Understanding the Transit Market: A Persona-Based Approach for Preferences Quantification
Abstract
:1. Introduction and Background
2. Persona-Based Approach
3. Methodology
3.1. Methods
3.2. Data and Survey Instrument
3.3. Adopted Personas
- Persona 01 represents full-time employees who consider public transit as their primary mode of travel and are more likely to have a positive transit PBC and live in urban areas. This persona represents 912 respondents from the sample.
- Persona 02 portrays students who rely on public transit as their primary mode of travel and are more likely to have a positive transit PBC and live in urban areas. This persona represents 526 respondents from the sample.
- Persona 03 portrays full-time employees who live in urban areas, consider private vehicles as their primary mode of travel, and have more potential to have a neutral PBC. This persona represents 701 respondents from the sample.
- Persona 04 depicts retirees who consider private vehicles as their primary mode of travel and are more likely to have a neutral transit PBC and live in urban areas. This persona represents 407 respondents from the sample.
- Persona 05 represents students who consider private vehicles (driver or passenger) as their primary mode of travel and are more likely to have a neutral PBC and live in urban areas. This persona represents 142 respondents from the sample.
- Persona 06 portrays full-time personnel who consider private vehicles as passengers their primary mode of travel and are more likely to have a neutral PBC and live in urban areas. This persona represents 83 respondents from the sample.
- Persona 07 portrays full-time employees who live in the suburbs, identify private vehicles as their primary mode of travel, and are more likely to have a negative transit PBC. This persona represents 136 respondents from the sample.
4. Results
4.1. Persona-Based Preferences
- Persona 01 (Full-time employee, Transit user, Positive PBC, Live in urban areas) is negatively affected by higher trip fare (the highest among all personas), longer journey time, and longer service headway, while positively affected by real-time information provision and reducing number of transfers. Nevertheless, Persona 01 is indifferent to walking time to/from bus stops.
- Persona 02 (Student, Transit user, Positive PBC, Live in urban areas) is negatively affected by longer service headway (the highest among all personas), higher trip fare, longer journey time, and longer walking time, while positively affected by real-time information provision (the highest among all personas regarding onboard real-time info.) and reducing number of transfers.
- Persona 03 (Full-time employee, Car driver, Neutral PBC, Live in urban areas) is negatively affected by longer journey time (the highest among all personas), higher trip fare, longer walking time (the highest among all personas), and longer service headway, while positively affected by real-time information provision and reducing number of transfers.
- Persona 04 (Retiree, Car driver, Neutral PBC, Live in urban areas) is negatively affected by longer journey time (the least among all personas), higher trip fare, longer walking time, and longer service headway (the lowest among all personas), while positively affected by real-time information provision (the lowest among all personas) and reducing number of transfers.
- Persona 05 (Student, Car Driver/Passenger, Neutral PBC, Live in urban areas) is negatively affected by longer journey time, higher trip fare, and longer service headway, while positively affected by real-time information provision (the highest among all personas regarding at-stop real-time info.) and reducing number of transfers (the lowest among all personas). However, Persona 05 is indifferent regarding walking time to/from bus stops.
- Persona 06 (Full-time employee, Car passenger, Neutral PBC, Live in urban areas) is negatively affected by longer journey time, higher trip fare, and longer service headway, while positively affected by real-time information provision and reducing number of transfers. However, walking time to/from bus stops does not prove to be of influence on this persona.
- Persona 07 (Full-time employee, Car driver, Negative PBC, Live in the suburbs) is negatively affected by longer journey time, higher trip fare (the lowest among all personas), and longer service headway, while positively affected by real-time information provision and reducing number of transfers (the highest among all personas). However, walking time to/from bus stops does not prove to be significant for Persona 07.
4.2. Willingness to Pay
5. Discussion of Shared and Unique Preferences
6. Conclusions
- Persona 01 (Full-time employee, Transit user, Positive PBC, Live in urban areas) is the most influenced by higher trip fares (β01-Trip fare: −0.541) among all personas.
- Persona 02 (Student, Transit user, Positive PBC, Live in urban areas) is the most impacted by longer service headways (β02-Service headway: −0.042).
- Persona 03 (Full-time employee, Car driver, Neutral PBC, Live in urban areas) is the most affected by longer journey times (β03-Journey time: −0.057) and longer walking times to/from bus stops (β03-Walking time: −0.041).
- Persona 04 (Retiree, Car driver, Neutral PBC, Live in urban areas) is the least influenced by longer journey times (β04-Journey time: −0.025), longer service headways (β04-Service headway: −0.011), real-time information provision (β04-Onboard real-time: 0.259 & β04-At-stop real-time: 0.078), and reducing number of transfers from two to zero per trip (β04-Zero transfer: 1.060).
- Persona 05 (Student, Car Driver/Passenger, Neutral PBC, Live in urban areas) is the highest influenced by at-stop real-time information provision (β05-At-stop real-time: 0.486), while the least influenced by reducing number of transfers from two to one per trip (β05-One transfer: 0.562).
- Persona 06 (Full-time employee, Car passenger, Neutral PBC, Live in urban areas) is among the least-affected personas regarding walking time to/from bus stops.
