Spatial Effects of Urban Agglomeration on Energy Efficiency: Evidence from China
Abstract
:1. Introduction
2. Measuring the Spatial-Structure Index
2.1. Research Object
2.2. Measuring Method
2.3. Results Measured
2.3.1. The Mono Index
2.3.2. The Spatial-Structure Index
3. Model Building, Variable Selection, and Data Description
3.1. Model Building and Variable Selection
3.2. Data Description
4. Empirical Analysis
4.1. The Impact of Spatial Structure on Energy Efficiency
4.2. Regional Heterogeneity in the Impact of Spatial Structure on Energy Efficiency
5. Conclusions and Policy Implications
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, P.; Zhang, M. The impact of urbanisation on energy consumption: A 30-year review in China. Urban Clim. 2018, 24, 940–953. [Google Scholar] [CrossRef]
- Amigues, J.P.; Moreaux, M. Competing land uses and fossil fuel, and optimal energy conversion rates during the transition toward a green economy under a pollution stock constraint. J. Environ. Econ. Manag. 2019, 97, 92–115. [Google Scholar] [CrossRef]
- Gasparatos, A.; Doll, C.N.; Esteban, M.; Ahmed, A.; Olang, T.A. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 2017, 70, 161–184. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, X.; Wei, X.; Sun, C.; Du, G. Impact of factor price distortions on energy efficiency: Evidence from provincial-level panel data in China. Energy Policy 2018, 118, 573–583. [Google Scholar] [CrossRef]
- Guan, J.; Kirikkaleli, D.; Bibi, A.; Zhang, W. Natural Resources Rents Nexus with Financial Development in the Presence of Globalization: Is the “Resource Curse” Exist or Myth? Resour. Policy 2020, 66, 101641. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. How to promote energy efficiency through technological progress in China? Energy 2018, 143, 812–821. [Google Scholar] [CrossRef]
- Rajbhandari, A.; Zhang, F. Does energy efficiency promote economic growth? Evidence from a multicountry and multisectoral panel dataset. Energy Econ. 2018, 69, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Cantore, N.; Calì, M.; Te Velde, D.W. Does energy efficiency improve technological change and economic growth in developing countries? Energy Policy 2016, 92, 279–285. [Google Scholar] [CrossRef]
- Bekun, F.V.; Emir, F.; Sarkodie, S.A. Another look at the relationship between energy consumption, carbon dioxide emissions, and economic growth in South Africa. Sci. Total Environ. 2019, 655, 759–765. [Google Scholar] [CrossRef]
- Oyedepo, S.O. Energy and sustainable development in Nigeria: The way forward. Energy Sustain. Soc. 2012, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Popkova, E.G.; Inshakov, O.V.; Bogoviz, A.V. Regulatory Mechanisms of Energy Conservation in Sustainable Economic Development; Energy Sector: A Systemic Analysis of Economy, Foreign Trade and Legal Regulations; Springer: Cham, Germany, 2019; pp. 107–118. [Google Scholar]
- Ayres, R.U.; Turton, H.; Casten, T. Energy efficiency, sustainability and economic growth. Energy 2007, 32, 634–648. [Google Scholar] [CrossRef]
- Fernando, Y.; Hor, W.L. Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of Malaysian manufacturing firms. Resour. Conserv. Recycl. 2017, 126, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Shi, J.F. Energy efficiency analysis on Chinese industrial sectors: An improved Super-SBM model with undesirable outputs. J. Clean. Prod. 2014, 65, 97–107. [Google Scholar] [CrossRef]
