Employing Machine Learning for Detection of Invasive Species using Sentinel-2 and AVIRIS Data: The Case of Kudzu in the United States
Abstract
:1. Introduction
1.1. Invasive Species
1.2. Kudzu Vine and Its Phenology
1.3. Objectives and Research Questions
- How accurately can Kudzu be classified using different machine learning algorithms on Sentinel-2 multispectral images versus AVIRIS hyperspectral data?
- What differences will be seen using several seasonal multispectral images compared to a single hyperspectral image?
- How does combining multispectral and hyperspectral data affect overall accuracy and does resampling have any influence on the result?
2. Data and Method
2.1. Area of Interest
2.2. Data
2.2.1. Remote Sensing Data
Sentinel-2
AVIRIS
2.2.2. Ground Truth Data
2.3. Study Workflow
2.3.1. Implementation Medium with Narratives
- RF-mtry
- NN-size & decay
- SVM-gamma & cost
- NB-laplace, usekernel & adjust
- BLR–iterations
2.3.2. Big Data and Dimensionality Reduction
- Sentinel-2 stack (56 bands) = 10 components
- AVIRIS stack (224 bands) = 2 components
- Resampled stacks (280 bands) = 7 components
2.4. Internal and External Validation
3. Results
- Accuracy–Percentage of samples correctly classified
- Kappa–Accuracy accounted for being correct by chance
- Lower Classification Accuracy–Lower classification accuracy bounds of the 95% confidence interval
- Upper Classification Accuracy–Upper classification accuracy bounds of the 95% confidence interval
- Null Accuracy–Expected accuracy of predicting the most frequent class
- McNemarPValue–Describes which class the model is best as predicting, where 1 is equal performance on both classes, and 0 is superior performance on one class.
External Validation
Expanded Area Classification
4. Discussion
4.1. Are the Achieved Results Useful? What Would Their Purpose be and What Kind of Appropriate Action Should be Taken?
4.2. Could this Approach be Used with Different Plants or in Different Areas?
5. Conclusions
Guidelines and Recommendations
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Order, E.P. Executive Order 13112 of February 3, 1999: Invasive Species. Fed. Regist. 1999, 64, 6183–6186. [Google Scholar]
- Invasive Species Advisory Committee. Invasive Species Definition Clarification and Guidance. 2006. Available online: https://www.doi.gov/sites/doi.gov/files/uploads/isac_definitions_white_paper_rev.pdf (accessed on 1 April 2019).
- Walsh, J.R.; Carpenter, S.R.; Vander Zanden, M.J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl. Acad. Sci. USA 2016, 113, 4081–4085. [Google Scholar]
- Invasive Species Working Group. Economic impact of invasive species in the pacific Northwest economic region. 2012. Available online: https://www.river-management.org/assets/docs/Listserve/economicimpactspnwer.pdf (accessed on 1 April 2019).
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar]
- Bradley, B.A. Remote detection of invasive plants: A review of spectral, textural and phenological approaches. Biol. Invasions 2014, 16, 1411–1425. [Google Scholar]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Stewart, M.A. Cultivating Kudzu: The Soil Conservation Service and the Kudzu Distribution Program. Ga. Hist. Q. 1997, 81, 151. [Google Scholar]
- Vaz, A.S.; Alcaraz-Segura, D.; Campos, J.C.; Vicente, J.R.; Honrado, J.P. Managing plant invasions through the lens of remote sensing: A review of progress and the way forward. Sci. Total Environ. 2018, 642, 1328–1339. [Google Scholar] [CrossRef] [PubMed]
- Department of Agriculture and Fisheries Biosecurity Queensland. Invasive plant risk assessment: Kudzu Pueraria montana var. lobata 2. 2016. Available online: https://www.daf.qld.gov.au/__data/assets/pdf_file/0004/74137/IPA-Kudzu-Risk-Assessment.pdf (accessed on 15 April 2019).