- Persona 07 (Full-time employee, Car driver, Negative PBC, Live in the suburbs) is the most influenced by reducing the number of transfers per trip (β07-Zero transfer: 1.940 & β07-One transfer: 1.230), and the least affected by higher trip fares (β07-Trip fare: −0.306).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Coefficient(β) | β/Std. Err. | p−Value |
---|---|---|---|
Journey time | −0.0412 | −9.490 | 0.000 |
Journey time × Persona 02 | 0.0025 | 0.352 | 0.725 |
Journey time × Persona 03 | −0.0153 | −2.390 | 0.017 |
Journey time × Persona 04 | 0.0167 | 2.210 | 0.027 |
Journey time × Persona 05 | −0.0045 | −0.408 | 0.683 |
Journey time × Persona 06 | −0.0139 | −0.906 | 0.365 |
Journey time × Persona 07 | −0.0108 | −0.808 | 0.419 |
Trip fare | −0.5410 | −12.500 | 0.000 |
Trip fare × Persona 02 | 0.0756 | 1.140 | 0.254 |
Trip fare × Persona 03 | 0.0990 | 1.640 | 0.102 |
Trip fare × Persona 04 | 0.1840 | 2.640 | 0.008 |
Trip fare × Persona 05 | 0.1750 | 1.720 | 0.085 |
Trip fare × Persona 06 | 0.1420 | 1.030 | 0.305 |
Trip fare × Persona 07 | 0.2350 | 2.050 | 0.041 |
Walking time | −0.0069 | −1.220 | 0.222 |
Walking time × Persona 02 | −0.0224 | −2.410 | 0.016 |
Walking time × Persona 03 | −0.0346 | −4.040 | 0.000 |
Walking time × Persona 04 | −0.0224 | −2.250 | 0.024 |
Walking time × Persona 05 | −0.0172 | −1.110 | 0.266 |
Walking time × Persona 06 | 0.0035 | 0.156 | 0.876 |
Walking time × Persona 07 | 0.0023 | 0.140 | 0.888 |
Service headway | −0.0385 | −11.200 | 0.000 |
Service headway × Persona 02 | −0.0030 | −0.539 | 0.590 |
Service headway × Persona 03 | 0.0046 | 0.921 | 0.357 |
Service headway × Persona 04 | 0.0271 | 5.060 | 0.000 |
Service headway × Persona 05 | 0.0172 | 1.980 | 0.047 |
Service headway × Persona 06 | 0.0080 | 0.790 | 0.430 |
Service headway × Persona 07 | 0.0107 | 1.270 | 0.203 |
Number of transfers (2 transfers base category) | |||
One transfer | 0.8840 | 16.100 | 0.000 |
One transfer × Persona 02 | −0.0052 | −0.057 | 0.955 |
One transfer × Persona 03 | 0.0103 | 0.121 | 0.903 |
One transfer × Persona 04 | −0.1150 | −1.190 | 0.233 |
One transfer × Persona 05 | −0.3220 | −2.110 | 0.035 |
One transfer × Persona 06 | −0.2430 | −1.310 | 0.191 |
One transfer × Persona 07 | 0.3440 | 2.020 | 0.044 |
Zero transfer | 1.1600 | 14.900 | 0.000 |
Zero transfer × Persona 02 | 0.0324 | 0.256 | 0.798 |
Zero transfer × Persona 03 | 0.3840 | 3.290 | 0.001 |
Zero transfer × Persona 04 | −0.0922 | −0.708 | 0.479 |
Zero transfer × Persona 05 | −0.0610 | −0.305 | 0.760 |
Zero transfer × Persona 06 | 0.0997 | 0.386 | 0.700 |
Zero transfer × Persona 07 | 0.7820 | 3.440 | 0.001 |
Real-time information (No info. Base category) | |||
Real-time info. Onboard | 0.3880 | 8.340 | 0.000 |
Real-time info. Onboard × Persona 02 | 0.1160 | 1.470 | 0.141 |
Real-time info. Onboard × Persona 03 | −0.0665 | −0.934 | 0.351 |
Real-time info. Onboard × Persona 04 | −0.1280 | −1.560 | 0.118 |
Real-time info. Onboard × Persona 05 | 0.1160 | 0.867 | 0.386 |
Real-time info. Onboard × Persona 06 | −0.0584 | −0.395 | 0.693 |
Real-time info. Onboard × Persona 07 | 0.0800 | 0.595 | 0.552 |
Real-time info. at-stop | 0.3430 | 6.500 | 0.000 |
Real-time info. at-stop × Persona 02 | 0.0262 | 0.302 | 0.762 |
Real-time info. at-stop × Persona 03 | −0.1240 | −1.530 | 0.125 |
Real-time info. at-stop × Persona 04 | −0.2650 | −2.890 | 0.004 |
Real-time info. at-stop × Persona 05 | 0.1430 | 1.020 | 0.307 |
Real-time info. at-stop × Persona 06 | 0.0395 | 0.231 | 0.818 |
Real-time info. at-stop × Persona 07 | 0.0457 | 0.308 | 0.758 |
Error Component | 0.0158 | 1.150 | 0.252 |
