B.; Wohar, M.E. Causality between trading volume and returns: Evidence from quantile regressions. Int. Rev. Econ. Financ. 2013, 27, 144–159. [Google Scholar] [CrossRef]
- Matilla-García, M.; Marín, M.R.; Dore, M.I. A permutation entropy-based test for causality: The volume–stock price relation. Phys. A Stat. Mech. Appl. 2014, 398, 280–288. [Google Scholar] [CrossRef]
- Hasan, R.; Salim, M.M. Power law cross-correlations between price change and volume change of Indian stocks. Phys. A Stat. Mech. Appl. 2017, 473, 620–631. [Google Scholar] [CrossRef]
- El Alaoui, M. Price–volume multifractal analysis of the Moroccan stock market. Phys. A Stat. Mech. Appl. 2017, 486, 473–485. [Google Scholar] [CrossRef]
- Gupta, S.; Das, D.; Hasim, H.; Tiwari, A. The dynamic relationship between stock returns and trading volume revisited: A MODWT-VAR approach. Financ. Res. Lett. 2018, 27, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Kyrtsou, C.; Kugiumtzis, D.; Papana, A. Further insights on the relationship between SP500, VIX and volume: A new asymmetric causality test. Eur. J. Financ. 2019, 25, 1402–1419. [Google Scholar] [CrossRef]
- Wang, Y.C.; Wu, J.L.; Lai, Y.H. New evidence on asymmetric return–volume dependence and extreme movements. J. Empir. Financ. 2018, 45, 212–227. [Google Scholar] [CrossRef]
- Chen, S.; Sun, Y.L.; Liu, Y. Forecast of stock price fluctuation based on the perspective of volume information in stock and exchange market. China Financ. Rev. Int. 2018, 8, 297–314. [Google Scholar] [CrossRef]
- Chae, J.; Kang, M. Low-volume return premium in the Korean stock market. Pac. Basin Financ. J. 2019, 58, 1–27. [Google Scholar] [CrossRef]
- Ülkü, N.; Onishchenko, O. Trading volume and prediction of stock return reversals: Conditioning on investor types’ trading. J. Forecast. 2019, 38, 582–599. [Google Scholar] [CrossRef]
- Sims, C.A. Macroeconomics and reality. Econom. J. Econom. Soc. 1980, 48, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B. Testing for linearity. J. Econ. Surv. 1999, 13, 551–576. [Google Scholar] [CrossRef]
- Qu, Z.; Perron, P. Estimating and testing structural changes in multivariate regressions. Econometrica 2007, 75, 459–502. [Google Scholar] [CrossRef]
- Parkinson, M. The Extreme Value Method for Estimating the Variance of the Rate of Return. J. Bus. 1980, 53, 61–65. [Google Scholar] [CrossRef]
- Garman, M.B.; Klass, M.J. On the Estimation of Security Price Volatilities from Historical Data. J. Bus. 1980, 53, 67–78. [Google Scholar] [CrossRef]
Variable | Mean | Median | Maximum | Minimum | Std. Dev. | Skewness | Kurtosis | J-B | ADF |
---|---|---|---|---|---|---|---|---|---|