- Ismail, R.; Mutanga, O.; Peerbhay, K. The identification and remote detection of alien invasive plants in commercial forests: An Overview. South Afr. J. Geomat. 2016, 5, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Skowronek, S.; Ewald, M.; Isermann, M.; Van De Kerchove, R.; Lenoir, J.; Aerts, R.; Warrie, J.; Hattab, T.; Honnay, O.; Schmidtlein, S.; et al. Mapping an invasive bryophyte species using hyperspectral remote sensing data. Biol. Invasions 2017, 19, 239–254. [Google Scholar] [CrossRef]
- Vane, G.; Green, R.O.; Chrien, T.G.; Enmark, H.T.; Hansen, E.G.; Porter, W.M. The airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 1993, 44, 127–143. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Sun, Q.; Kim, J.; Erb, A.M.; Gao, F.; Román, M.O.; Yang, Y.; Petroy, S.; Taylor, J.R.; et al. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 104–117. [Google Scholar] [CrossRef]
- McIntyre, D.L. Application of High Resolution Remote Sensing to Detect and Map the Pasture Weed Paterson’s Curse (Echium Plantagineum) in Western Australia. Ph.D. Thesis, Curtin University, Perth, Australia, 2015. [Google Scholar]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Paz-Kagan, T.; Silver, M.; Panov, N.; Karnieli, A. Multispectral Approach for Identifying Invasive Plant Species Based on Flowering Phenology Characteristics. Remote Sens. 2019, 11, 953. [Google Scholar] [CrossRef] [Green Version]
- Satellite Imaging Corporation. Sentinel-2A Satellite Sensor (10 m). 2019. Available online: https://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/sentinel-2a/ (accessed on 2 May 2019).
- NASA Jet Propulsion Laboratory. AVIRIS. 2019. Available online: https://aviris.jpl.nasa.gov/ (accessed on 29 April 2019).
- The University of Georgia. EDDMapS—About. 2019. Available online: https://www.eddmaps.org/about/ (accessed on 17 April 2019).
- Bungaro, L. How to Evaluate your Machine Learning Model. 2018. Available online: https://medium.com/coinmonks/debugging-a-learning-algorithm-ef7c16936864 (accessed on 17 May 2019).
- Donges, N. The Random Forest Algorithm. 2020. Available online: https://builtin.com/data-science/random-forest-algorithm (accessed on 26 February 2020).
- Leon, K. Making a Simple Neural Network. 2017. Available online: https://becominghuman.ai/making-a-simple-neural-network-2ea1de81ec20 (accessed on 13 May 2019).
- Ray, S. Understanding Support Vector Machine Algorithm from Examples (along with Code). 2017. Available online: https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/ (accessed on 22 May 2019).
- Gandhi, R. Naive Bayes Classifier. 2018. Available online: https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c (accessed on 29 May 2019).
- Subasi, C. LOGISTIC REGRESSION CLASSIFIER. 2019. Available online: https://towardsdatascience.com/logistic-regression-classifier-8583e0c3cf9 (accessed on 29 May 2019).
- James, G.; Witten, D.; Hastie, D.; Tibshirani, R. An Introduction to Statistical Learning with Application in R; Springer: Berlin, Germany, 2013. [Google Scholar]
- Scikit-learn. Cross-validation: Evaluating estimator performance. 2019. Available online: https://scikit-learn.org/stable/modules/cross_validation.html (accessed on 14 May 2019).