- Makridou, G.; Andriosopoulos, K.; Doumpos, M.; Zopounidis, C. Measuring the efficiency of energy-intensive industries across European countries. Energy Policy 2016, 88, 573–583. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Adams, J.S.; VanDrasek, B.J.; Phillips, E.G. Metropolitan area definition in the United States. Urban Geogr. 1999, 20, 695–726. [Google Scholar] [CrossRef]
- Ramos, R.A.R.; da Silva, A.N.R. A spatial analysis approach for the definition of metropolitan regions—The case of Portugal. Environ. Plan. B Plan. Des. 2007, 34, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Kipnis, B.A. Dynamics and potentials of Israel’s megalopolitan processes. Urban Stud. 1997, 34, 489–501. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Sanesi, G.; Colangelo, G.; Lafortezza, R.; Calvo, E.; Davies, C. Urban green infrastructure and urban forests: A case study of the Metropolitan Area of Milan. Landsc. Res. 2017, 42, 164–175. [Google Scholar] [CrossRef]
- Song, M.; Hu, C. A coupling relationship between the eco-environment carrying capacity and new-type urbanization: A case study of the wuhan metropolitan area in China. Sustainability 2018, 10, 4671. [Google Scholar] [CrossRef] [Green Version]
- Lan, S.L.; Zhong, R.Y. Coordinated development between metropolitan economy and logistics for sustainability. Resour. Conserv. Recycl. 2018, 128, 345–354. [Google Scholar] [CrossRef]
- Yang, C.; Lan, S.; Tseng, M.L. Coordinated development path of metropolitan logistics and economy in Belt and Road using DEMATEL–Bayesian analysis. Int. J. Logist. Res. Appl. 2019, 22, 1–24. [Google Scholar] [CrossRef]
- Li, N.; Wang, K.F. Evaluation of coordinated development of regional resources and economy around Shandong Peninsula urban agglomerations. J. Groundw. Sci. Eng. Vol. 2016, 4, 220–228. [Google Scholar]
- Cottineau, C.; Finance, O.; Hatna, E.; Arcaute, E.; Batty, M. Defining urban clusters to detect agglomeration economies. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1611–1626. [Google Scholar] [CrossRef] [Green Version]
- Kanemoto, Y. Second-best cost–benefit analysis in monopolistic competition models of urban agglomeration. J. Urban Econ. 2013, 76, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Hewings, G.J.; Okuyama, Y.; Sonis, M. Economic interdependence within the Chicago metropolitan area: A Miyazawa analysis. J. Reg. Sci. 2001, 41, 195–217. [Google Scholar] [CrossRef]
- Melo, P.C.; Graham, D.J.; Levinson, D.; Aarabi, S. Agglomeration, accessibility and productivity: Evidence for large metropolitan areas in the US. Urban Stud. 2017, 54, 179–195. [Google Scholar] [CrossRef] [Green Version]
- Gu, Q.; Wang, H.; Zheng, Y.; Zhu, J.; Li, X. Ecological footprint analysis for urban agglomeration sustainability in the middle stream of the Yangtze River. Ecol. Model. 2015, 318, 86–99. [Google Scholar] [CrossRef]
- Garcia-López, M.À.; Muñiz, I. Urban spatial structure, agglomeration economies, and economic growth in Barcelona: An intra-metropolitan perspective. Pap. Reg. Sci. 2013, 92, 515–534. [Google Scholar] [CrossRef]
- Lee, B. “Edge” or “edgeless” cities? Urban spatial structure in US metropolitan areas, 1980 to 2000. J. Reg. Sci. 2007, 47, 479–515. [Google Scholar] [CrossRef]
