Effects of Supercritical CO2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO2 Sequestration
Abstract
:1. Introduction
2. Experimental Methods
2.1. Sample Collection, Preparation, and Analytical Equipment
2.2. Experimental Design and Equipment
3. Results and Discussion
3.1. Mineral Abundances
3.2. Low-Pressure Gas Adsorption Analyses
3.2.1. CO2 and N2 Adsorption Isotherms
3.2.2. Shale Pores Specific Surface Areas, Total Volume, and Size Distribution
3.2.3. Pore Fractal Dimension
3.3. Inorganic and Organic Functional Group Analysis
3.3.1. Sc-CO2 Effects on the Minerals
3.3.2. Sc-CO2 Effects on Organic Structures and Hydrocarbons
- (a)
- Changes in hydroxyl structures
- (b)
- Changes in aliphatic hydrocarbons
- (c)
- Changes in aromatic hydrocarbons
4. Conclusions
- The Sc-CO2-induced changes to the minerals in the shale mainly occur in the clay minerals. When the temperature is increased in the 40–80 °C range, the dissolution of clay minerals caused by the Sc-CO2 first decreases, but then increases. The dissolution is the weakest at 60 °C, and the proportion of clay minerals in the 60 °C sample was the highest of any of the samples tested.
- The interactions between the Sc-CO2 and the shale did not change the pore shapes or the shale’s PSD but reduced the shale’s SSA and TPV. With Sc-CO2 temperature increasing, the SSA, TPV, predominant pore type (mesopores), and fractal dimension of the pore structure tend to first increase and then decrease, reaching the peak at 60 °C. This is consistent with the changes in clay content. In addition, the shale’s surface fractal dimension shows a good positive linear relationship with SSA, but the pore structure fractal dimension shows a negative linear relationship with the average pore diameter.
- The destruction of hydroxyl structures by Sc-CO2 is mainly related to the destruction of OH–N and ring hydroxyls, which first increases and then decreases. This is because the formation of H+ is inhibited at higher temperatures. As Sc-CO2 temperature increased, the content of 4H and 2H show a U-shaped, while the 3H shows an inverted U-shaped. The content of 1H remains essentially unchanged. The value of the parameter for aromaticity (parameter I) shows a linear decline as the temperature increases.
Author Contributions
Funding
Conflicts of Interest
References
- Prašnikar, A.; Pavlišič, A.; Ruiz-Zepeda, F.; Kovač, J.; Likozar, B. Mechanisms of Copper-Based Catalyst Deactivation during CO2 Reduction to Methanol. Ind. Eng. Chem. Res. 2019, 58, 13021–13029. [Google Scholar] [CrossRef] [Green Version]
- Dasireddy, V.D.B.C.; Likozar, B. The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity. Renew. Energy 2019, 140, 452–460. [Google Scholar] [CrossRef]
- Pori, M.; Likozar, B.; Marinšek, M.; Crnjak Orel, Z. Preparation of Cu/ZnO-based heterogeneous catalysts by photochemical deposition, their characterisation and application for methanol synthesis from carbon dioxide and hydrogen. Fuel Process. Technol. 2016, 146, 39–47. [Google Scholar] [CrossRef]
- Jonathan, R.M.; Peter, E.; Thomas, A.D.; Jon, E.O. Effect of CO2-brine-rock interaction on fracture mechanical properties of CO2 reservoirs and seals. Earth Planet. Sci. Lett. 2018, 499, 37–47. [Google Scholar]