2570.48 | 2574.68 | 6092.06 | 1011.50 | 921.42 | 0.68 | 3.87 | 428.28 *** (0.0000) | −2.00 (0.2858) | |
121.90 | 98.04 | 857.13 | 4.08 | 115.39 | 2.37 | 10.48 | 12,801.70 *** (0.0000) | −3.60 * (0.0058) | |
0.02 | 0.06 | 9.03 | −9.26 | 1.60 | −0.50 | 7.42 | 3357.60 *** (0.0000) | −61.42 *** (0.0001) | |
0.00 | −0.04 | 1.69 | −1.58 | 0.63 | 0.22 | 2.49 | 73.10 *** (0.0000) | −4.9825 *** (0.0000) | |
2.75 | 1.78 | 17.52 | 0.25 | 2.65 | 2.10 | 7.64 | 6389.75 *** (0.0000) | −4.2570 *** (0.0005) |
Null Hypothesis | Alternative Hypothesis | Test Result | |
---|---|---|---|
Volume does not Granger cause price | 12.76 * (0.0471) | Reject | |
Price does not Granger cause volume | 369.25 *** (0.0000) | Reject |
Threshold Variable | Setting the Numberof Threshold Values | Threshold Value Estimate | LR Test | |
---|---|---|---|---|
Equation Ret | Equation Vol | |||
Panel A: sample period 2003/3/4–2019/4/22 | ||||
1 | T = 2015/06/11 | 88.56 *** (0.0000) | 321.76 *** (0.0000) | |
2 | t1 = 2015/06/11 t2 = 2016/03/31 | 88.56 *** (0.0000) | 321.76 *** (0.0000) | |
Panel B: sample period 2003/3/4–2015/06/11 | ||||
1 | t’ =2007/10/15 | 31.71 *** (0.0000) | 157.75 *** (0.0000) | |
2 | t3 =2007/10/15 t4 =2008/11/03 | 31.71 *** (0.0000) | 157.75 *** (0.0000) |
Null Hypothesis | Alternative Hypothesis | Test Result | |
---|---|---|---|
Subsample 1: 2003/3/4–2007/10/15 | |||
Volume does not Granger causes price | 16.88 ** (0.0020) | Reject | |
Price does not Granger causes volume | 94.95 *** (0.0000) | Reject | |
Subsample 2: 2007/10/15–2008/11/03 | |||
Volume does not Granger causes price | 1.39 (0.2392) | Accept | |
Price does not Granger causes volume | 16.64 *** (0.0000) | Reject | |
Subsample 3: 2008/11/03–2015/06/11 | |||
Volume does not Granger causes price | 14.83 (0.0625) | Accept | |
Price does not Granger causes volume | 309.81 *** (0.0000) | Reject | |
Subsample 4: 2015/06/11–2016/03/31 | |||
Volume does not Granger causes price | 3.57 (0.0587) | Accept | |
Price does not Granger causes volume | 0.02 (0.8959) | Accept | |
Subsample 5: 2016/03/31–2019/4/22 | |||
Volume does not Granger causes price | 0.47 (0.9261) | Accept | |
Price does not Granger causes volume | 68.90 *** (0.0000) | Reject |
Threshold Variable | Setting the Numberof Threshold Value | Threshold Estimates | LR test | |
---|---|---|---|---|
Equation ret | Equation vol | |||
1 | = 6.52 | 61.58 *** (0.0000) | 115.32 *** (0.0000) | |
2 | = 3.09 = 6.52 | 61.58 *** (0.0000) | 115.32 *** (0.0000) |
Explanatory Variable | (1) | (2) | (3) | (4) | ||||
---|---|---|---|---|---|---|---|---|
