Assessment of Quantitative Standards for Mega-Drought Using Data on Drought Damages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data on Global Drought Damages
2.2. Characteristics of Drought Damages
2.3. Characteristics of Drought-Induced Human Losses
2.4. Characteristics of Drought Damage Costs
3. Results
3.1. Establishment of Quantitative Standards on the Frequency of Drought Damages for Mega-Droughts
3.2. Establishment of Quantitative Standards on Human Losses for Mega-Droughts
3.3. Establishment of Quantitative Standards on Damage Costs for Mega-Droughts
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix
Continent | Country | Frequency of Drought Damages (Count) | Human Losses (Person) | Damage Costs (Thousand US Dollars) |
---|---|---|---|---|
Algeria | 3 | 0 | 0 | |
Angola | 14 | 58 | 0 | |
Benin | 7 | 0 | 651 | |
Botswana | 11 | 0 | 47,000 | |
Burkina Faso | 35 | 0 | 0 | |
Burundi | 11 | 126 | 0 | |
Côte d’Ivoire | 1 | 0 | 0 | |
Cabo Verde | 24 | 85,000 | 0 | |
Cameroon | 6 | 0 | 1500 | |
Central African Republic | 2 | 0 | 0 | |
Chad | 34 | 3,000 | 83,000 | |
Comoros | 1 | 0 | 0 | |
Africa | Democratic Republic of Congo | 3 | 0 | 0 |
Congo | 1 | 0 | 0 | |
Djibouti | 13 | 0 | 0 | |
Eritrea | 7 | 0 | 0 | |
Ethiopia | 33 | 402,367 | 1,492,600 | |
Gambia | 27 | 0 | 700 | |
Ghana | 5 | 0 | 100 | |
Guinea | 4 | 12 | 0 | |
Guinea-Bissau | 20 | 0 | 0 | |
Kenya | 27 | 196 | 1500 | |
Lesotho | 14 | 0 | 1000 | |
Liberia | 1 | 0 | 0 | |
Madagascar | 21 | 200 | 0 | |
Malawi | 16 | 500 | 0 | |
Mali | 25 | 0 | 0 | |
Mauritania | 39 | 0 | 59,500 | |
Mauritius | 1 | 0 | 175,000 | |
Morocco | 7 | 0 | 900,100 | |
Mozambique | 23 | 100,068 | 50,000 | |
Namibia | 16 | 0 | 175,000 | |
Niger | 37 | 85,000 | 0 | |
Nigeria | 3 | 0 | 71,103 | |
Rwanda | 13 | 237 | 0 | |
Sao Tome and Principe | 3 | 0 | 0 | |
Senegal | 33 | 0 | 374,800 | |
Somalia | 22 | 39,673 | 0 | |
South Africa | 14 | 0 | 2,450,000 | |
South Sudan | 3 | 0 | 0 | |
Sudan | 13 | 150,000 | 0 | |
Swaziland | 15 | 500 | 1739 | |
Tanzania, United Republic of | 16 | 0 | 0 | |
Togo | 3 | 0 | 500 | |
Tunisia | 2 | 0 | 0 | |
Uganda | 15 | 194 | 1800 | |
Zambia | 6 | 0 | 0 | |
Zimbabwe | 23 | 0 | 551,000 | |
Anguilla | 5 | 0 | 0 | |
Antigua and Barbuda | 1 | 0 | 0 | |
Argentina | 3 | 0 | 3,520,000 | |
Barbados | 1 | 0 | 0 | |
Americas | Bolivia (Plurinational State of) | 14 | 0 | 1,515,600 |
Brazil | 22 | 20 | 11,183,100 | |
Canada | 18 | 0 | 4,810,000 | |
Chile | 6 | 0 | 255,000 | |
Colombia | 3 | 0 | 0 | |
Costa Rica | 4 | 0 | 24,000 | |
Cuba | 10 | 0 | 183,139 | |
Dominican Republic (the) | 1 | 0 | 5000 | |
Ecuador | 5 | 0 | 1700 | |
El Salvador | 9 | 0 | 357,400 | |
Grenada | 1 | 0 | 0 | |
Guatemala | 11 | 41 | 168,669 | |
Guyana | 4 | 0 | 43,700 | |
Haiti | 15 | 0 | 87,000 | |
Honduras | 18 | 0 | 17,000 | |
Jamaica | 6 | 0 | 6500 | |
Mexico | 8 | 0 | 1,610,000 | |
Nicaragua | 8 | 0 | 18,000 | |
Panama | 5 | 0 | 272,000 | |
Paraguay | 14 | 16 | 0 | |
Peru | 8 | 0 | 296,000 | |
Puerto Rico | 1 | 0 | 2000 | |
Saint Lucia | 1 | 0 | 0 | |
Saint Vincent and the Grenadines | 1 | 0 | 0 | |
