Effect of Oat Hulls Incorporated in the Diet or Fed as Free Choice on Growth Performance, Carcass Yield, Gut Morphology and Digesta Short Chain Fatty Acids of Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Birds and Housing
2.3. Diets and Experimental Design
2.4. Measurements and Sampling
2.5. Analysis of Short Chain Fatty Acids
2.6. Measurement of Jejunal Morphology
2.7. Statistical Analyses
3. Results
3.1. Effect of Oat Hulls on Growth Performance and Carcass Yield
3.2. Effect of Oat Hulls on Intestinal Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chicken Farmers of Canada Annual Report. 2017. Available online: https://www.chickenfarmers.ca/wp-content/uploads/2018/03/2017-Annual-Report-ENG-web-2.pdf (accessed on 6 April 2020).
- Huyghebaert, G.; Ducatelle, R.; Van Immerseel, F. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 2011, 187, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndou, S.P.; Tun, H.M.; Kiarie, E.; Walsh, M.C.; Khafipour, E.; Nyachoti, C.M. Dietary supplementation with flaxseed meal and oat hulls modulates intestinal histomorphometric characteristics, digesta-and mucosa-associated microbiota in pigs. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.C.; Mullan, B.P.; Hampson, D.J.; Pluske, J.R. Addition of oat hulls to an extruded rice-based diet for weaner pigs ameliorates the incidence of diarrhoea and reduces indices of protein fermentation in the gastrointestinal tract. Br. J. Nutr. 2008, 99, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Moreno, E.; González-Alvarado, J.M.; Lázaro, R.; Mateos, G.G. Effects of type of cereal, heat processing of the cereal, and fiber inclusion in the diet on gizzard pH and nutrient utilization in broilers at different ages. Poult. Sci. 2009, 88, 1925–1933. [Google Scholar] [CrossRef]
- den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid. Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [Green Version]
- Cherrington, C.A.; Hinton, M.; Pearson, G.R.; Chopra, I. Short-chain organic acids at pH 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. J. Appl. Bacteriol. 1991, 70, 161–165. [Google Scholar] [CrossRef]
- Jiménez-Moreno, E.; Frikha, M.; de Coca-Sinova, A.; García, J.; Mateos, G.G. Oat hulls and sugar beet pulp in diets for broilers 1. Effects on growth performance and nutrient digestibility. Anim. Feed Sci. Technol. 2013, 182, 33–43. [Google Scholar] [CrossRef]
- Jiménez-Moreno, E.; Frikha, M.; de Coca-Sinova, A.; Lázaro, R.P.; Mateos, G.G. Oat hulls and sugar beet pulp in diets for broilers. 2. Effects on the development of the gastrointestinal tract and on the structure of the jejunal mucosa. Anim. Feed Sci. Technol. 2013, 182, 44–52. [Google Scholar] [CrossRef]
- Jiménez-Moreno, E.; González-Alvarado, J.M.; de Coca-Sinova, A.; Lázaro, R.P.; Cámara, L.; Mateos, G.G. Insoluble fiber sources in mash or pellets diets for young broilers. 2. Effects on gastrointestinal tract development and nutrient digestibility. Poult. Sci. 2019, 98, 2531–2547. [Google Scholar] [CrossRef]
- Torki, M.; Schokker, D.; Duijster-Lensing, M.; Van Krimpen, M.M. Effect of nutritional interventions with quercetin, oat hulls, β-glucans, lysozyme and fish oil on performance and health status related parameters of broilers chickens. Br. Poult. Sci. 2018, 59, 579–590. [Google Scholar] [CrossRef] [Green Version]
- Kheravii, S.K.; Swick, R.A.; Choct, M.; Wu, S.B. Effect of oat hulls as a free choice feeding on broiler performance, short chain fatty acids and microflora under a mild necrotic enteritis challenge. Anim. Nutr. 2018, 4, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.J.; Selle, P.H.; Bedford, M.R.; Cowieson, A.J. Separate feeding of calcium improves performance and ileal nutrient digestibility in broiler chicks. Anim. Prod. Sci. 2014, 54, 172–178. [Google Scholar] [CrossRef]
- Canadian Council on Animal Care. Guidelines on: The Care and Use of Farm Animals in Research, Teaching and Testing; Canadian Council on Animal Care: Ottawa, ON, Canada, 2009. [Google Scholar]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994.