Log-Likelihood | −11580.86 | ||
Log-Likelihood ratio test | 2570.716 | ||
Rho-square | 0.106 |
Appendix B
Variable | Persona 01 (Ref.) | Persona 02 (Ref.) | Persona 03 (Ref.) | Persona 04 (Ref.) | Persona 05 (Ref.) | Persona 06 (Ref.) | Persona 07 (Ref.) |
---|---|---|---|---|---|---|---|
Journey time × Persona 01 | −0.041 *** | −0.003 | 0.015 ** | −0.017 ** | 0.005 | 0.014 | 0.011 |
Journey time × Persona 02 | 0.003 | −0.039 *** | 0.018 ** | −0.014 * | 0.007 | 0.016 | 0.013 |
Journey time × Persona 03 | −0.015 ** | −0.018 ** | −0.057 *** | −0.032 *** | −0.011 | −0.001 | −0.004 |
Journey time × Persona 04 | 0.017 ** | 0.014 * | 0.032 *** | −0.025 *** | 0.021 * | 0.031 ** | 0.028 ** |
Journey time × Persona 05 | −0.005 | −0.007 | 0.011 | −0.021 * | −0.046 *** | 0.009 | 0.006 |
Journey time × Persona 06 | −0.014 | −0.016 | 0.001 | −0.031 ** | −0.009 | −0.055 *** | −0.003 |
Journey time × Persona 07 | −0.011 | −0.013 | 0.004 | −0.028 ** | −0.006 | 0.003 | −0.052 *** |
Trip fare × Persona 01 | −0.541 *** | −0.076 | −0.099 * | −0.184 *** | −0.175 * | −0.142 | −0.235 ** |
Trip fare × Persona 02 | 0.076 | −0.466 *** | −0.023 | −0.109 | −0.099 | −0.066 | −0.159 |
Trip fare × Persona 03 | 0.099 * | 0.023 | −0.442 *** | −0.085 | −0.076 | −0.043 | −0.136 |
Trip fare × Persona 04 | 0.184 *** | 0.109 | 0.085 | −0.357 *** | 0.010 | 0.043 | −0.051 |
Trip fare × Persona 05 | 0.175 * | 0.099 | 0.076 | −0.010 | −0.367 *** | 0.033 | −0.060 |
Trip fare × Persona 06 | 0.142 | 0.066 | 0.043 | −0.043 | −0.033 | −0.400 *** | −0.094 |
Trip fare × Persona 07 | 0.235 ** | 0.159 | 0.136 | 0.051 | 0.060 | 0.094 | −0.306 *** |
Walking time × Persona 01 | −0.007 | 0.022 ** | 0.035 *** | 0.022 ** | 0.017 | −0.004 | −0.002 |
Walking time × Persona 02 | −0.022 ** | −0.029 *** | 0.012 | 0.000 | −0.005 | −0.026 | −0.025 |
Walking time × Persona 03 | −0.035 *** | −0.012 | −0.041 *** | −0.012 | −0.017 | −0.038 * | −0.037 ** |
Walking time × Persona 04 | −0.022 ** | 0.000 | 0.012 | −0.029 *** | −0.005 | −0.026 | −0.025 |
Walking time × Persona 05 | −0.017 | 0.005 | 0.017 | 0.005 | −0.024 * | −0.021 | −0.020 |
Walking time × Persona 06 | 0.004 | 0.026 | 0.038 * | 0.026 | 0.021 | −0.003 | 0.001 |
Walking time × Persona 07 | 0.002 | 0.025 | 0.037 ** | 0.025 | 0.020 | −0.001 | −0.005 |
Service headway × Persona 01 | −0.039 *** | 0.003 | −0.005 | −0.027 *** | −0.017 ** | −0.008 | −0.011 |
Service headway × Persona 02 | −0.003 | −0.042 *** | −0.008 | −0.030 *** | −0.020 ** | −0.011 | −0.014 |
Service headway × Persona 03 | 0.005 | 0.008 | −0.034 *** | −0.022 *** | −0.013 | −0.003 | −0.006 |
Service headway × Persona 04 | 0.027 *** | 0.030 *** | 0.022 *** | −0.011 ** | 0.010 | 0.019 | 0.016 * |
Service headway × Persona 05 | 0.017 ** | 0.020 ** | 0.013 | −0.010 | −0.021 *** | 0.009 | 0.006 |
Service headway × Persona 06 | 0.008 | 0.011 | 0.003 | −0.019 | −0.009 | −0.030*** | −0.003 |
Service headway × Persona 07 | 0.011 | 0.014 | 0.006 | −0.016 * | −0.006 | 0.003 | −0.028 *** |
Number of transfers (2 transfers base category) | |||||||
One transfer × Persona 01 | 0.884 *** | 0.005 | −0.010 | 0.115 | 0.322 ** | 0.243 | −0.344 ** |
One transfer × Persona 02 | −0.005 | 0.879 *** | −0.016 | 0.110 | 0.317 ** | 0.238 | −0.349 ** |
One transfer × Persona 03 | 0.010 | 0.016 | 0.894 *** | 0.125 | 0.332 ** | 0.253 | −0.334 ** |
One transfer × Persona 04 | −0.115 | −0.110 | −0.125 | 0.769 *** | 0.207 | 0.128 | −0.459 *** |
One transfer × Persona 05 | −0.322 ** | −0.317 ** | −0.332 ** | −0.207 | 0.562 *** | −0.079 | −0.666 *** |
One transfer × Persona 06 | −0.243 | −0.238 | −0.253 | −0.128 | 0.079 | 0.641 *** | −0.587 *** |