Equation ret | Equation vol | Equation ret | Equation vol | Equation ret | Equation vol | Equation ret | Equation vol | |
ret(-1) | 0.0088 (0.0197) | 0.0433 *** (0.0023) | 0.0066 (0.0258) | 0.0515 *** (0.0030) | 0.0122 (0.0310) | 0.0328 *** (0.0036) | 0.0181 (0.0307) | 0.0199 *** (0.0036) |
ret(-2) | −0.0506 * (0.0223) | 0.0076 ** (0.0026) | −0.0316 (0.0297) | 0.0075 * (0.0034) | −0.0796 * (0.0350) | 0.0078 (0.0040) | −0.0370 (0.0280) | −0.0045 (0.0032) |
ret(-3) | 0.0717 ** (0.0224) | 0.0092 *** (0.0026) | 0.0427 (0.0294) | 0.0068 * (0.0034) | 0.1286 *** (0.0361) | 0.0130 ** (0.0042) | −0.0719 ** (0.0274) | −0.0005 (0.0032) |
ret(-4) | −0.0102 (0.0225) | −0.0003 (0.0026) | −0.0026 (0.0293) | 0.0029 (0.0034) | −0.0169 (0.0369) | −0.0052 (0.0043) | 0.1051 *** (0.0271) | 0.0003 (0.0031) |
ret(-5) | 0.0152 (0.0223) | −0.0013 (0.0026) | −0.0096 (0.0289) | 0.0012 (0.0033) | 0.0519 (0.0368) | −0.0028 (0.0043) | −0.0351 (0.0269) | −0.0028 (0.0031) |
ret(-6) | −0.0525 * (0.0214) | −0.0083 *** (0.0025) | −0.0551 * (0.0278) | −0.0067 * (0.0032) | −0.0370 (0.0350) | −0.0088 * (0.0041) | −0.0919 *** (0.0263) | −0.0050 (0.0031) |
vol(-1) | 0.3953 ** (0.1522) | 0.5873 *** (0.0177) | 0.3205 (0.1688) | 0.5712 *** (0.0195) | 0.7927 * (0.3695) | 0.6383 *** (0.0428) | −0.2316 (0.4221) | 0.6234 *** (0.0489) |
vol(-2) | 0.0046 (0.1777) | 0.1112 *** (0.0206) | 0.2036 (0.1946) | 0.1338 *** (0.0225) | −1.0370 * (0.4515) | 0.0108 (0.0523) | 0.7211 (0.4611) | 0.1568 ** (0.0535) |
vol(-3) | −0.1071 (0.1786) | 0.0821 *** (0.0207) | −0.1237 (0.1963) | 0.0577 * (0.0227) | 0.1943 (0.4513) | 0.2063 *** (0.0522) | 0.2895 (0.4541) | 0.0267 (0.0527) |
vol(-4) | −0.1183 (0.1795) | 0.0683 ** (0.0208) | −0.1965 (0.1963) | 0.0732 ** (0.0227) | 0.2009 (0.4632) | 0.0085 (0.0536) | −0.6416 (0.4381) | 0.0595 (0.0508) |
vol(-5) | 0.0173 (0.1782) | 0.0586 ** (0.0207) | 0.1213 (0.1946) | 0.0713 ** (0.0225) | −0.4300 (0.4637) | 0.0150 (0.0537) | −0.5812 (0.4432) | −0.0035 (0.0514) |
vol(-6) | −0.0645 (0.1514) | 0.0590 *** (0.0176) | −0.2183 (0.1673) | 0.0524 ** (0.0194) | 0.5397 (0.3694) | 0.0906 * (0.0428) | 0.4553 (0.3719) | 0.0616 (0.0431) |
Constant | 0.0508 (0.0272) | −0.0014 (0.0032) | 0.0527 (0.0325) | −0.0047 (0.0038) | −0.0683 (0.0929) | 0.0055 (0.0108) | −0.2337 (0.1246) | 0.0222 (0.0145) |
Explanatory Variable | (1) | (2) | (3) | (4) | ||||
---|---|---|---|---|---|---|---|---|
Equation ret | Equation vol | Equation ret | Equation vol | Equation ret | Equation vol | Equation ret | Equation vol | |
ret(-1) | 0.0256 (0.0272) | 0.0560 *** (0.0031) | 0.0619 (0.0345) | 0.0620 *** (0.0040) | −0.0730 (0.0513) | 0.0463 *** (0.0059) | −0.0084 (0.0213) | 0.0238 *** (0.0024) |