Trinidad and Tobago | 1 | 0 | 0 | |
United States of America | 20 | 0 | 44,835,000 | |
Uruguay | 3 | 0 | 750,000 | |
Republic of Venezuela | 2 | 0 | 0 | |
Afghanistan | 11 | 37 | 142,250 | |
Armenia | 1 | 0 | 100,000 | |
Azerbaijan | 1 | 0 | 100,000 | |
Bangladesh | 7 | 1,900,018 | 0 | |
Cambodia | 8 | 0 | 138,000 | |
China | 34 | 3,503,534 | 35,346,420 | |
Cyprus | 2 | 0 | 0 | |
Georgia | 2 | 0 | 200,000 | |
Hong Kong | 7 | 0 | 0 | |
India | 20 | 4,250,320 | 5,441,122 | |
Indonesia | 11 | 9340 | 160,200 | |
Iran (Islamic Republic of) | 4 | 0 | 3,300,000 | |
Iraq | 7 | 0 | 2,000 | |
Israel | 1 | 0 | 75,000 | |
Japan | 1 | 0 | 0 | |
Jordan | 2 | 0 | 0 | |
Asia | Democratic People´s Republic Of Korea | 3 | 0 | 0 |
Republic of Korea | 3 | 0 | 0 | |
Kyrgyzstan | 1 | 0 | 0 | |
Lao People’s Democratic Republic | 7 | 0 | 1000 | |
Malaysia | 2 | 0 | 0 | |
Mongolia | 3 | 0 | 0 | |
Nepal | 8 | 0 | 10,000 | |
Pakistan | 5 | 143 | 247,000 | |
Philippines | 12 | 8 | 148,852 | |
Sri Lanka | 15 | 0 | 45,000 | |
Syrian Arab Republic | 5 | 0 | 0 | |
Tajikistan | 3 | 0 | 57,000 | |
Thailand | 13 | 0 | 3,725,500 | |
Timor-Leste | 2 | 0 | 0 | |
Uzbekistan | 2 | 0 | 50,000 | |
Viet Nam | 9 | 0 | 7,399,120 | |
Yemen Arab Rep | 4 | 0 | 10,000 | |
Yemen P Dem Rep | 2 | 0 | 0 | |
Albania | 3 | 0 | 0 | |
Belgium | 1 | 0 | 0 | |
Bosnia and Herzegovina | 2 | 0 | 298,000 | |
Bulgaria | 3 | 0 | 0 | |
Croatia | 1 | 0 | 330,000 | |
Denmark | 1 | 0 | 751,700 | |
France | 4 | 0 | 1,610,000 | |
Greece | 1 | 0 | 1,000,000 | |
Europe | Hungary | 3 | 0 | 984,000 |
Italy | 4 | 0 | 4,290,000 | |
Lithuania | 3 | 0 | 278,473 | |
Macedonia | 1 | 0 | 0 | |
Moldova | 3 | 2 | 406,000 | |
Poland | 1 | 0 | 0 | |
Portugal | 4 | 0 | 1,443,136 | |
Romania | 2 | 0 | 500,000 | |
Russian Federation | 5 | 0 | 2,540,000 | |
Soviet Union | 1 | 1,200,000 | 0 | |
Spain | 11 | 0 | 10,660,000 | |
Ukraine | 1 | 0 | 1,690,000 | |
Yugoslavia | 1 | 0 | 1,000,000 | |
Australia | 17 | 600 | 11,773,000 | |
Fiji | 3 | 0 | 30,000 | |
Kiribati | 1 | 0 | 0 | |
Marshall Islands | 3 | 0 | 4900 | |
Oceania | Micronesia (Federated States of) | 2 | 0 | 0 |
New Zealand | 2 | 0 | 923,000 | |
Papua New Guinea | 5 | 84 | 60,000 | |
Samoa | 1 | 0 | 0 | |
Solomon Islands | 3 | 0 | 0 | |
Tonga | 1 | 0 | 0 | |
Tuvalu | 1 | 0 | 0 |
References
- Cook, E.R.; Seager, R.; Heim, R.R.; Herweijer, C.; Vose, R.S.; Woodhouse, C. Megadroughts in North America: Placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci. 2010, 25, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Nijssen, B.; Lettenmaier, D.P. Is climate change implicated in the 2013–2014 California drought? A hydrologic perspective. Geophys. Res. Lett. 2015, 42, 2805–2813. [Google Scholar] [CrossRef]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Global warming and 21st century drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef] [Green Version]