One transfer × Persona 07 | 0.344 ** | 0.349 ** | 0.334 ** | 0.459 *** | 0.666 *** | 0.587 *** | 1.230 *** |
Zero transfer × Persona 01 | 1.160 *** | −0.032 | −0.384 *** | 0.092 | 0.061 | −0.100 | −0.782 *** |
Zero transfer × Persona 02 | 0.032 | 1.190 *** | −0.352 *** | 0.125 | 0.093 | −0.067 | −0.750 *** |
Zero transfer × Persona 03 | 0.384 *** | 0.352 *** | 1.540 *** | 0.476 *** | 0.445 ** | 0.284 | −0.398 * |
Zero transfer × Persona 04 | −0.092 | −0.125 | −0.476 *** | 1.060 *** | −0.031 | −0.192 | −0.875 *** |
Zero transfer × Persona 05 | −0.061 | −0.093 | −0.445 ** | 0.031 | 1.100 *** | −0.161 | −0.843 *** |
Zero transfer × Persona 06 | 0.100 | 0.067 | −0.284 | 0.192 | 0.161 | 1.260 *** | −0.683 ** |
Zero transfer × Persona 07 | 0.782 *** | 0.750 *** | 0.398* | 0.875 *** | 0.843 *** | 0.683 ** | 1.940 *** |
Real-time information (No info. base-category) | |||||||
Real-time info. Onboard × Persona 01 | 0.388 *** | −0.116 | 0.067 | 0.128 | −0.116 | 0.058 | −0.080 |
Real-time info. Onboard × Persona 02 | 0.116 | 0.503 *** | 0.182 ** | 0.244 *** | −0.001 | 0.174 | 0.036 |
Real-time info. Onboard × Persona 03 | −0.067 | −0.182 ** | 0.321 *** | 0.062 | −0.183 | −0.008 | −0.146 |
Real-time info. Onboard × Persona 04 | −0.128 | −0.244 *** | −0.062 | 0.259 *** | −0.245 * | −0.070 | −0.208 |
Real-time info. Onboard × Persona 05 | 0.116 | 0.001 | 0.183 | 0.245 * | 0.504 *** | 0.175 | 0.036 |
Real-time info. Onboard × Persona 06 | −0.058 | −0.174 | 0.008 | 0.070 | −0.175 | 0.329 ** | −0.138 |
Real-time info. Onboard × Persona 07 | 0.080 | −0.036 | 0.146 | 0.208 | −0.036 | 0.138 | 0.467 *** |
Real-time info. at-stop × Persona 01 | 0.343 *** | −0.026 | 0.124 * | 0.265 *** | −0.143 | −0.040 | −0.046 |
Real-time info. at-stop × Persona 02 | 0.026 | 0.369 *** | 0.150 * | 0.291 *** | −0.117 | −0.013 | −0.020 |
Real-time info. at-stop × Persona 03 | −0.124 * | −0.150 * | 0.219 *** | 0.141 | −0.267 ** | −0.163 | −0.170 |
Real-time info. at-stop × Persona 04 | −0.265 *** | −0.291 *** | −0.141 | 0.078 | −0.408 *** | −0.304 * | −0.311 ** |
Real-time info. at-stop × Persona 05 | 0.143 | 0.117 | 0.267 ** | 0.408 *** | 0.486 *** | 0.104 | 0.098 |
Real-time info. at-stop × Persona 06 | 0.040 | 0.013 | 0.163 | 0.304 * | −0.104 | 0.382 ** | −0.006 |
Real-time info. at-stop × Persona 07 | 0.046 | 0.020 | 0.170 | 0.311 ** | −0.098 | 0.006 | 0.388 *** |
Log-likelihood | −11,580.88 | ||||||
Log-likelihood ratio test | 2387.56 | ||||||
Rho-square | 0.0934 |
References
- Eboli, L.; Mazzulla, G. Discrete choice models as a tool for transit service quality evaluation. Electron. J. Appl. Stat. Anal. Decis. Support Syst. Serv. Eval. 2011, 2, 65–73. [Google Scholar] [CrossRef]
- De Oña, J.; De Oña, R.; Calvo, F.J. A classification tree approach to identify key factors of transit service quality. Expert Syst. Appl. 2012, 39, 11164–11171. [Google Scholar] [CrossRef]
- Allen, J.; Muñoz, J.C.; de Dios Ortúzar, J. Modelling service−specific and global transit satisfaction under travel and user heterogeneity. Transp. Res. Part A Policy Pract. 2018, 113, 509–528. [Google Scholar] [CrossRef]
- Mahmoud, M.; Hine, J. Using AHP to measure the perception gap between current and potential users of bus services. Transp. Plan. Technol. 2013, 36, 4–23. [Google Scholar] [CrossRef]
- Mahmoud, M.; Hine, J. Measuring the influence of bus service quality on the perception of users. Transp. Plan. Technol. 2016, 39, 284–299. [Google Scholar] [CrossRef]
- Abenoza, R.F.; Cats, O.; Susilo, Y.O. Travel satisfaction with public transport: Determinants, user classes, regional disparities and their evolution. Transp. Res. Part A Policy Pract. 2017, 95, 64–84. [Google Scholar] [CrossRef] [Green Version]