ret(-2) | −0.0581 * (0.0239) | 0.0052 (0.0027) | −0.0813 ** (0.0290) | 0.0034 (0.0033) | 0.0152 (0.0514) | 0.0076 (0.0059) | −0.0388 (0.0264) | 0.0001 (0.0030) |
ret(-3) | 0.0141 (0.0226) | 0.0080 ** (0.0026) | 0.0248 (0.0270) | 0.0054 (0.0031) | 0.0005 (0.0449) | 0.0127 * (0.0052) | 0.0337 (0.0272) | 0.0026 (0.0031) |
ret(-4) | −0.0120 (0.0218) | 0.0034 (0.0025) | −0.0172 (0.0263) | 0.0047 (0.0030) | 0.0249 (0.0439) | −0.0026 (0.0051) | 0.1187 *** (0.0273) | −0.0028 (0.0031) |
ret(-5) | −0.0208 (0.0221) | 0.0008 (0.0025) | −0.0374 (0.0259) | 0.0002 (0.0030) | 0.0484 (0.0469) | 0.0006 (0.0054) | 0.0176 (0.0265) | −0.0059 (0.0031) |
ret(-6) | −0.0580 ** (0.0200) | −0.0062 ** (0.0023) | −0.0753 ** (0.0236) | −0.0069 * (0.0027) | −0.0069 (0.0422) | −0.0039 (0.0049) | −0.0668 * (0.0279) | −0.007 * (0.0032) |
vol(-1) | 0.4183 * (0.1780) | 0.5676 *** (0.0205) | 0.2362 (0.2018) | 0.5785 *** (0.0232) | 1.4935 ** (0.5189) | 0.6000 *** (0.0598) | −0.1141 (0.3237) | 0.5889 *** (0.0373) |
vol(-2) | 0.0722 (0.1877) | 0.1409 *** (0.0216) | 0.3307 (0.2048) | 0.1466 *** (0.0236) | −1.6279 ** (0.5322) | 0.0512 (0.0613) | 0.4568 (0.3652) | 0.1277 ** (0.0421) |
vol(-3) | −0.1484 (0.1846) | 0.0479 * (0.0212) | −0.2420 (0.2003) | 0.0439 (0.0231) | 0.1456 (0.5121) | 0.0779 (0.0590) | 0.5060 (0.3854) | 0.1595 *** (0.0444) |
vol(-4) | −0.1196 (0.1792) | 0.0733 *** (0.0206) | −0.1397 (0.1969) | 0.0570 * (0.0227) | 0.3506 (0.4612) | 0.1513 ** (0.0531) | −0.5460 (0.4230) | 0.0383 (0.0487) |
vol(-5) | −0.0393 (0.1801) | 0.0509 * (0.0207) | 0.0402 (0.1958) | 0.0720 ** (0.0226) | −0.3109 (0.4921) | −0.0764 (0.0567) | −0.5117 (0.4010) | 0.0426 (0.0462) |
vol(-6) | −0.0546 (0.1548) | 0.0814 *** (0.0178) | −0.1211 (0.1685) | 0.0669 *** (0.0194) | 0.2811 (0.4285) | 0.1669 *** (0.0494) | 0.0437 (0.3277) | −0.0195 (0.0377) |
Constant | 0.0321 (0.0288) | −0.0033 (0.0033) | 0.0219 (0.0328) | 0.0005 (0.0038) | −0.0165 (0.0947) | −0.0239 * (0.0109) | 0.1847 (0.1063) | 0.0065 (0.0122) |
Explanatory Variable | (1) | (2) | (3) | (4) | ||||
---|---|---|---|---|---|---|---|---|
Equation ret | Equation vol | Equation ret | Equation vol | Equation ret | Equation vol | Equation ret | Equation vol | |
ret(-1) | 0.0497 * (0.0223) | 0.0501 *** (0.0026) | 0.0540 (0.0278) | 0.0560 *** (0.0032) | 0.0107 (0.0389) | 0.0362 *** (0.0045) | −0.0628 * (0.0261) | 0.0143 *** (0.0030) |
ret(-2) | −0.0730 ** (0.0225) | 0.0025 (0.0026) | −0.0913 ** (0.0279) | 0.0029 (0.0032) | −0.0809 (0.0417) | −0.0026 (0.0048) | −0.0047 (0.0293) | 0.0020 (0.0034) |
ret(-3) | 0.0424 * (0.0211) | 0.0066 ** (0.0024) | 0.0324 (0.0254) | 0.0083 ** (0.0029) | 0.0645 (0.0394) | 0.0013 (0.0045) | −0.0448 (0.0308) | 0.0006 (0.0035) |