- Lan, F.; Da, H.; Wen, H.; Wang, Y. Spatial Structure Evolution of Urban Agglomerations and Its Driving Factors in Mainland China: From the Monocentric to the Polycentric Dimension. Sustainability 2019, 11, 610. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Yang, J.; Güneralp, B.; Burris, M. US metropolitan spatial structure evolution: Investigating spatial patterns of employment growth from 2000 to 2010. Urban Sci. 2017, 1, 28. [Google Scholar] [CrossRef]
- Fang, C.; Song, J.; Song, D. Stability of spatial structure of urban agglomeration in China based on central place theory. Chin. Geogr. Sci. 2007, 17, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.; Zhou, K.; He, Q.; Xu, H. Analyzing the effects of spatial interaction among city clusters on urban growth—Case of Wuhan urban agglomeration. Sustainability 2016, 8, 759. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Bohong, Z. Study on spatial structure of Yangtze River Delta urban agglomeration and its effects on urban and rural regions. J. Urban Plan. Dev. 2012, 138, 78–89. [Google Scholar] [CrossRef]
- Jia, P.; Li, K.; Shao, S. Choice of technological change for China’s low-carbon development: Evidence from three urban agglomerations. J. Environ. Manag. 2018, 206, 1308–1319. [Google Scholar] [CrossRef]
- Meijers, E.J.; Burger, M.J. Spatial structure and productivity in US metropolitan areas. Environ. Plan. A 2010, 42, 1383–1402. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Gordon, P. Urban spatial structure and economic growth in US metropolitan areas. In Proceedings of the 46th annual meetings of the western regional science association, Newport Beach, CA, USA, January 2007. [Google Scholar]
- Liu, C.; Wang, T.; Guo, Q. Factors Aggregating Ability and the Regional Differences among China’s Urban Agglomerations. Sustainability 2018, 10, 4179. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Guan, X.; Lu, S.; Zhou, M.; Deng, Y. Input–output efficiency of urban agglomerations in China: An application of data envelopment analysis (DEA). Urban Stud. 2013, 50, 2766–2790. [Google Scholar] [CrossRef]
- Han, F.; Xie, R.; Fang, J. Urban agglomeration economies and industrial energy efficiency. Energy 2018, 162, 45–59. [Google Scholar] [CrossRef]
- Liu, B.; Tian, C.; Li, Y.; Song, H.; Ma, Z. Research on the effects of urbanization on carbon emissions efficiency of urban agglomerations in China. J. Clean. Prod. 2018, 197, 1374–1381. [Google Scholar] [CrossRef]
- Ouyang, X.; Mao, X.; Sun, C.; Du, K. Industrial energy efficiency and driving forces behind efficiency improvement: Evidence from the Pearl River Delta urban agglomeration in China. J. Clean. Prod. 2019, 220, 899–909. [Google Scholar] [CrossRef]
- Rongdi, G.; Lixin, T.; Wenchao, L. Analysis of Influencing Factors on Energy Efficiency of Yangtze River Delta Urban Agglomeration Based on Spatial Heterogeneity. Energy Procedia 2019, 158, 3234–3239. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. Dealing with undesirable outputs in DEA: A Slacks-based Measure (SBM) Approach. Present. Napw III Tor. 2003, 8, 44–45. [Google Scholar]
- Haojie, S. Re-estimation of China’s Capital Stock K: 1952~2006 Years. Quant. Econ. Tech. Econ. Res. 2008, 25, 17–31. (In Chinese) [Google Scholar]