- Hu, X.F.; Deng, H.C.; Lu, C.; Tian, Y.Y.; Jin, Z.H. Characterization of CO2/CH4 Competitive Adsorption in Various Clay Minerals in Relation to Shale Gas Recovery from Molecular Simulation. Energy Fuels 2019, 33, 8202–8214. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, S.X.; Li, J.; Chen, K.F.; Li, P.P.; Sun, Z.X. Effect of CO2 injection on adsorption of methane on shale from the Sichuan Basin in China. IOP Conf. Ser. Earth Environ. Sci. 2019, 360, 012050. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zhao, Y.; Zhang, X.; Liu, G.; Du, X.; Shang, D.; Yu, Y.; Chen, J.; Wang, H.; Tu, H. Supercritical CO2 fracturing with different drilling depths in shale. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 1–20. [Google Scholar] [CrossRef]
- Zhou, J.P.; Xie, S.; Jiang, Y.D.; Xian, X.F.; Liu, Q.L.; Lu, Z.H.; Lyu, Q. Influence of Supercritical CO2 Exposure on CH4 and CO2 Adsorption Behaviors of Shale: Implications for CO2 Sequestration. Energy Fuels 2018, 32, 6073–6089. [Google Scholar] [CrossRef]
- Bi, H.; Jiang, Z.X.; Li, J.Z.; Li, P.; Chen, L.; Pan, Q.H.; Wu, Y.X. The Ono-Kondo model and an experimental study on supercritical adsorption of shale gas: A case study on Longmaxi shale in southeastern Chongqing, China. J. Nat. Gas Sci. Eng. 2016, 35, 114–121. [Google Scholar] [CrossRef]
- Ougier-Simonin, A.; Renard, F.; Boehm, C.; Vidal-Gilbert, S. Microfracturing and microporosity in shales. Earth Sci. Rev. 2016, 162, 198–226. [Google Scholar] [CrossRef] [Green Version]
- Davila, G.; Cama, J.; Luquot, L.; Soler, J.M.; Ayora, C. Experimental and modeling study of the interaction between a crushed marl caprock and CO2-rich solutions under different pressure and temperature conditions. Chem. Geol. 2017, 448, 26–42. [Google Scholar] [CrossRef]
- Skurtveit, E.; Aker, E.; Soldal, M.; Angeli, M.; Wang, Z. Experimental investigation of CO2 breakthrough and flow mechanisms in shale. Pet. Geosci. 2012, 18, 3–15. [Google Scholar] [CrossRef]
- Liu, J.; Xie, L.; Elsworth, D.; Gan, Q. CO2/CH4 Competitive Adsorption in Shale: Implications for Enhancement in Gas Production and Reduction in Carbon Emissions. Environ. Sci. Technol. 2019, 53, 9328–9336. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zoback, M.D.; Kohli, A.H. The impacts of effective stress and CO2 sorption on the matrix permeability of shale reservoir rocks. Fuel 2017, 203, 179–186. [Google Scholar] [CrossRef]
- Jiang, Y.D.; Qin, C.; Kang, Z.P.; Zhou, J.P.; Li, Y.; Liu, H.; Song, X. Experimental study of supercritical CO2 fracturing on initiation pressure and fracture propagation in shale under different triaxial stress conditions. J. Nat. Gas Sci. Eng. 2018, 55, 382–394. [Google Scholar] [CrossRef]
- Zhang, X.W.; Lu, Y.Y.; Tang, J.R.; Zhou, Z.; Liao, Y. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing. Fuel 2017, 190, 370–378. [Google Scholar] [CrossRef]