- Tipping, M.E.; Bishop, C.M. Mixtures of probabilistic principal component analyzers. Neural Comput. 1999, 11, 443–482. [Google Scholar] [CrossRef] [PubMed]
- Bargeron, C.T.; Moorhead, D.J. EDDMapS—Early detection and distribution mapping system for the southeast exotic pest plant council. Wildland Weeds 2007, 10, 4–8. [Google Scholar]
Season | Start | End |
---|---|---|
Spring | 1 April 2017 | 29 May 2017 |
Summer | 1 June 2017 | 01 September 2017 |
Autumn | 1 October 2017 | 29 November 2017 |
Winter | 12 December 2017 | 07 February 2018 |
Stack | # of Bands | Bands | Resolution |
---|---|---|---|
Sentinel-2 | 56 * | 2, 3, 4, 5, 6, 7, 8, 8a, 11, 12, SAVI & 3x Tasseled cap | 10 & 20 m |
AVIRIS | 224 | All | 16.6 m |
Resample (down) | 280 | Sentinel-2 + AVIRIS | 10 m |
Resample (up) | 280 | Sentinel-2 + AVIRIS | 16.6 m |
Image Stack | Classifier | Acc. | Kappa | Acc. Lower | Acc. Upper | Acc. Null | McNemarPValue |
---|---|---|---|---|---|---|---|
Sentinel-2 Multispectral Resolution: 10 m | BLR | 0.96 | 0.83 | 0.94 | 0.97 | 0.85 | 0.17 |
NB | 0.95 | 0.80 | 0.93 | 0.96 | 0.83 | 0.00 | |
NN | 0.96 | 0.86 | 0.94 | 0.97 | 0.83 | 0.12 | |
RF | 0.98 | 0.91 | 0.96 | 0.99 | 0.83 | 0.01 | |
SVM | 0.98 | 0.95 | 0.97 | 0.99 | 0.83 | 0.75 | |
AVIRIS Hyperspectral Resolution: 16.6 m | BLR | 0.94 | 0.72 | 0.92 | 0.96 | 0.86 | 0.00 |
NB | 0.87 | 0.51 | 0.84 | 0.90 | 0.83 | 0.28 | |
NN | 0.97 | 0.90 | 0.96 | 0.98 | 0.83 | 0.36 | |
RF | 0.96 | 0.85 | 0.94 | 0.97 | 0.83 | 1.00 | |
SVM | 0.92 | 0.70 | 0.89 | 0.94 | 0.83 | 1.00 | |
Resample (down) Resolution: 10 m | BLR | 0.96 | 0.83 | 0.94 | 0.97 | 0.85 | 0.17 |
NB | 0.95 | 0.80 | 0.93 | 0.96 | 0.83 | 0.00 | |
NN | 0.96 | 0.86 | 0.94 | 0.97 | 0.83 | 0.12 | |
RF | 0.98 | 0.91 | 0.96 | 0.99 | 0.83 | 0.01 | |
SVM | 0.98 | 0.95 | 0.97 | 0.99 | 0.83 | 0.75 | |
Resample (up) Resolution: 16.6 m | BLR | 0.95 | 0.82 | 0.93 | 0.97 | 0.84 | 1.00 |
NB | 0.95 | 0.82 | 0.93 | 0.97 | 0.93 | 0.01 | |
NN | 0.98 | 0.95 | 0.97 | 0.99 | 0.83 | 0.75 | |
RF | 0.98 | 0.91 | 0.96 | 0.99 | 0.83 | 0.01 | |
SVM | 0.97 | 0.89 | 0.95 | 0.98 | 0.83 | 0.01 |
Image Stack | Classifier | Confusion Matrix | Error 1 | Error 2 | Acc. 1 | Acc. 2 | |||
---|---|---|---|---|---|---|---|---|---|
Sentinel-2 | Class | 0 | 1 | ||||||
Multispectral | SVM | 0 | 542 | 9 | 551 | 0.009 | 0.016 | 0.991 | 0.984 |
Resolution: 10 m | 1 | 5 | 100 | 105 | 0.083 | 0.048 | 0.917 | 0.952 | |
total | 547 | 109 | 656 | ||||||
AVIRIS | Class | 0 | 1 | ||||||
Hyperspectral | NN | 0 | 535 | 7 | 542 | 0.022 | 0.013 | 0.978 | 0.987 |
Resolution: 16.6 m | 1 | 12 | 102 | 114 | 0.064 | 0.105 | 0.936 | 0.895 | |
total | 547 | 109 | 656 | ||||||
Resampled (up) | Class | 0 | 1 | ||||||