- Reinsdorf, M.; Cover, M. Measurement of Capital Stocks, Consumption of Fixed Capital, and Capital Services; Report on a presentation to the Central American Ad Hoc Group on National Accounts: Santo Domingo, Dominican Republic, 2005. [Google Scholar]
- Madariaga, N.; Poncet, S. FDI in Chinese cities: Spillovers and impact on growth. World Econ. 2007, 30, 837–862. [Google Scholar] [CrossRef] [Green Version]
- Zomorrodi, A.; Zhou, X. Impact of FDI on environmental quality of China. Int. J. Bus. Econ. Manag. 2017, 4, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Zeng, M.; Xie, Z.; Wang, S. Power of agricultural credit in farmland abandonment: Evidence from rural China. Land 2019, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, Y.; Ge, Y.; Zhang, W.; Herrera, F. A Group Decision Making Approach Considering Self-Confidence Behaviors and its Application in Environmental Pollution Emergency Management. Int. J. Environ. Res. Public Health 2019, 16, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binswanger, M. Technological progress and sustainable development: What about the rebound effect? Ecol. Econ. 2001, 36, 119–132. [Google Scholar] [CrossRef]
- Zhang, W.; Du, J.; Tian, X. Finding a Promising Venture Capital Project with TODIM under Probabilistic Hesitant Fuzzy Circumstance. Technol. Econ. Dev. Econ. 2018, 24, 2026. [Google Scholar] [CrossRef]
- Lin, B.; Liu, X. Dilemma between economic development and energy conservation: Energy rebound effect in China. Energy 2012, 45, 867–873. [Google Scholar] [CrossRef]
- Zeng, M.; Du, J.; Zhang, W.K. Spatial-Temporal Effects of PM2. 5 on Health Burden: Evidence from China. Int. J. Environ. Res. Public Health 2019, 16, 4695. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Zhang, F.; Xu, M. Investigation of pollution haven hypothesis for China: An ARDL approach with breakpoint unit root tests. J. Clean. Prod. 2017, 161, 153–164. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. Sci. Total Environ. 2019, 646, 862–871. [Google Scholar] [CrossRef]
UAs | Cities (137) |
---|---|
Central and Southern Liaoning UA | Shenyang, Dalian, Anshan, Fushun, Benxi, Dandong, Yingkou, Liaoyang, Panjin, Tieling (10) |
Beijing-Tianjin-Hebei UA | Beijing, Tianjin, Shijiazhuang, Tangshan, Qinhuangdao, Baoding, Zhangjiakou, Chengde, Cangzhou, Langfang (10) |
Shandong Peninsula UA | Jinan, Qingdao, Zibo, Dongying, Yantai, Weifang, Weihai, Rizhao (8) |
Yangtze River Delta UA | Shanghai, Nanjing, Wuxi, Changzhou, Suzhou, Nantong, Yancheng, Yangzhou, Zhenjiang, Taizhou, Hangzhou, Ningbo, Jiaxing, Huzhou, Shaoxing, Jinhua, Zhoushan, Taizhou, Hefei, Wuhu, Ma’anshan, Tongling, Anqing, Chuzhou, Chizhou, Xuancheng (26) |
West Coast Strait UA | Fuzhou, Xiamen, Putian, Quanzhou, Zhangzhou, Ningde (6) |
Pearl River Delta UA | Guangzhou, Shenzhen, Zhuhai, Foshan, Jiangmen, Zhaoqing, Huizhou, Dongguan, Zhongshan (9) |
Central Plains UA | Zhengzhou, Kaifeng, Luoyang, Pingdingshan, Hebi, Xinxiang, Jiaozuo, Xuchang, Luohe, Shangqiu, Zhoukou, Jincheng, Haozhou (13) |
Middle Yangtze UA | Wuhan, Huangshi, Yichang, Xiangyang, Ezhou, Jingmen, Xiaogan, Jingzhou, Huanggang, Xianning, Changsha, Zhuzhou, Xiangtan, Hengyang, Yueyang, Changde, Yiyang, Loudi, Nanchang, Jingdezhen, Pingxiang, Jiujiang, Xinyu, Yingtan, Ji’an, Yichun, Fuzhou, Shangrao (28) |
Guan-Zhong Plain UA | Xi’an, Tongchuan, Baoji, Xianyang, Weinan, Shangluo, Yuncheng, Linfen, Tianshui, Pingliang, Qingyang (11) |