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses: Apparatus, Reagents, Procedures, and Some Applications; Agricultural Research Service, United States Department of Agriculture: Washington, DC, USA, 1970; Volume 379.
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC Int.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Shojadoost, B.; Vince, A.R.; Prescott, J.F. The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: A critical review. Vet. Res. 2012, 43, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girardet, N.; Webster, F.H. Oats: Chemistry and Technology, 2nd ed.; Webster, F., Ed.; Academic Press: Cambridge, MA, USA; American Associate of Cereal Chemists International: Saint Paul, MN, USA, 2016; pp. 301–319. [Google Scholar]
- Hutchinson, J.B.; Kent, N.L.; Martin, H.F. The kernel content of oats: Comparison of kernel content and thousand kernel weight for winter and spring varieties. J. Natl. Inst. Agric. Bot. 1953, 6, 443–453. [Google Scholar]
- Salo, M.L.; Kotilainen, K. On the carbohydrate composition and nutritive value of some cereals. Agric. Food Sci. 1970, 42, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Welch, R.W.; Hayward, M.V.; Jones, D.I.H. The composition of oat husk and its variation due to genetic and other factors. J. Sci. Food Agric. 1983, 34, 417–426. [Google Scholar] [CrossRef]
- García, J.; Fondevila, G.; Cámara, L.; Scappaticcio, R.E.; Aguirre, L.; Mateos, G.G. Influence of egg weight and inclusion of oat hulls in the diet on digestive tract traits and growth performance of brown pullets reared under stress conditions. Poult. Sci. 2019, 98, 5767–5777. [Google Scholar] [CrossRef]
- Mossami, A. Effects of Different Inclusions of Oat Hulls on Performance, Carcass Yield and Gut Development in Broiler Chickens. Master’s Thesis, Swedish University of Agricultural Science, Uppsala, Sweden, 2011. [Google Scholar]
- Hetland, H.; Svihus, B. Effect of oat hulls on performance, gut capacity and feed passage time in broiler chickens. Br. Poult. Sci. 2001, 42, 354–361. [Google Scholar] [CrossRef]
- Sadeghi, A.; Toghyani, M.; Gheisari, A. Effect of various fiber types and choice feeding of fiber on performance, gut development, humoral immunity, and fiber preference in broiler chicks. Poult. Sci. 2015, 94, 2734–2743. [Google Scholar] [CrossRef]
- Lonkar, V.; Ranade, A.; Kulkarni, V.; Pathak, C. Inclusion of oat hulls as a source of insoluble fiber in broiler diet—An alternative to AGP. Int. J. Livest. Res. 2018, 10, 252–264. [Google Scholar] [CrossRef]
- Shahin, K.A.; Abdelazim, F. Effects of breed, sex and diet and their interactions on carcass composition and tissue weight distribution of broiler chickens. Arch. Tierz. 2005, 6, 612–626. [Google Scholar] [CrossRef]
- Mourão, J.L.; Pinheiro, V.M.; Prates, J.A.M.; Bessa, R.J.B.; Ferreira, L.M.A.; Fontes, C.M.G.A.; Ponte, P.I.P. Effect of dietary dehydrated pasture and Citrus pulp on the performance and meat quality of broiler chickens. Poult. Sci. 2008, 87, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Rogel, A.M.; Annison, E.F.; Bryden, W.L.; Balnave, D. The digestion of wheat starch in broiler chickens. Aust. J. Agric. Res. 1987, 38, 639–649. [Google Scholar] [CrossRef]