- Delworth, T.L.; Zeng, F.; Rosati, A.; Vecchi, G.A.; Wittenberg, A.T. A link between the hiatus in global warming and North American drought. J. Clim. 2015, 28, 3834–3845. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Swain, D.L.; Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.E.; Gleick, P.H. Climate change and California drought in the 21st century. Proc. Natl. Acad. Sci. USA 2015, 112, 3858–3859. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Hoerling, M.; AghaKouchak, A.; Livneh, B.; Quan, X.-W.; Eischeid, J. How has human-induced climate change affected California drought risk? J. Clim. 2016, 29, 111–120. [Google Scholar] [CrossRef]
- Hartmann, D.L. Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett. 2015, 42, 1894–1902. [Google Scholar] [CrossRef]
- Seager, R.; Hoerling, M. Atmosphere and ocean origins of North American droughts*. J. Clim. 2014, 27, 4581–4606. [Google Scholar] [CrossRef]
- Seager, R.; Hoerling, M.; Schubert, S.; Wang, H.; Lyon, B.; Kumar, A.; Nakamura, J.; Henderson, N.H. Causes and Predictability of the 2011–14 California Drought; assessment report; NOAA: Silver Spring, MD, USA, 2014. [Google Scholar]
- Wang, S.Y.; Hipps, L.; Gillies, R.R.; Yoon, J.H. Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett. 2014, 41, 3220–3226. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.P.; Seager, R.; Abatzoglou, J.T.; Cook, B.I.; Smerdon, J.E.; Cook, E.R. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett. 2015, 42, 6819–6828. [Google Scholar] [CrossRef] [Green Version]
- Acuna-Soto, R.; Stahle, D.W.; Cleaveland, M.K.; Therrell, M.D. Megadrought and megadeath in 16th century Mexico. Emerg. Infect. Dis. 2002, 8, 360–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodhouse, C.A.; Overpeck, J.T. 2000 years of drought variability in the central United States. Bull. Am. Meteorol. Soc. 1998, 79, 2693–2714. [Google Scholar] [CrossRef]
- Buckley, B.M.; Anchukaitis, K.J.; Penny, D.; Fletcher, R.; Cook, E.R.; Sano, M.; Le, C.N.; Wichienkeeo, A.; Minh, T.T.; Hong, T.M. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl. Acad. Sci. USA 2010, 107, 6748–6752. [Google Scholar] [CrossRef] [Green Version]
- Shanahan, T.M.; Overpeck, J.T.; Anchukaitis, K.J.; Beck, J.W.; Cole, J.E.; Dettman, D.L.; Peck, J.A.; Scholz, C.A.; King, J.W. Atlantic forcing of persistent drought in West Africa. Science 2009, 324, 377–380. [Google Scholar] [CrossRef] [Green Version]
- Benson, L.; Petersen, K.; Stein, J. Anasazi (pre-Columbian Native-American) migrations during the middle-12th and late-13th centuries—Were they drought induced? Clim. Chang. 2007, 83, 187–213. [Google Scholar] [CrossRef] [Green Version]
- Hodell, D.A.; Curtis, J.H.; Brenner, M. Possible role of climate in the collapse of Classic Maya civilization. Nature 1995, 375, 391–394. [Google Scholar] [CrossRef]
- Cook, B.I.; Ault, T.R.; Smerdon, J.E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 2015, 1, e1400082. [Google Scholar] [CrossRef] [Green Version]
- Ault, T.R.; Cole, J.E.; Overpeck, J.T.; Pederson, G.T.; Meko, D.M. Assessing the risk of persistent drought using climate model simulations and paleoclimate data. J. Clim. 2014, 27, 7529–7549. [Google Scholar] [CrossRef] [Green Version]