- Deb, S.; Ali Ahmed, M. Determining the service quality of the city bus service based on users’ perceptions and expectations. Travel Behav. Soc. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- Beimborn, E.A.; Greenwald, M.J.; Jin, X. Accessibility, Connectivity, and Captivity Impacts on Transit Choice. Transp. Res. Rec. 2003, 1835, 1–9. [Google Scholar] [CrossRef]
- Krizek, K.; El-Geneidy, A. Segmenting preferences and habits of transit users and non-users. J. Public Transp. 2007, 10, 71–94. [Google Scholar] [CrossRef]
- Venter, C. Are We Giving Brt Passengers What They Want? User Preference and Market Segmentation in Johannesburg. In Proceedings of the 35th Southern African Transport Conference (SATC 2016), Pretoria, South Africa, 4–7 July 2016; pp. 658–672. [Google Scholar]
- Van Lierop, D.; El-Geneidy, A. A new market segmentation approach: Evidence from two Canadian cities. J. Public Transp. 2017, 20, 20–43. [Google Scholar] [CrossRef] [Green Version]
- Grisé, E.; El-geneidy, A. Where is the happy transit rider? Evaluating satisfaction with regional rail service using a spatial segmentation approach. Transp. Res. Part A 2018, 114, 84–96. [Google Scholar] [CrossRef]
- Eboli, L.; Forciniti, C.; Mazzulla, G. Spatial variation of the perceived transit service quality at rail stations. Transp. Res. Part A Policy Pract. 2018, 114, 67–83. [Google Scholar] [CrossRef]
- Nikel, C.; Eldeeb, G.; Mohamed, M. Perceived Quality of Bus Transit Services: A Route−Level Analysis. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674. [Google Scholar] [CrossRef]
- De Oña, R.; López, G.; de los Rios, F.J.D.; de Oña, J. Cluster Analysis for Diminishing Heterogeneous Opinions of Service Quality Public Transport Passengers. Procedia Soc. Behav. Sci. 2014, 162, 459–466. [Google Scholar] [CrossRef] [Green Version]
- De Oña, J.; de Oña, R.; López, G. Transit service quality analysis using cluster analysis and decision trees: A step forward to personalized marketing in public transportation. Transportation 2016, 43, 725–747. [Google Scholar] [CrossRef]
- Dell’Olio, L.; Ibeas, A.; Cecin, P. The quality of service desired by public transport users. Transp. Policy 2011, 18, 217–227. [Google Scholar] [CrossRef]
- Eboli, L.; Forciniti, C.; Mazzulla, G.; Calvo, F. Exploring the Factors That Impact on Transit Use through an Ordered Probit Model: The Case of Metro of Madrid. Transp. Res. Procedia 2016, 18, 35–43. [Google Scholar] [CrossRef]
- Eboli, L.; Mazzulla, G. Willingness−to−pay of public transport users for improvement in service quality. Eur. Transp. 2008, 38, 107–118. [Google Scholar]
- Bellizzi, M.G.; Dell’Olio, L.; Eboli, L.; Mazzulla, G. Heterogeneity in desired bus service quality from users’ and potential users’ perspective. Transp. Res. Part A 2020, 132, 365–377. [Google Scholar] [CrossRef]
- Eldeeb, G.; Mohamed, M. Quantifying Preference Heterogeneity in Transit Service Desired Quality Using Random Parameter Logit and Latent Class Choice Models. Transp. Res. Part A J. 2020. under review. [Google Scholar]
- Metrolinx. 2041 Regional Transportation Plan; Greater Toronto and Hamilton Area, ON, Canada, 2018; ISBN 9781775137924. [Google Scholar]
- OXD TransLink Customer Experience Research. Available online: https://oxd.com/work/translink-customer-experience-research/ (accessed on 7 March 2020).
- UX Planet Using Design Thinking to Improve Bus Accessibility. Available online: https://uxplanet.org/ux-for-a-better-public-transport-23b81ccc56de (accessed on 7 March 2020).