- Alemu, B.L.; Aagaard, P.; Munz, I.A.; Skurtveit, E. Caprock interaction with CO2: A laboratory study of reactivity of shale with supercritical CO2 and brine. Appl. Geochem. 2011, 26, 1975–1989. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Tao, L.; Zhu, H.Y.; Lei, Z.D.; Jiang, S.; McLennan, J.D. Macroscale Mechanical and Microscale Structural Changes in Chinese Wufeng Shale with Supercritical Carbon Dioxide Fracturing. SPE J. 2018, 23, 691–703. [Google Scholar] [CrossRef]
- Liu, H.; Wang, F.; Zhang, J.; Meng, S.W.; Duan, Y.W. Fracturing with carbon dioxide: Application status and development trend. Pet. Explor. Dev. 2014, 41, 513–519. [Google Scholar] [CrossRef]
- Song, X.H.; Guo, Y.T.; Zhang, J.; Sun, N.N.; Shen, G.F.; Chang, X.; Yu, W.S.; Tang, Z.Y.; Chen, W.; Wei, W.; et al. Fracturing with Carbon Dioxide: From Microscopic Mechanism to Reservoir Application. Joule 2019, 3, 1913–1926. [Google Scholar] [CrossRef]
- Niu, Y.; Yue, C.T.; Li, S.Y.; Ma, Y.; Xu, X.Y. Influencing Factors and Selection of CH4 and CO2 Adsorption on Silurian Shale in Yibin, Sichuan Province of China. Energy Fuels 2018, 32, 3202–3210. [Google Scholar] [CrossRef]
- Wang, M.; Huang, K.; Xie, W.; Dai, X. Current research into the use of supercritical CO2 technology in shale gas exploitation. Int. J. Min. Sci. Technol. 2019, 29, 739–744. [Google Scholar] [CrossRef]
- Zhang, S.W.; Xian, X.F.; Zhou, J.P.; Zhang, L. Mechanical behaviour of Longmaxi black shale saturated with different fluids: An experimental study. RSC Adv. 2017, 7, 42946–42955. [Google Scholar] [CrossRef] [Green Version]
- Lyu, Q.; Long, X.P.; Ranjith, P.G.; Tan, J.Q.; Kang, Y.; Wang, Z.H. Experimental investigation on the mechanical properties of a low-clay shale with different adsorption times in sub-/super-critical CO2. Energy 2018, 147, 1288–1298. [Google Scholar] [CrossRef]
- Lyu, Q.; Long, X.P.; Ranjith, P.G.; Kang, Y. Unconventional Gas: Experimental Study of the Influence of Subcritical Carbon Dioxide on the Mechanical Properties of Black Shale. Energies 2016, 9, 516. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.Y.; Feng, X.T.; Pan, Z.J. Experimental study on kinetic swelling of organic-rich shale in CO2, CH4 and N2. J. Nat. Gas Sci. Eng. 2018, 55, 406–417. [Google Scholar] [CrossRef]
- Luo, X.; Ren, X.; Wang, S. Supercritical CO2-water-shale Interactions under Supercritical CO2 Stimulation Conditions. Energy Procedia 2018, 144, 182–185. [Google Scholar] [CrossRef]
- Yin, H.; Zhou, J.P.; Xian, X.F.; Jiang, Y.D.; Lu, Z.H.; Tan, J.Q.; Liu, G.J. Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales. Energy 2017, 132, 84–95. [Google Scholar] [CrossRef]
- Lyu, Q.; Ranjith, P.G.; Long, X.P.; Ji, B. Experimental Investigation of Mechanical Properties of Black Shales after CO2-Water-Rock Interaction. Materials 2016, 9, 663. [Google Scholar] [CrossRef]
- Chen, G.H.; Lu, S.F.; Liu, K.Y.; Xue, Q.Z.; Xu, C.X.; Tian, S.S.; Li, J.B.; Zhang, Y.Y.; Tong, M.S.; Pang, X.T.; et al. Investigation of pore size effects on adsorption behavior of shale gas. Mar. Pet. Geol. 2019, 109, 1–8. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Yin, H.; Zhou, J.P.; Jiang, Y.D.; Xian, X.F.; Liu, Q.L. Physical and structural changes in shale associated with supercritical CO2 exposure. Fuel 2016, 184, 289–303. [Google Scholar] [CrossRef]