- Swain, D.; Tsiang, M.; Haugen, M.; Singh, D.; Charland, A.; Rajaratnam, B.; Diffenbaugh, N. The extraordinary California drought of 2013/2014: Character, context, and the role of climate change. Bull. Am. Meteorol. Soc. 2014, 95, S3–S7. [Google Scholar]
- Kogan, F.; Guo, W. 2006–2015 mega-drought in the western USA and its monitoring from space data. J. Geomat. Nat. Hazards Risk 2015, 6, 651–668. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.I.; Miller, R.L.; Seager, R. Amplification of the North American ‘‘Dust Bowl’’drought through human-induced land degradation. Proc. Natl. Acad. Sci. USA 2009, 106, 4997–5001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, B.I.; Seager, R.; Smerdon, J.E. The worst North American drought year of the last millennium: 1934. Geophys. Res. Lett. 2014, 41, 7298–7305. [Google Scholar] [CrossRef] [Green Version]
- Seager, R.; Ting, M.; Held, I.; Kushnir, Y.; Lu, J.; Vecchi, G.; Huang, H.-P.; Harnik, N.; Leetmaa, A.; Lau, N.-C. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 2007, 316, 1181–1184. [Google Scholar] [CrossRef]
- Woodhouse, C.A.; Meko, D.M.; MacDonald, G.M.; Stahle, D.W.; Cook, E.R. A 1,200-year perspective of 21st century drought in southwestern North America. Proc. Natl. Acad. Sci. USA 2010, 107, 21283–21288. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.; Anchukaitis, K.J. How unusual is the 2012–2014 California drought? Geophys. Res. Lett. 2014, 41, 9017–9023. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, G.M. Severe and sustained drought in southern California and the West: Present conditions and insights from the past on causes and impacts. Quat. Int. 2007, 173, 87–100. [Google Scholar] [CrossRef]
- Schimmelmann, A.; Lange, C.B.; Meggers, B.J. Palaeoclimatic and archaeological evidence for a 200-yr recurrence of floods and droughts linking California, Mesoamerica and South America over the past 2000 years. Holocene 2003, 13, 763–778. [Google Scholar] [CrossRef]
- Devineni, N.; Lall, U.; Etienne, E.; Shi, D.; Xi, C. America’s water risk: Current demand and climate variability. Geophys. Res. Lett. 2015, 42, 2285–2293. [Google Scholar] [CrossRef]
- Kwon, H.-H.; Lall, U. A copula-based nonstationary frequency analysis for the 2012–2015 drought in California. Water Resour. Res. 2016, 52, 5662–5675. [Google Scholar] [CrossRef] [Green Version]
- Center for Climate and Resilience Research (CR) 2. The 2010–2015 Mega-Drought: A Lesson to the Future; Report for policymakers; (CR) 2: Santiago, Chile, 2015. (In Spanish) [Google Scholar]
- Boisier, J.P.; Rondanelli, R.; Garreaud, R.D.; Muñoz, F. Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys. Res. Lett. 2016, 43, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.A.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010–2015 mega drought in Central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. Discuss. 2017, 21, 6307–6327. [Google Scholar] [CrossRef] [Green Version]