- Rogel, A.M.; Balnave, D.; Bryden, W.L.; Annison, E.F. Improvement of raw potato starch digestion in chickens by feeding oat hulls and other fibrous feedstuffs. Aust. J. Agric. Res. 1987, 38, 629–637. [Google Scholar] [CrossRef]
- Iji, P.A.; Saki, A.A.; Tivey, D.R. Intestinal development and body growth of broiler chicks on diets supplemented with non-starch polysaccharides. Anim. Feed Sci. Technol. 2001, 89, 175–188. [Google Scholar] [CrossRef]
- Kimiaeitalab, M.V.; Cámara, L.; Mirzaie Goudarzi, S.; Jiménez-Moreno, E.; Mateos, G.G. Effects of the inclusion of sunflower hulls in the diet on growth performance and digestive tract traits of broilers and pullets fed a broiler diet from zero to 21 d of age. A comparative study. Poult. Sci. 2017, 96, 581–592. [Google Scholar] [CrossRef]
- Graham, L.S.; Krass, L.; Zariffard, M.R.; Spear, G.T.; Mirmonsef, P. Effects of succinic acid and other microbial fermentation products on HIV expression in macrophages. BioRes. Open Access 2013, 2, 385–391. [Google Scholar] [CrossRef]
- Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013, 496, 238–242. [Google Scholar] [CrossRef]
- Meimandipour, A.; Soleimanifarjam, A.; Azhar, K.; Hair-Bejo, M.; Shuhaimi, M.; Nateghi, L.; Yazid, A.M. Age effects on short chain fatty acids concentrations and pH values in the gastrointestinal tract of broiler chickens. Archiv Für Geflügelkunde 2011, 75, 164–168. [Google Scholar]
- Sun, B.; Hou, L.; Yang, Y. Effects of altered dietary fiber on the gut Microbiota, short-chain fatty acids and cecum of chickens during different growth periods. Anim. Sci. Zool. 2020. [Google Scholar] [CrossRef]
- Walugembe, M.; Hsieh, J.C.F.; Koszewski, N.J.; Lamont, S.J.; Persia, M.E.; Rothschild, M.F. Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks. Poult. Sci. 2015, 94, 2351–2359. [Google Scholar] [CrossRef] [PubMed]
Ingredient (%) | Production Period (Days of Age) | ||||||||
---|---|---|---|---|---|---|---|---|---|
1–14 | 14–22 | 22–39 | |||||||
Basal | BMD | 3% OH | Basal | BMD | 3% OH | Basal | BMD | 3% OH | |
Corn | 51.08 | 50.98 | 45.43 | 44.32 | 44.22 | 38.64 | 49.12 | 49.02 | 43.62 |
Soybean Meal | 41.44 | 41.45 | 42.16 | 36.48 | 36.49 | 37.21 | 31.42 | 31.44 | 32.12 |
Wheat | - | - | - | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
Oat Hulls | - | - | 3.00 | - | - | 3.00 | - | - | 3.00 |
Animal/Vegetable Fat | 2.93 | 2.97 | 4.85 | 4.59 | 4.63 | 6.52 | 5.19 | 5.22 | 6.97 |
Limestone | 1.80 | 1.80 | 1.79 | 1.65 | 1.65 | 1.64 | 1.50 | 1.50 | 1.49 |
Dicalcium Phosphate | 1.24 | 1.24 | 1.26 | 1.06 | 1.06 | 1.08 | 0.90 | 0.90 | 0.92 |
DL-Methionine Premix Z | 0.59 | 0.59 | 0.60 | 0.53 | 0.53 | 0.54 | 0.49 | 0.49 | 0.50 |
Lysine HCl | 0.01 | 0.01 | 0.01 | - | - | - | - | - | - |
Iodized Salt | 0.41 | 0.41 | 0.41 | 0.37 | 0.37 | 0.37 | 0.38 | 0.38 | 0.38 |
Pellet Binding Agent Y | - | - | - | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