Chengdu-Chongqing UA | Chongqing, Chengdu, Zigong, Luzhou, Deyang, Mianyang, Suining, Neijiang, Leshan, Nanchong, Meishan, Yibin, Guang’an, Dazhou, Ya’an, Ziyang (16) |
UAs | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|
Central and Southern Liaoning | 0.672 | 0.697 | 0.644 | 0.649 | 0.678 | 0.685 | 0.730 | 0.715 | 0.691 | 0.643 |
Beijing-Tianjin-Hebei | 1.099 | 1.109 | 1.049 | 1.042 | 1.039 | 1.076 | 1.007 | 0.962 | 0.936 | 0.928 |
Shandong Peninsula | 0.216 | 0.219 | 0.218 | 0.218 | 0.250 | 0.325 | 0.329 | 0.372 | 0.318 | 0.355 |
Yangtze River Delta | 1.024 | 1.015 | 0.989 | 0.962 | 0.885 | 0.828 | 0.785 | 0.777 | 0.810 | 0.711 |
West Coast Strait | 0.289 | 0.294 | 0.264 | 0.247 | 0.293 | 0.302 | 0.306 | 0.308 | 0.315 | 0.152 |
Pearl River Delta | 0.574 | 0.626 | 0.637 | 0.637 | 0.639 | 0.649 | 0.476 | 0.577 | 0.553 | 0.549 |
Central Plains | 0.699 | 0.716 | 0.930 | 0.947 | 0.997 | 0.963 | 0.994 | 0.836 | 0.789 | 0.704 |
Middle Yangtze | 0.805 | 0.758 | 0.758 | 0.690 | 0.693 | 0.677 | 0.671 | 0.530 | 0.516 | 0.609 |
Guan-Zhong Plain | 1.121 | 1.149 | 1.199 | 1.230 | 1.254 | 1.298 | 1.337 | 1.357 | 1.337 | 1.379 |
Chengdu-Chongqing | 1.358 | 1.368 | 1.413 | 1.517 | 1.492 | 1.496 | 1.542 | 1.555 | 1.519 | 1.525 |
UAs | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Central Cities |
---|---|---|---|---|---|---|---|---|---|---|---|
Central and Southern Liaoning | 0.587 | 0.609 | 0.563 | 0.567 | 0.592 | 0.598 | 0.638 | 0.625 | 0.604 | 0.562 | Shenyang, Dalian |
Beijing-Tianjin-Hebei | 3.704 | 3.738 | 3.535 | 3.512 | 3.502 | 3.626 | 3.394 | 3.242 | 3.155 | 3.128 | Beijing, Tianjin |
Shandong Peninsula | 0.197 | 0.200 | 0.199 | 0.199 | 0.228 | 0.296 | 0.300 | 0.339 | 0.290 | 0.324 | Jinan, Qingdao |
Yangtze River Delta | 2.092 | 2.074 | 2.021 | 1.966 | 1.808 | 1.692 | 1.604 | 1.588 | 1.655 | 1.453 | Shanghai, Nanjing, Hangzhou |
West Coast Strait | 0.318 | 0.323 | 0.290 | 0.272 | 0.322 | 0.332 | 0.336 | 0.339 | 0.346 | 0.167 | Fuzhou, Xiamen |
Pearl River Delta | 1.303 | 1.421 | 1.446 | 1.446 | 1.450 | 1.473 | 1.080 | 1.310 | 1.255 | 1.246 | Guangzhou, Shenzhen |
Central Plains | 2.044 | 2.094 | 2.720 | 2.770 | 2.916 | 2.816 | 2.907 | 2.445 | 2.307 | 2.059 | Zhenzhou, Luoyang |
Middle Yangtze | 1.675 | 1.578 | 1.578 | 1.436 | 1.442 | 1.409 | 1.397 | 1.103 | 1.074 | 1.267 | Wuhan, Changsha, Nanchang |
Guan-Zhong Plain | 12.846 | 13.167 | 13.740 | 14.095 | 14.370 | 14.874 | 15.321 | 15.550 | 15.321 | 15.802 | Xi’an |
Chengdu-Chongqing | 2.474 | 2.492 | 2.574 | 2.764 | 2.718 | 2.725 | 2.809 | 2.833 | 2.767 | 2.778 | Chongqing, Chengdu |
UAs | 2008 | Ranking | 2010 | Ranking | 2012 | Ranking | 2014 | Ranking | 2016 | Ranking |
---|---|---|---|---|---|---|---|---|---|---|
Central and Southern Liaoning | 0.3688 | 3 | 0.3743 | 3 | 0.6221 | 2 | 0.6881 | 1 | 0.4942 | 6 |
Beijing-Tianjin-Hebei | 0.2804 | 5 | 0.3193 | 5 | 0.4003 | 7 | 0.5283 | 5 | 0.5158 | 4 |
Shandong Peninsula | 0.3549 | 4 | 0.3366 | 4 | 0.4378 | 5 | 0.5890 | 4 | 0.5333 | 3 |
Yangtze River Delta | 0.2591 | 6 | 0.2714 | 7 | 0.5696 | 3 | 0.6148 | 3 | 0.6370 | 2 |
West Coast Strait | 0.3813 | 2 | 0.3982 | 2 | 0.4737 | 4 | 0.5079 | 6 | 0.5040 | 5 |
Pearl River Delta | 0.7009 | 1 | 0.7526 | 1 | 0.7453 | 1 | 0.6620 | 2 | 0.6512 | 1 |
Central Plains | 0.2174 | 9 | 0.2023 | 10 | 0.3914 | 9 | 0.4142 | 9 | 0.4066 | 9 |