- Corporación Nacional Forestal (CONAF). Analisis de la afectacion y severidad de los incendios forestales ocurridos en enero y febrero de 2017 sobre los usos de suelo y los ecosistemas naturales presentes entre las regiones de Coquimbo y Araucanıa de Chile; Informe Tecnico; Corporacion Nacional Forestal Ministerio de Agricultura: Santiago, Chile, 2017. [Google Scholar]
- Martınez-Harms, M.J.; Caceres, H.; Biggs, D.; Possingham, H.P. After Chile’s fire, reforest private land. Science 2017, 356, 147–148. [Google Scholar] [CrossRef] [PubMed]
- González, M.E.; Gómez-González, S.; Lara, A.; Garreaud, R.; Díaz-Hormazábal, I. The 2010–2015 Megadrought and its influence on the fire regime in central and south-central Chile. Ecosphere 2018, 9, e02300. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Hidalgo, J.C.; Brunetti, M.; de Luis, M. A new tool for monthly precipitation analysis in Spain: MOPREDAS database (monthly precipitation trends December 1945–November 2005). Int. J. Climatol. 2010, 31, 715–731. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Kilsby, C.; Serinaldi, F. Analysis of time variation of rainfall in transnational basins in Iberia: Abrupt changes or trends? Int. J. Climatol. 2014, 34, 114–133. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M. Spatial and temporal analysis of droughts in the Iberian Peninsula (1910–2000). Hydrol. Sci. 2006, 51, 83–97. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M. Differences in spatial patterns of drought on different time scales: An analysis of the Iberian peninsula. Water Resour. Manag. 2006, 20, 37–60. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Kilsby, C.; Fowler, H.J. Assessing the threat of future megadrought in Iberia. Int. J. Climatol. 2017, 37, 5024–5034. [Google Scholar] [CrossRef] [Green Version]
Year | Number of Drought Occurrences (Count) | ||||||
---|---|---|---|---|---|---|---|
Asia | Americas | Europe | Africa | Oceania | South Pole | Sum | |
1900–1910 | 1 | - | - | 13 | - | - | 14 |
1911–1920 | 1 | 2 | - | 37 | - | - | 40 |
1921–1930 | 1 | 3 | 1 | - | - | - | 5 |
1931–1940 | - | 15 | - | 9 | - | - | 24 |
1941–1950 | 3 | - | - | 37 | - | - | 40 |
1951–1960 | 1 | - | - | - | - | - | 1 |
1961–1970 | 17 | 14 | - | 30 | 3 | - | 64 |
1971–1980 | 33 | 17 | 2 | 89 | 5 | - | 146 |
1981–1990 | 30 | 31 | 14 | 140 | 4 | - | 219 |
1991–2000 | 50 | 40 | 21 | 102 | 13 | - | 226 |
2001–2010 | 49 | 52 | 11 | 127 | 2 | - | 241 |
2011–2018 | 32 | 55 | 7 | 89 | 12 | - | 195 |
Sum | 218 | 229 | 56 | 673 | 39 | - | 1215 |
Year | Drought Human Losses (Person) | ||||||
---|---|---|---|---|---|---|---|
Asia | Americas | Europe | Africa | Oceania | South Pole | Sum | |
1900–1910 | 1,250,000 | - | - | 28,000 | - | - | 1,278,000 |
1911–1920 | 500,000 | - | - | 92,000 | - | - | 592,000 |
1921–1930 | 3,000,000 | - | 1,200,000 | - | - | - | 4,200,000 |
1931–1940 | - | - | - | 4000 | - | - | 4000 |
1941–1950 | 3,400,000 | - | - | 46,000 | - | - | 3,446,000 |
1951–1960 | - | - | - | - | - | - | - |
1961–1970 | 1,508,000 | - | - | 2050 | 600 | - | 1,510,650 |
1971–1980 | 81 | - | - | 119,000 | - | - | 119,081 |
1981–1990 | 2294 | 20 | 0 | 554,874 | - | - | 557,188 |
1991–2000 | 2758 | 6 | 2 | 224 | 60 | - | 3050 |