- Fergnani, A. The future persona: A futures method to let your scenarios come to life. Foresight 2019, 21, 445–466. [Google Scholar] [CrossRef]
- Cooper, A. The Inmates Are Running The Asylum; Sams: Indianapolis, IN, USA, 1999; Volume 43, ISBN 0-672-32614-0. [Google Scholar]
- Miaskiewicz, T.; Kozar, K.A. Personas and user−centered design: How can personas benefit product design processes? Des. Stud. 2011, 32, 417–430. [Google Scholar] [CrossRef]
- Nielsen, L. Personas—User Focused Design, 1st ed.; Springer: London, UK, 2013; ISBN 978-1-4471-5903-2. [Google Scholar]
- Pruitt, J.; Grudin, J. Personas: Practice and Theory. In Proceedings of the 2003 Conference on Designing for User Experiences, San Francisco, CA, USA, June 2003; pp. 1–15. [Google Scholar]
- Miaskiewicz, T.; Luxmoore, C. The Use of Data−Driven Personas to Facilitate Organizational Adoption–A Case Study. Des. J. 2017, 20, 357–374. [Google Scholar] [CrossRef]
- Marshall, R.; Cook, S.; Mitchell, V.; Summerskill, S.; Haines, V.; Maguire, M.; Sims, R.; Gyi, D.; Case, K. Design and evaluation: End users, user datasets and personas. Appl. Ergon. 2015, 46, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Beyer, S.; Müller, A. Evaluation of Persona−Based User Scenarios in Vehicle Development. In Proceedings of the Human Systems Engineering and Design; Ahram, T., Karwowski, W., Taiar, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 750–756. [Google Scholar]
- Vosbergen, S.; Mulder−Wiggers, J.M.R.; Lacroix, J.P.; Kemps, H.M.C.; Kraaijenhagen, R.A.; Jaspers, M.W.M.; Peek, N. Using personas to tailor educational messages to the preferences of coronary heart disease patients. J. Biomed. Inform. 2015, 53, 100–112. [Google Scholar] [CrossRef]
- Boyce, R.D.; Ragueneau−Majlessi, I.; Yu, J.; Tay−Sontheimer, J.; Kinsella, C.; Chou, E.; Brochhausen, M.; Judkins, J.; Gufford, B.T.; Pinkleton, B.E.; et al. Developing User Personas to Aid in the Design of a User−Centered Natural Product−Drug Interaction Information Resource for Researchers. AMIA Annu. Symp. Proc. 2018, 2018, 279–287. [Google Scholar]
- Jones, M.C.; Floyd, I.R.; Twidale, M.B. Teaching Design with Personas. Interact. Des. Archit. 2008, 3–4, 75–82. [Google Scholar]
- Canham, S.L.; Mahmood, A. The use of personas in gerontological education. Gerontol. Geriatr. Educ. 2019, 40, 468–479. [Google Scholar] [CrossRef]
- Lindgren, A.; Chen, F.; Amdahl, P.; Chaikiat, P. Using Personas and Scenarios as an Interface Design Tool for Advanced Driver Assistance Systems. In Proceedings of the Universal Access in Human−Computer Interaction. Ambient Interaction; Stephanidis, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 460–469. [Google Scholar]
- Schäfer, C.; Zinke, R.; Künzer, L.; Hofinger, G.; Koch, R. Applying persona method for describing users of escape routes. Transp. Res. Procedia 2014, 2, 636–641. [Google Scholar] [CrossRef] [Green Version]
- De Clerck, Q.; van Lier, T.; Messagie, M.; Macharis, C.; Van Mierlo, J.; Vanhaverbeke, L. Total Cost for Society: A persona−based analysis of electric and conventional vehicles. Transp. Res. Part D Transp. Environ. 2018, 64, 90–110. [Google Scholar] [CrossRef]
- Kong, P.; Cornet, H.; Frenkler, F. Personas and Emotional Design for Public Service Robots: A Case Study with Autonomous Vehicles in Public Transportation. In Proceedings of the 2018 International Conference on Cyberworlds (CW), Singapore, 3–5 October 2018; pp. 284–287. [Google Scholar] [CrossRef]
- Chapman, C.N.; Milham, R.P. The personas’ new clothes: Methodological and practical arguments against a popular method. Proc. Hum. Factors Ergon. Soc. 2006, 50, 634–636. [Google Scholar] [CrossRef] [Green Version]
- Turner, P.; Turner, S. Is stereotyping inevitable when designing with personas? Des. Stud. 2011, 32, 30–44. [Google Scholar] [CrossRef]
- Madsen, A.; Mckagan, S.B.; Sayre, E.C.; Martinuk, M.; Bell, A. Personas as a Powerful Methodology to Design Targeted Professional Development Resources Methodology: Creation of Personas. arXiv 2014, arXiv:1408.1125v2. [Google Scholar]
- Chapman, C.N.; Love, E.; Milham, R.P.; Elrif, P.; Alford, J.L. Quantitative evaluation of personas as information. Proc. Hum. Factors Ergon. Soc. 2008, 2, 1107–1111. [Google Scholar] [CrossRef]
- Ben-Akiva, M.; Bolduc, D. Multinomial Probit with a Logit Kernel and a General Parametric Specification of the Covariance Structure; 1996. Available online: https://eml.berkeley.edu/reprints/misc/multinomial.pdf. (accessed on 13 April 2020).
- McFadden, D.; Train, K. Mixed MNL models for discrete response. J. Appl. Econom. 2000, 15, 447–470. [Google Scholar] [CrossRef]
- Ben-Akiva, M.; Lerman, S. Discrete Choice Analysis Theory and Application to Travel Deamnd, 3rd ed.; The Massachusetts Institute of Technology: Cambridge, MA, USA; London, UK, 1985; ISBN 0-262-02217-6. [Google Scholar]
- McFadden, D. Measuring willingness to pay for transportation improvements. Theor. Found. Travel Choice Model. 1998, 339, 364. [Google Scholar]
- Rizzi, L.I.; Ortúzar, J.D.D. Stated preference in the valuation of interurban road safety. Accid. Anal. Prev. 2003, 35, 9–22. [Google Scholar] [CrossRef]
- Ortúzar, J.D.D.; Willumsen, L.G. Modelling Transport, 4th ed.; John Wiley & Sons, Ltd.: West Sussex, UK, 2011; ISBN 9780470760390. [Google Scholar]
- Hensher, D.A.; Greene, W.H. The Mixed Logit model: The state of practice. Transportation 2003, 30, 133–176. [Google Scholar] [CrossRef]
- Bierlaire, M. PandasBiogeme: A Short Introduction; Technical report TRANSP-OR 181219. Transport and Mobility Laboratory, ENAC, EPFL; Switzerland, 2018. [Google Scholar]
- Hess, S.; Train, K.E.; Polak, J.W. On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice. Transp. Res. Part B Methodol. 2006, 40, 147–163. [Google Scholar] [CrossRef] [Green Version]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Applied Choice Analysis A Primer, 1st ed.; Cambridge University Press: Cambridge, UK, 2005; ISBN 13 978-0-521-84426-0. [Google Scholar]
- City of Hamilton Hamilton Street Railway. Available online: https://www.hamilton.ca/hsr-bus-schedules-fares (accessed on 6 June 2018).