ret(-4) | −0.0092 (0.0206) | 0.002 (0.0024) | −0.0213 (0.0250) | 0.0027 (0.0029) | −0.0158 (0.0385) | −0.0031 (0.0044) | 0.1648 *** (0.0312) | −0.0053 (0.0036) |
ret(-5) | −0.0191 (0.0205) | −0.0012 (0.0024) | −0.0257 (0.0254) | −0.0005 (0.0029) | −0.0226 (0.0361) | −0.0046 (0.0042) | 0.0224 (0.0306) | −0.0055 (0.0035) |
ret(-6) | −0.0579 ** (0.0195) | −0.0060 ** (0.0022) | −0.0752 *** (0.0225) | -0.0070 ** (0.0026) | −0.0194 (0.0398) | −0.0034 (0.0046) | −0.0635 * (0.0308) | −0.0105 ** (0.0035) |
vol(-1) | 0.4115 * (0.1649) | 0.5956 *** (0.0190) | 0.3268 (0.1852) | 0.5920 *** (0.0213) | 1.3405 ** (0.4545) | 0.6616 *** (0.0524) | 0.1230 (0.3851) | 0.5975 *** (0.0444) |
vol(-2) | 0.0647 (0.1795) | 0.1285 *** (0.0207) | 0.2910 (0.1956) | 0.1273 *** (0.0225) | −1.2933 ** (0.4763) | 0.1144 * (0.0549) | 0.3342 (0.4413) | 0.0994 (0.0508) |
vol(-3) | −0.2174 (0.1776) | 0.0541 ** (0.0205) | −0.2845 (0.1912) | 0.0477 * (0.0220) | 0.2600 (0.4921) | 0.0875 (0.0567) | 0.6945 (0.4889) | 0.1774 ** (0.0563) |
vol(-4) | −0.0445 (0.1740) | 0.0731 *** (0.0201) | −0.1192 (0.1900) | 0.0626 ** (0.0219) | 0.5712 (0.4480) | 0.1502 ** (0.0516) | −0.8105 (0.5586) | −0.0274 (0.0643) |
vol(-5) | 0.0043 (0.1743) | 0.0486 * (0.0201) | 0.0401 (0.1887) | 0.0667 ** (0.0217) | −0.2831 (0.4557) | −0.0505 (0.0525) | −1.0655 * (0.5171) | 0.0556 (0.0596) |
vol(-6) | −0.1127 (0.1485) | 0.0666 *** (0.0171) | −0.0800 (0.1612) | 0.0706 *** (0.0186) | −0.4978 (0.4066) | 0.0260 (0.0468) | 0.6897 (0.4241) | 0.0420 (0.0488) |
Constant | 0.0343 (0.0275) | 0.0006 (0.0032) | 0.0656 * (0.0309) | 0.0023 (0.0036) | −0.1636 (0.0986) | −0.0288 * (0.0114) | −0.0169 (0.1444) | −0.0239 (0.0166) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Ho, T.; Li, Y. The Price-Volume Relationship of the Shanghai Stock Index: Structural Change and the Threshold Effect of Volatility. Sustainability 2020, 12, 3322. https://doi.org/10.3390/su12083322
Wang P, Ho T, Li Y. The Price-Volume Relationship of the Shanghai Stock Index: Structural Change and the Threshold Effect of Volatility. Sustainability. 2020; 12(8):3322. https://doi.org/10.3390/su12083322
Chicago/Turabian StyleWang, Panpan, Tsungwu Ho, and Yishi Li. 2020. "The Price-Volume Relationship of the Shanghai Stock Index: Structural Change and the Threshold Effect of Volatility" Sustainability 12, no. 8: 3322. https://doi.org/10.3390/su12083322
APA StyleWang, P., Ho, T., & Li, Y. (2020). The Price-Volume Relationship of the Shanghai Stock Index: Structural Change and the Threshold Effect of Volatility. Sustainability, 12(8), 3322. https://doi.org/10.3390/su12083322