BMD 110 G X | - | 0.05 | - | - | 0.05 | - | - | 0.05 | - |
Vitamin/Mineral Premix W, V | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Calculated Composition | |||||||||
Crude Protein (%) | 23.00 | 23.00 | 23.00 | 21.50 | 21.50 | 21.50 | 19.50 | 19.50 | 19.50 |
Metabolizable Energy (kcal kg−1) | 3000 | 3000 | 3000 | 3100 | 3100 | 3100 | 3200 | 3200 | 3200 |
Calcium (%) | 0.96 | 0.96 | 0.96 | 0.87 | 0.87 | 0.87 | 0.78 | 0.78 | 0.78 |
Available Phosphorus (%) | 0.48 | 0.48 | 0.48 | 0.44 | 0.44 | 0.44 | 0.39 | 0.39 | 0.39 |
Digestible Lysine | 1.28 | 1.28 | 1.28 | 1.16 | 1.16 | 1.17 | 1.02 | 1.02 | 1.03 |
Digestible Methionine + Cystine (%) | 0.95 | 0.95 | 0.95 | 0.87 | 0.87 | 0.87 | 0.80 | 0.80 | 0.80 |
Sodium (%) | 0.19 | 0.19 | 0.19 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 |
Analyzed Composition | |||||||||
Crude Protein (%) | 23.4 | 24.6 | 23.7 | 21.9 | 22.0 | 21.8 | 19.1 | 19.8 | 21.7 |
Calcium (%) | 1.01 | 1.15 | 1.03 | 0.96 | 0.97 | 1.15 | 0.83 | 0.84 | 0.893 |
Total Phosphorus (%) | 0.65 | 0.70 | 0.72 | 0.61 | 0.61 | 0.70 | 0.55 | 0.55 | 0.60 |
Sodium (%) | 0.19 | 0.22 | 0.19 | 0.19 | 0.19 | 0.20 | 0.17 | 0.17 | 0.17 |
Crude Fat (%) | 6.03 | 5.71 | 7.02 | 6.91 | 6.63 | 8.03 | 8.45 | 8.36 | 9.80 |
Item | Oat Hulls (Dry Matter Basis) |
---|---|
Crude protein (%) | 2.75 |
Neutral detergent fiber (%) | 76.5 |
Acid detergent fiber (%) | 44.1 |
Digestible energy (Mcal/kg) | 2.31 |
Calcium (%) | 0.08 |
Potassium (%) | 0.35 |
Magnesium (%) | 0.09 |
Phosphorus (%) | 0.07 |
Manganese (ppm) | 26.9 |
Zinc (ppm) | 7.58 |
Item | Treatment 1 | p-Value | SEM | |||
---|---|---|---|---|---|---|
Basal | BMD | 3% OH | FCOH | |||
ADFI (g/bird) a | ||||||
1–8 | 182 | 178 | 168 | 179 | 0.8160 | 11.3 |
8–15 | 365 | 362 | 343 | 366 | 0.0520 | 6.12 |
15–22 | 649 | 632 | 642 | 682 | 0.3286 | 19.4 |
22–28 | 820 ab | 818 ab | 774 b | 907 a | 0.0160 | 26.6 |
28–36 | 1427 | 1391 | 1440 | 1434 | 0.9493 | 64.7 |
1–36 | 3443 | 3381 | 3368 | 3567 | 0.2323 | 72.9 |
OH, g/bird b | 0 | 0 | 600 | 2700 | - | - |
BWG (g/bird) | ||||||
1–8 | 125 a | 127 a | 130 a | 111 b | 0.0007 | 2.82 |
8–15 | 388 ab | 393 ab | 400 a | 362 b | 0.0192 | 7.97 |
15–22 | 493 ab | 512 a | 493 ab | 470 b | 0.0356 | 9.53 |
22–28 | 537 | 525 | 524 | 505 | 0.1875 | 10.1 |
28–36 | 1437 a | 1439 a | 1449 a | 1364 b | 0.0479 | 22.1 |
1–36 | 2317 ab | 2343 a | 2346 a | 2195 b | 0.0126 | 33.1 |
FCR | ||||||
1–8 | 1.45 | 1.41 | 1.29 | 1.61 | 0.1362 | 0.09 |
8–15 | 0.94 ab | 0.92 ab | 0.86 b | 1.02 a | 0.0032 | 0.03 |
15–22 | 1.32 b | 1.24 b | 1.29 b | 1.45 a | 0.0016 | 0.03 |
22–28 | 1.53 b | 1.56 b | 1.48 b | 1.80 a | 0.0009 | 0.05 |
28–36 | 0.99 | 0.97 | 0.99 | 1.05 | 0.6089 | 0.04 |
1–36 | 1.49 b | 1.44 b | 1.44 b | 1.63 a | 0.0001 | 0.03 |
Item | Treatment 1 | p-Value | SEM | |||
---|---|---|---|---|---|---|
Basal | BMD | 3% OH | FCOH | |||
Weight (kg) | ||||||
Hot carcass | 2058 ab | 2042 ab | 2220 a | 1938 b | 0.0524 | 69.78 |
Cold carcass | 1949 ab | 2013 ab | 2148 a | 1883 b | 0.0477 | 66.66 |
Breast muscle | 567.7 ab | 522.8 b | 633.2 a | 538.1 ab | 0.0371 | 27.84 |
Yield (% live weight) | ||||||