- Eldeeb, G.; Nikel, C.; Ferguson, M.; Mohamed, M. Service Quality and Consumers Preferences for Hamilton Street Railway (HSR); City of Hamilton, ON, Canada, 2019. Available online: https://www.researchgate.net/publication/338750510_Service_Quality_and_Consumers_Preferences_for_Hamilton_Street_Railway_HSR_-_Executive_Summary (accessed on 13 April 2020).
- Bliemer, M.C.J.; Rose, J.M. Designing Stated Choice Experiments: State-of-the-Art; Emerald: Bingley, UK, 2006. [Google Scholar]
- Kuhfeld, W.; Tobias, R.; Garratt, M. Efficient experimental design with marketing research applications. J. Mark. Res. 1994, 31, 545–557. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.; Higgins, C.; Ferguson, M.; Kanaroglou, P. Identifying and characterizing potential electric vehicle adopters in Canada: A two−stage modelling approach. Transp. Policy 2016, 52, 100–112. [Google Scholar] [CrossRef]
- Hensher, D. Stated preference analysis of travel choice: The state of practice. Transportation 1994, 21, 107–133. [Google Scholar] [CrossRef] [Green Version]
- Loomis, J.B. Strategies for overcoming hypothetical bias in stated preference surveys. J. Agric. Resour. Econ. 2014, 39, 34–46. [Google Scholar] [CrossRef]
Service Attributes | Attribute Levels |
---|---|
One-way trip cost | $3, $4.50, and $6 |
One-way trip travel time | 20, 30, and 40 min |
Walking time to and from the bus stop | 0, 5, 10, and 15 min |
Service headway | 5, 10, 15, and 30 min |
Number of transfers | 0, 1, and 2 transfers |
Real-time information | At-stop, onboard and none |
Category | Subcategory | Users (%) | Population (%) |
---|---|---|---|
Total | Total | 2907 | 747,645 (100%) |
Gender | Male | 39.32% | 48.90% |
Female | 57.93% | 51.10% | |
Self-identity | 2.75% | ||
Age | Less than 30 years old | 33.09% | 35.72% |
30 to 59 years old | 50.33% | 40.64% | |
Over 60 years old | 16.58% | 23.64% | |
Vehicle ownership | Zero Vehicle | 16.79% | 13.00% |
One Vehicle | 41.04% | 87.00% | |
Two or more | 42.17% | ||
Driver’s licence | Holding | 78.57% | — |
Not holding | 21.43% | — | |
Geographic distribution | Suburban areas | 16.44% | 36.69% |
Urban areas | 83.56% | 63.31% |
Variable | Persona 01 (Ref.) | Persona 02 Interaction | Persona 03 Interaction | Persona 04 Interaction | Persona 05 Interaction | Persona 06 Interaction | Persona 07 Interaction |
---|---|---|---|---|---|---|---|
Journey time | −0.041 *** | 0.003 | −0.015 ** | 0.017 ** | −0.005 | −0.014 | −0.011 |
Trip fare | −0.541 *** | 0.076 | 0.099 * | 0.184 *** | 0.175 * | 0.142 | 0.235 ** |
Walking time | −0.007 | −0.022 ** | −0.035 *** | −0.022 ** | −0.017 | 0.004 | 0.002 |
Service headway | −0.039 *** | −0.003 | 0.005 | 0.027 *** | 0.017 ** | 0.008 | 0.011 |
Number of transfers (2 transfers base category) | |||||||
One transfer | 0.884 *** | −0.005 | 0.010 | −0.115 | −0.322 ** | −0.243 | 0.344 ** |
Zero transfer | 1.160 *** | 0.032 | 0.384 *** | −0.092 | −0.061 | 0.100 | 0.782 *** |
Real-time information (No info. base category) | |||||||
Real-time info. onboard | 0.388 *** | 0.116 | −0.067 | −0.128 | 0.116 | −0.058 | 0.080 |
Real-time info. at-stop | 0.343 *** | 0.026 | −0.124 | −0.265 *** | 0.143 | 0.040 | 0.046 |
Error component | 0.016 | ||||||
Log-likelihood | −11,580.86 | ||||||
Log-likelihood ratio test | 2750.716 | ||||||
Rho-square | 0.106 |
Variables | Persona 01 | Persona 02 | Persona 03 | Persona 04 | Persona 05 | Persona 06 | Persona 07 |
---|---|---|---|---|---|---|---|
Journey time | −0.041 | −0.039 | −0.057 | −0.025 | −0.046 | −0.055 | −0.052 |
Trip fare | −0.541 | −0.466 | −0.442 | −0.357 | −0.367 | −0.400 | −0.306 |
Walking time | −0.007 | −0.029 | −0.041 | −0.029 | −0.024 | −0.003 | −0.005 |