Resolution: 10 m | SVM | 0 | 541 | 4 | 545 | 0.011 | 0.007 | 0.989 | 0.993 |
1 | 6 | 105 | 111 | 0.037 | 0.054 | 0.963 | 0.946 | ||
total | 547 | 109 | 656 | ||||||
Resampled (down) | Class | 0 | 1 | ||||||
Resolution: 16.6 m | NN | 0 | 541 | 4 | 545 | 0.011 | 0.007 | 0.989 | 0.993 |
1 | 6 | 105 | 111 | 0.037 | 0.054 | 0.963 | 0.946 | ||
total | 547 | 109 | 656 |
Grid | Registry Points | Detected Points | Accuracy |
---|---|---|---|
Sentinel | 55 | 35 | 64% |
AVIRIS | 55 | 10 | 18% |
Combined, 10 m | 55 | 33 | 60% |
Combined, 16 m | 55 | 36 | 66% |
Testing the BLR algorithm without PCA, using only hyper-spectral data | |||||||
Class | 0 | 1 | Omission e. | Commission e. | Producer acc. | User acc. | |
0 | 529 | 3 | 532 | 0.013 | 0.006 | 0.987 | 0.994 |
1 | 7 | 103 | 110 | 0.028 | 0.064 | 0.972 | 0.936 |
total | 536 | 106 | 642 | ||||
Testing the NB algorithm without PCA, using only hyper-spectral data | |||||||
Class | 0 | 1 | Omission e. | Commission e. | Producer acc. | User acc. | |
0 | 441 | 41 | 482 | 0.192 | 0.085 | 0.808 | 0.915 |
1 | 105 | 68 | 173 | 0.376 | 0.607 | 0.624 | 0.393 |
total | 546 | 109 | 655 | ||||
Testing the SVM algorithm without PCA, using only hyper-spectral data | |||||||
Class | 0 | 1 | Omission e. | Commission e. | Producer acc. | User acc. | |
0 | 543 | 0 | 543 | 0.005 | 0.000 | 0.995 | 1.000 |
1 | 3 | 109 | 112 | 0.000 | 0.027 | 1.000 | 0.973 |
total | 546 | 109 | 655 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, T.; Seerup Hass, F.; Seam Akbar, M.; Holm Petersen, P.; Jokar Arsanjani, J. Employing Machine Learning for Detection of Invasive Species using Sentinel-2 and AVIRIS Data: The Case of Kudzu in the United States. Sustainability 2020, 12, 3544. https://doi.org/10.3390/su12093544
Jensen T, Seerup Hass F, Seam Akbar M, Holm Petersen P, Jokar Arsanjani J. Employing Machine Learning for Detection of Invasive Species using Sentinel-2 and AVIRIS Data: The Case of Kudzu in the United States. Sustainability. 2020; 12(9):3544. https://doi.org/10.3390/su12093544
Chicago/Turabian StyleJensen, Tobias, Frederik Seerup Hass, Mohammad Seam Akbar, Philip Holm Petersen, and Jamal Jokar Arsanjani. 2020. "Employing Machine Learning for Detection of Invasive Species using Sentinel-2 and AVIRIS Data: The Case of Kudzu in the United States" Sustainability 12, no. 9: 3544. https://doi.org/10.3390/su12093544
APA StyleJensen, T., Seerup Hass, F., Seam Akbar, M., Holm Petersen, P., & Jokar Arsanjani, J. (2020). Employing Machine Learning for Detection of Invasive Species using Sentinel-2 and AVIRIS Data: The Case of Kudzu in the United States. Sustainability, 12(9), 3544. https://doi.org/10.3390/su12093544