2001–2010 | 256 | 51 | - | 10,983 | - | - | 11,290 |
2011–2018 | 11 | - | - | 10,000 | 24 | - | 10,035 |
Sum | 9,663,400 | 77 | 1,200,002 | 867,131 | 684 | - | 11,731,294 |
Year | Drought Damage Costs (Thousand US Dollars) | ||||||
---|---|---|---|---|---|---|---|
Asia | Americas | Europe | Africa | Oceania | South Pole | Sum | |
1900–1960 | - | - | - | - | - | - | - |
1961–1970 | 135,317 | 49,600 | - | 53,384 | 600,000 | - | 838,301 |
1971–1980 | 385,201 | 5,329,000 | 375,000 | 549,516 | - | - | 6,638,717 |
1981–1990 | 964,220 | 3,462,600 | 7,530,000 | 73,043 | 6,030,000 | - | 18,059,863 |
1991–2000 | 18,990,798 | 5,473,666 | 9,616,600 | 1,944,650 | 2,073,000 | - | 38,098,714 |
2001–2010 | 12,449,329 | 6,496,273 | 3,939,709 | 300,000 | 2,000,000 | - | 25,185,311 |
2011–2018 | 23,773,599 | 49,149,669 | 6,320,000 | 3,518,000 | 2,087,900 | - | 84,849,168 |
Sum | 56,698,464 | 69,960,808 | 27,781,309 | 6,438,593 | 12,790,900 | - | 173,670,074 |
Drought Continuous Period (Year) | Frequency of Droughts (Count) | Percentage (%) |
---|---|---|
1 | 332 | 55.3 |
2 | 125 | 20.8 |
3 | 50 | 8.3 |
4 | 30 | 5.0 |
5 | 43 | 7.2 |
6 | 12 | 2.0 |
7 | 4 | 0.7 |
8-9 | - | - |
10 | 2 | 0.3 |
11 | 1 | 0.2 |
12–17 | - | - |
17 | 1 | 0.2 |
Sum | 600 | 100.0 |
Drought Continuous Period | Human Losses (Person) | Frequency of Drought Damages (Count) | Mean Annual Human Losses (Person) |
---|---|---|---|
1 | 9,429,343 | 31 | 304,172 |
2 | 301,409 | 10 | 15,070 |
3 | 169,788 | 8 | 7075 |
4 | 1,500,132 | 3 | 125,011 |
5 | 130,537 | 8 | 3263 |
6 | 100,085 | 2 | 8340 |
7 | 100,000 | 1 | 14,286 |
8–17 | - | - | - |
Sum | 11,731,294 | 63 | 477,217 |
Mean | 690,076 | 9 | 68,174 |
Drought Continuous Period (yr) | Damage Costs (Thousand US Dollars) | Frequency of Drought Damages (Count) | Mean Annual Damage Costs (Thousand US Dollars) |
---|---|---|---|
1 | 36,151,790 | 98 | 368,896 |
2 | 57,396,804 | 34 | 844,071 |
3 | 17,906,726 | 21 | 284,234 |
4 | 23,039,600 | 11 | 523,627 |
5 | 33,880,115 | 10 | 677,602 |
6 | 4,577,739 | 3 | 254,319 |
7 | 74,800 | 1 | 10,686 |
8-9 | - | - | - |
10 | 83,000 | 1 | 8300 |
11 | 500,000 | 1 | 45,455 |
12–16 | - | - | - |
17 | 59,500 | 1 | 3500 |
Sum | 173,670,074 | 181 | 3,020,690 |
Mean (Total) | 17,367,007 | 18 | 302,069 |
Mean (more than seven years) | 179,325 | 1 | 16,985 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Park, M. Assessment of Quantitative Standards for Mega-Drought Using Data on Drought Damages. Sustainability 2020, 12, 3598. https://doi.org/10.3390/su12093598
Song Y, Park M. Assessment of Quantitative Standards for Mega-Drought Using Data on Drought Damages. Sustainability. 2020; 12(9):3598. https://doi.org/10.3390/su12093598
Chicago/Turabian StyleSong, Youngseok, and Moojong Park. 2020. "Assessment of Quantitative Standards for Mega-Drought Using Data on Drought Damages" Sustainability 12, no. 9: 3598. https://doi.org/10.3390/su12093598
APA StyleSong, Y., & Park, M. (2020). Assessment of Quantitative Standards for Mega-Drought Using Data on Drought Damages. Sustainability, 12(9), 3598. https://doi.org/10.3390/su12093598