- Pan, Y.; Hui, D.; Luo, P.Y.; Zhang, Y.; Zhang, L.; Sun, L. Influences of subcritical and supercritical CO2 treatment on the pore structure characteristics of marine and terrestrial shales. J. CO2 Util. 2018, 28, 152–167. [Google Scholar] [CrossRef]
- Bakhshian, S.; Hosseini, S.A. Prediction of CO2 adsorption-induced deformation in shale nanopores. Fuel 2019, 241, 767–776. [Google Scholar] [CrossRef]
- Jarboe, P.J.; Candela, P.A.; Zhu, W.L.; Kaufman, A.J. Extraction of Hydrocarbons from High-Maturity Marcellus Shale Using Supercritical Carbon Dioxide. Energy Fuels 2015, 29, 7897–7909. [Google Scholar] [CrossRef]
- Lu, X.Q.; Jin, D.L.; Wei, S.X.; Zhang, M.M.; Zhu, Q.; Shi, X.F.; Deng, Z.G.; Guo, W.Y.; Shen, W.Z. Competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons: Effects of edge-functionalization. Nanoscale 2015, 7, 1002–1012. [Google Scholar] [CrossRef]
- Zhang, K.Z.; Cheng, Y.P.; Li, W.; Wu, D.M.; Liu, Z.D. Influence of supercritical CO2 on pore structure and functional groups of coal: Implications for CO2 sequestration. J. Nat. Gas Sci. Eng. 2017, 40, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Song, C.; Meng, Q.; He, P.; Yang, R.; Huang, R.; Chen, S.; Wang, D.; Xing, Z. Paleoclimate change since the Miocene inferred from clay-mineral records of the Jiuquan Basin, NW China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 550, 109730. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, J.; Ding, J.; Liu, T.; Shi, G.; Li, X.; Dang, W.; Cheng, Y.; Guo, R. Pore Structure and Fractal Characteristics of Different Shale Lithofacies in the Dalong Formation in the Western Area of the Lower Yangtze Platform. Minerals 2020, 10, 72. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Mischo, H. High-Pressure Methane Adsorption and Desorption in Shales from the Sichuan Basin, Southwestern China. Energy Fuels 2020, 34, 2945–2957. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, W.; Zhang, R.; Liu, S.M.; Zhou, Q.M. Characterizations of pore, mineral and petrographic properties of marine shale using multiple techniques and their implications on gas storage capability for Sichuan Longmaxi gas shale field in China. Fuel 2019, 241, 360–371. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.F.; Liu, H.Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 2014, 115, 378–384. [Google Scholar] [CrossRef]
- Jiang, F.J.; Chen, D.; Chen, J.; Li, Q.W.; Liu, Y.; Shao, X.H.; Hu, T.; Dai, J.X. Fractal Analysis of Shale Pore Structure of Continental Gas Shale Reservoir in the Ordos Basin, NW China. Energy Fuels 2016, 30, 4676–4689. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Yi, J.Z.; Hu, Q.H. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry. Mar. Pet. Geol. 2016, 70, 27–45. [Google Scholar] [CrossRef]
- Pfeifer, P.; Avnir, D. Chemistry in Noninteger Dimensions between 2 and 3.1. Fractal Theory of Heterogeneous Surfaces. J. Chem. Phys. 1983, 79, 3558–3565. [Google Scholar] [CrossRef]
- Fu, H.J.; Tang, D.Z.; Xu, T.; Xu, H.; Tao, S.; Li, S.; Yin, Z.Y.; Chen, B.L.; Zhang, C.; Wang, L.L. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel 2017, 193, 254–264. [Google Scholar] [CrossRef]