Hot carcass | 73.5 | 71.9 | 73.0 | 73.0 | 0.5661 | 0.929 |
Cold carcass | 69.6 | 70.8 | 70.5 | 69.9 | 0.2642 | 0.458 |
Breast muscle | 20.2 | 18.5 | 20.8 | 20.1 | 0.2643 | 0.832 |
Item | Treatment 1 | p-Value | SEM | |||
---|---|---|---|---|---|---|
Basal | BMD | 3% OH | FCOH | |||
Slaughter weight (kg) | 2.55 | 2.67 | 2.55 | 2.44 | 0.1160 | 0.07 |
Spleen (g/kgBW) | 0.84 | 0.90 | 0.89 | 0.79 | 0.4968 | 0.06 |
Liver (g/kgBW) | 19.4 | 19.6 | 20.1 | 19.4 | 0.6270 | 0.44 |
Bursa (g/kgBW) | 1.67 | 1.69 | 1.79 | 1.85 | 0.8419 | 0.16 |
Pancreas (g/kgBW) | 2.51 | 2.41 | 2.68 | 2.58 | 0.5952 | 0.14 |
Gizzard (g/kgBW) | 19.6 b | 19.9 b | 20.0 b | 24.6 a | <0.0001 | 0.71 |
Ceca (g/kgBW) | 6.44 | 5.62 | 6.31 | 7.43 | 0.0900 | 0.49 |
Intestine (g/kgBW) | 48.3 | 45.9 | 48.8 | 47.8 | 0.2737 | 1.11 |
Intestinal length (cm) | 198 | 204 | 202 | 192 | 0.1294 | 3.59 |
Necrotic lesion score | 0.83 | 0.33 | 0.92 | 0.83 | 0.1938 | 0.21 |
Item | Treatment 1 | p-Value | SEM | |||
---|---|---|---|---|---|---|
Basal | BMD | 3% OH | FCOH | |||
Villus height, mm | 1.62 | 1.89 | 1.67 | 1.63 | 0.8364 | 0.238 |
Crypt depth, mm | 0.40 | 0.50 | 0.38 | 0.42 | 0.3818 | 0.049 |
Villus height: Crypt depth | 4.22 | 4.33 | 4.64 | 4.08 | 0.8609 | 0.477 |
Total mucosal thickness, mm | 2.08 | 2.52 | 2.07 | 2.05 | 0.6291 | 0.298 |
Item | Treatment 1 | p-Value | SEM | |||
---|---|---|---|---|---|---|
Basal | BMD | 3% OH | FCOH | |||
Digesta pH | ||||||
Cecal pH | 6.63 | 6.42 | 6.68 | 6.72 | 0.5260 | 0.15 |
Ileal pH | 6.22 | 6.48 | 6.95 | 6.97 | 0.2302 | 0.29 |
Cecal short chain fatty acid concentrations (mmol/kg) | ||||||
Acetic Acid | 42.6 | 39.8 | 40.0 | 38.8 | 0.9205 | 4.23 |
Propionic Acid | 2.63 | 3.08 | 2.67 | 3.28 | 0.4980 | 0.35 |
Butyric Acid | 10.2 | 8.81 | 8.81 | 8.86 | 0.8530 | 1.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adewole, D.; MacIsaac, J.; Fraser, G.; Rathgeber, B. Effect of Oat Hulls Incorporated in the Diet or Fed as Free Choice on Growth Performance, Carcass Yield, Gut Morphology and Digesta Short Chain Fatty Acids of Broiler Chickens. Sustainability 2020, 12, 3744. https://doi.org/10.3390/su12093744
Adewole D, MacIsaac J, Fraser G, Rathgeber B. Effect of Oat Hulls Incorporated in the Diet or Fed as Free Choice on Growth Performance, Carcass Yield, Gut Morphology and Digesta Short Chain Fatty Acids of Broiler Chickens. Sustainability. 2020; 12(9):3744. https://doi.org/10.3390/su12093744
Chicago/Turabian StyleAdewole, Deborah, Janice MacIsaac, Gillian Fraser, and Bruce Rathgeber. 2020. "Effect of Oat Hulls Incorporated in the Diet or Fed as Free Choice on Growth Performance, Carcass Yield, Gut Morphology and Digesta Short Chain Fatty Acids of Broiler Chickens" Sustainability 12, no. 9: 3744. https://doi.org/10.3390/su12093744
APA StyleAdewole, D., MacIsaac, J., Fraser, G., & Rathgeber, B. (2020). Effect of Oat Hulls Incorporated in the Diet or Fed as Free Choice on Growth Performance, Carcass Yield, Gut Morphology and Digesta Short Chain Fatty Acids of Broiler Chickens. Sustainability, 12(9), 3744. https://doi.org/10.3390/su12093744