Middle Yangtze | 0.2259 | 8 | 0.2320 | 9 | 0.3932 | 8 | 0.4809 | 7 | 0.4617 | 7 |
Guan-Zhong Plain | 0.2308 | 7 | 0.2548 | 8 | 0.3441 | 10 | 0.3525 | 10 | 0.3323 | 10 |
Chengdu-Chongqing | 0.2126 | 10 | 0.2823 | 6 | 0.4220 | 6 | 0.4794 | 8 | 0.4309 | 8 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
---|---|---|---|---|---|---|
−0.0243 ** (0.0104) | −0.0125 *** (0.0039) | −0.0267 ** (0.0123) | −0.0262 ** (0.0120) | −0.0256 ** (0.0120) | −0.0246 ** (0.0120) | |
0.5925 *** (0.0438) | 0.5780 *** (0.0446) | 0.5741 *** (0.0436) | 0.5801 *** (0.0434) | 0.5981 *** (0.0439) | ||
−0.0014 *** (0.0001) | −0.0015 *** (0.0002) | −0.0014 *** (0.0002) | −0.0014 *** (0.0002) | |||
0.0060 *** (0.0017) | 0.0059 *** (0.0017) | 0.0060 *** (0.0017) | ||||
0.0267 *** (0.0101) | 0.0264 *** (0.0101) | |||||
Constant | 0.1949 *** (0.0271) | 0.04671 *** (0.0181) | 0.2291 *** (0.0391) | 0.2888 *** (0.0390) | 0.2715 *** (0.0392) | 0.2395 *** (0.0409) |
0.1697 | 0.1629 | 0.1845 | 0.1897 | 0.1769 | 0.1684 | |
0.1464 | 0.1609 | 0.1510 | 0.1475 | 0.1468 | 0.1465 | |
ρ | 0.5734 | 0.5062 | 0.5989 | 0.6232 | 0.5920 | 0.5693 |
N | 1370 | 1370 | 1370 | 1370 | 1370 | 1370 |
Relevant test | F-test: F=11.95[0.0000]; LM-test: 1139.19[0.0000]; Hausman-test: 17.85[0.0031] |
Eastern UAs | Central UAs | Western UAs | ||||
---|---|---|---|---|---|---|
Variables | Model 1 | Model 6 | Model 1 | Model 6 | Model 1 | Model 6 |
−0.3903 ** (0.0806) | −0.2183 *** (0.0387) | −0.2508 *** (0.0655) | −0.0769 *** (0.0265) | 0.4227 *** (0.0933) | 0.0274 *** (0.0103) | |
0.6402 *** (0.0705) | 0.6279 *** (0.0702) | 0.3706 *** (0.0766) | 0.3851 *** (0.0771) | 0.6019 *** (0.0707) | 0.7114 *** (0.0669) | |
−0.0009 *** (0.0002) | −0.0008 *** (0.0002) | −0.0009 ** (0.0004) | −0.0010 ** (0.0004) | −0.0011 *** (0.0004) | −0.0012 *** (0.0004) | |
0.0254 (0.0044) | 0.0226 *** (0.0045) | 0.0361 *** (0.0103) | 0.0381 *** (0.0103) | −0.0011 (0.0013) | −0.0009 (0.0013) | |
0.0714 ** (0.0130) | 0.0727 *** (0.0129) | −0.1011 *** (0.0186) | −0.1015 *** (0.0187) | 0.0662 ** (0.0278) | 0.0585 *** (0.0285) | |
Constant | 0.3884 *** (0.0742) | 0.4456 *** (0.0757) | 0.4315 *** (0.0661) | 0.3764 *** (0.0640) | −0.5384 *** (0.1253) | −0.2022 ** (0.0860) |
0.1868 | 0.2382 | 0.1052 | 0.1101 | 0.1217 | 0.2305 | |
0.1537 | 0.1527 | 0.1294 | 0.1305 | 0.0983 | 0.1010 | |
ρ | 0.5962 | 0.7088 | 0.3978 | 0.4160 | 0.6052 | 0.8390 |
N | 690 | 690 | 410 | 410 | 270 | 270 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Zhao, M.; Zeng, M.; Han, K.; Sun, H. Spatial Effects of Urban Agglomeration on Energy Efficiency: Evidence from China. Sustainability 2020, 12, 3338. https://doi.org/10.3390/su12083338
Du J, Zhao M, Zeng M, Han K, Sun H. Spatial Effects of Urban Agglomeration on Energy Efficiency: Evidence from China. Sustainability. 2020; 12(8):3338. https://doi.org/10.3390/su12083338
Chicago/Turabian StyleDu, Jiang, Mengqin Zhao, Ming Zeng, Kezhen Han, and Huaping Sun. 2020. "Spatial Effects of Urban Agglomeration on Energy Efficiency: Evidence from China" Sustainability 12, no. 8: 3338. https://doi.org/10.3390/su12083338
APA StyleDu, J., Zhao, M., Zeng, M., Han, K., & Sun, H. (2020). Spatial Effects of Urban Agglomeration on Energy Efficiency: Evidence from China. Sustainability, 12(8), 3338. https://doi.org/10.3390/su12083338