- Zhang, S.H.; Tang, S.H.; Tang, D.Z.; Huang, W.H.; Pan, Z.J. Determining fractal dimensions of coal pores by FHH model: Problems and effects. J. Nat. Gas Sci. Eng. 2014, 21, 929–939. [Google Scholar] [CrossRef]
- Avnir, D.; Jaroniec, M. An Isotherm Equation for Adsorption on Fractal Surfaces of Heterogeneous Porous Materials. Langmuir 1989, 5, 1431–1433. [Google Scholar] [CrossRef]
- Painter, P.C.; Snyder, R.W.; Starsinic, M.; Coleman, M.M.; Kuehn, D.W.; Davis, A. Concerning the Application of Ft-Ir to the Study of Coal—A Critical-Assessment of Band Assignments and the Application of Spectral-Analysis Programs. Appl. Spectrosc. 1981, 35, 475–485. [Google Scholar] [CrossRef]
- Wang, Q.; Hua, Z.; Guan, J. Structure of Wangqing oil shale and mechanism of carbon monoxide release during its pyrolysis. Energy Sci. Eng. 2019, 7, 2398–2409. [Google Scholar] [CrossRef]
- Okolo, G.N.; Neomagus, H.W.J.P.; Everson, R.C.; Roberts, M.J.; Bunt, J.R.; Sakurovs, R.; Mathews, J.P. Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13 C NMR, and HRTEM techniques. Fuel 2015, 158, 779–792. [Google Scholar] [CrossRef]
- Jiang, Y.D.; Luo, Y.H.; Lu, Y.Y.; Qin, C.; Liu, H. Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale. Energy 2016, 97, 173–181. [Google Scholar] [CrossRef]
- Jia, Y. Simulation of brine-gas-sandstone interaction during carbon dioxide geological storage. Master Thesis, China University of Geosciences, Beijing, China, 2013. [Google Scholar]
- Zhang, B.N.; Liang, W.G.; Ranjith, P.G.; Li, Z.G.; Li, C.; Hou, D.S. Coupling Effects of Supercritical CO2 Sequestration in Deep Coal Seam. Energy Fuels 2019, 33, 460–473. [Google Scholar] [CrossRef]
- He, X.Q.; Liu, X.F.; Nie, B.S.; Song, D.Z. FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel 2017, 206, 555–563. [Google Scholar] [CrossRef]
- Pan, Y.; Hui, D.; Luo, P.Y.; Zhang, Y.; Sun, L.; Wang, K. Experimental Investigation of the Geochemical Interactions between Supercritical CO2 and Shale: Implications for CO2 Storage in Gas-Bearing Shale Formations. Energy Fuels 2018, 32, 1963–1978. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Zhang, D.F.; Wang, H.H.; Jiang, W.P.; Wu, X.P.; Yang, J.; Huo, P.L. Influence of CO2 Exposure on High-Pressure Methane and CO2 Adsorption on Various Rank Coals: Implications for CO2 Sequestration in Coal Seams. Energy Fuels 2015, 29, 3785–3795. [Google Scholar] [CrossRef]
Sample Number | Sc-CO2 Treat State | Mineral Compositions (%) and ICDD Card Number | |||||||
---|---|---|---|---|---|---|---|---|---|
Quartz | Plagioclase | Calcite | Dolomite | Siderite | Pyrite | Augite | Clay | ||
86-2237 | 70-3752 | 87-1863 | 79-1344 | 02-0837 | 71-1680 | 24-0201 | - | ||
#1 | Untreated | 41.4 | 6.1 | - | - | 0.6 | 1.5 | 2.2 | 48.2 |
#2 | 40 °C,8 MPa | 44.5 | 7.1 | - | - | - | 1.3 | 2.4 | 44.7 |
#3 | 50 °C,8 MPa | 42.1 | 7.1 | - | - | - | 2.0 | 2.5 | 46.3 |
#4 | 60 °C,8 MPa | 40.9 | 6.6 | - | - | 1.4 | 1.3 | 2.3 | 47.5 |
#5 | 70 °C,8 MPa | 43.3 | 6.2 | - | - | 1.1 | 1.8 | 2.2 | 45.4 |
#6 | 80 °C,8 MPa | 44.4 | 6.9 | 0.6 | 0.4 | 1.1 | 1.7 | 2.5 | 42.4 |
Sample Number | Sc-CO2 Treat State | CO2 Adsorption | N2 Adsorption | ||||
---|---|---|---|---|---|---|---|