Service headway | −0.039 | −0.042 | −0.034 | −0.011 | −0.021 | −0.030 | −0.028 |
One transfer | 0.884 | 0.879 | 0.894 | 0.769 | 0.562 | 0.641 | 1.230 |
Zero transfer | 1.160 | 1.190 | 1.540 | 1.060 | 1.100 | 1.260 | 1.940 |
Real time info. onboard | 0.388 | 0.503 | 0.321 | 0.259 | 0.504 | 0.329 | 0.467 |
Real time info. at stop | 0.343 | 0.369 | 0.219 | 0.078 | 0.486 | 0.382 | 0.388 |
Pers. 01 | Pers. 02 | Pers. 03 | Pers. 04 | Pers. 05 | Pers. 06 | Pers. 07 | |
---|---|---|---|---|---|---|---|
Reduction in Journey time ($ per minute) | $0.076 | $0.084 | $0.129 | $0.070 | $0.125 | $0.138 | $0.170 |
Reduction in Walking time ($ per minute) | $0.000 | $0.062 | $0.093 | $0.081 | $0.000 | $0.000 | $0.000 |
Reduction in Service headway ($ per minute) | $0.072 | $0.090 | $0.077 | $0.031 | $0.057 | $0.075 | $0.092 |
Trip with One transfer ($ per trip) | $1.634 | $1.886 | $2.023 | $2.154 | $1.531 | $1.603 | $4.020 |
Trip with Zero transfer ($ per trip) | $2.144 | $2.554 | $3.484 | $2.969 | $2.997 | $3.150 | $6.340 |
Prov. of Real-time info. onboard ($ per trip) | $0.717 | $1.079 | $0.726 | $0.725 | $1.373 | $0.823 | $1.526 |
Prov. of Real-time info. at-stop ($ per trip) | $0.634 | $0.792 | $0.495 | $0.218 | $1.324 | $0.955 | $1.268 |
Journey Time | Trip Fare | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (1) | (2) | (3) | (4) | (5) | (6) | (7) | ||||
Journey Time | (1) | ╳ | ╳ | Trip Fare | (1) | ╳ | ╳ | ╳ | ╳ | ||||||||
(2) | ╳ | ╳ | (2) | ||||||||||||||
(3) | ╳ | (3) | |||||||||||||||
(4) | ╳ | ╳ | ╳ | (4) | |||||||||||||
(5) | (5) | ||||||||||||||||
(6) | (6) | ||||||||||||||||
(7) | (7) | ||||||||||||||||
Walking Time | Service Headway | ||||||||||||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (1) | (2) | (3) | (4) | (5) | (6) | (7) | ||||
Walking Time | (1) | ╳ | ╳ | ╳ | Service Headway | (1) | ╳ | ╳ | |||||||||
(2) | (2) | ╳ | ╳ | ||||||||||||||
(3) | ╳ | ╳ | (3) | ╳ | |||||||||||||
(4) | (4) | ╳ | |||||||||||||||
(5) | (5) | ||||||||||||||||
(6) | (6) | ||||||||||||||||
(7) | (7) | ||||||||||||||||
Zero Transfer | One Transfer | ||||||||||||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (1) | (2) | (3) | (4) | (5) | (6) | (7) | ||||
Zero Transfer | (1) | ╳ | ╳ | One Transfer | (1) | ╳ | ╳ | ||||||||||
(2) | ╳ | ╳ | (2) | ╳ | ╳ | ||||||||||||
(3) | ╳ | ╳ | ╳ | (3) | ╳ | ╳ | |||||||||||
(4) | ╳ | (4) | ╳ | ||||||||||||||
(5) | ╳ | (5) | ╳ | ||||||||||||||
(6) | ╳ | (6) | ╳ | ||||||||||||||
(7) | (7) | ||||||||||||||||
Real-time Onboard | Real-time At-stop | ||||||||||||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (1) | (2) | (3) | (4) | (5) | (6) | (7) | ||||
Real-time Onboard | (1) | Real-time At-stop | (1) | ╳ | ╳ | ||||||||||||
(2) | ╳ | ╳ | (2) | ╳ | ╳ | ||||||||||||
(3) | (3) | ╳ | |||||||||||||||
(4) | ╳ | (4) | ╳ | ╳ | ╳ | ||||||||||||
(5) | (5) | ||||||||||||||||
(6) | (6) | ||||||||||||||||
(7) | (7) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eldeeb, G.; Mohamed, M. Understanding the Transit Market: A Persona-Based Approach for Preferences Quantification. Sustainability 2020, 12, 3863. https://doi.org/10.3390/su12093863
Eldeeb G, Mohamed M. Understanding the Transit Market: A Persona-Based Approach for Preferences Quantification. Sustainability. 2020; 12(9):3863. https://doi.org/10.3390/su12093863
Chicago/Turabian StyleEldeeb, Gamal, and Moataz Mohamed. 2020. "Understanding the Transit Market: A Persona-Based Approach for Preferences Quantification" Sustainability 12, no. 9: 3863. https://doi.org/10.3390/su12093863
APA StyleEldeeb, G., & Mohamed, M. (2020). Understanding the Transit Market: A Persona-Based Approach for Preferences Quantification. Sustainability, 12(9), 3863. https://doi.org/10.3390/su12093863