DR, SSA, m2/g | DA, TPV (<0.85 nm), ×10−3 cm3/g | BET, SSA, m2/g | BJH, TPV (1.7–300 nm), ×10−3 cm3/g | BJH, Average Pore Diameter, nm | Average Pore Diameter, nm (4V/A) | ||
#1 | Untreated | 9.20 | 12.64 | 7.79 | 7.18 | 6.11 | 3.69 |
#2 | 40 °C,8 MPa | 8.87 | 12.48 | 6.35 | 6.06 | 6.10 | 3.81 |
#3 | 50 °C,8 MPa | 9.22 | 14.45 | 6.71 | 6.46 | 6.17 | 3.85 |
#4 | 60 °C,8 MPa | 9.46 | 13.04 | 7.03 | 6.51 | 5.86 | 3.70 |
#5 | 70 °C,8 MPa | 9.29 | 13.51 | 6.89 | 6.24 | 5.83 | 3.62 |
#6 | 80 °C,8 MPa | 8.78 | 11.31 | 6.72 | 6.36 | 6.16 | 3.78 |
Sample Number | Sc-CO2 Treat State | Fractal Dimension of Pore Surface | Fractal Dimension of Pore Structure | ||||
---|---|---|---|---|---|---|---|
D1 | Fitted Equation (1) | R12 | D2 | Fitted Equation (2) | R22 | ||
#1 | Untreated | 2.6741 | y = −0.3259x + 0.9897 | 0.99 | 2.8592 | y = −0.1408x + 1.0701 | 0.98 |
#2 | 40 °C,8 MPa | 2.6652 | y = −0.3348x + 0.7908 | 0.99 | 2.8545 | y = −0.1455x + 0.8623 | 0.98 |
#3 | 50 °C,8 MPa | 2.6654 | y = −0.3346x + 0.8464 | 0.99 | 2.8558 | y = −0.1442x + 0.9235 | 0.98 |
#4 | 60 °C,8 MPa | 2.6624 | y = −0.3376x + 0.5946 | 0.99 | 2.8640 | y = −0.1360x + 0.9821 | 0.97 |
#5 | 70 °C,8 MPa | 2.6677 | y = −0.3323x + 0.8716 | 0.99 | 2.8619 | y = −0.1381x + 0.9499 | 0.98 |
#6 | 80 °C,8 MPa | 2.6664 | y = −0.3336x + 0.8422 | 0.99 | 2.8560 | y = −0.1440x + 0.9110 | 0.99 |
Sample | Peak Position, cm−1 | Area Percentage, % | Assignment |
---|---|---|---|
Untreated | 3038.97 | 0.86 | OH–N |
3117.27 | 0.16 | OH–N | |
3119.14 | 5.08 | OH–N | |
3144.04 | 0.68 | OH–N | |
3187.21 | 5.14 | Ring hydroxyl | |
3237.36 | 8.08 | Ring hydroxyl | |
3269.71 | 0.25 | OH–O | |
3302.71 | 14.01 | OH–O | |
3355.44 | 6.69 | OH–O | |
3406.02 | 2.74 | OH–OH | |
3467.27 | 1.84 | OH–OH | |
3503.67 | 2.95 | OH–π | |
3555.68 | 12.85 | OH–π | |
3622.32 | 38.69 | Free OH |
Assignment | Untreated | 40 °C | 50 °C | 60 °C | 70 °C | 80 °C |
---|---|---|---|---|---|---|
OH–N | 6.77 | 1.61 | 5.15 | 4.36 | 2.70 | 9.16 |
Ring hydroxyl | 13.22 | 4.62 | 5.26 | 3.97 | 7.20 | 5.92 |
OH–O | 20.95 | 12.10 | 19.31 | 31.52 | 12.17 | 26.25 |
OH–OH | 4.57 | 21.49 | 18.18 | 1.28 | 19.19 | - |
OH–π | 15.80 | 27.78 | 17.10 | 18.33 | 32.70 | 17.07 |
Free OH | 38.69 | 32.41 | 35.00 | 40.54 | 26.04 | 41.60 |
Sample | Peak Position, cm−1 | Area Percentage, % | Assignment |
---|---|---|---|
Untreated | 2814.78 | 1.95 | sym.R2CH2 |
2837.66 | 11.23 | sym.R2CH2 | |
2875.26 | 14.46 | sym.R2CH2 | |
2897.55 | 19.32 | –R3CH | |
2934.39 | 12.90 | asym.R2CH2 | |
2984.42 | 40.14 | asym.RCH3 |
Assignment | Untreated | 40 °C | 50 °C | 60 °C | 70 °C | 80 °C |
---|---|---|---|---|---|---|
sym.R2CH2 | 27.64 | 2.42 | 39.50 | 3.73 | 81.05 | 1.87 |
–R3CH | 19.32 | - | 49.55 | 0.27 | - | 1.63 |
asym.R2CH2 | 12.90 | 4.16 | - | - | 9.01 | 7.15 |
asym.RCH3 | 40.14 | 93.42 | 10.95 | 96.00 | 9.94 | 89.35 |
L = A2925/A2950 | 0.321 | 0.045 | - | - | 0.906 | 0.080 |
Sample | Peak Position, cm−1 | Area Percentage, % | Assignment |
---|---|---|---|
Untreated | 762.20 | 18.49 | 4H |
783.04 | 22.19 | 3H | |
801.44 | 26.20 | 3H | |
834.77 | 1.47 | 2H | |
882.71 | 16.84 | 1H | |
899.63 | 14.80 | 1H |
Assignment | Untreated | 40 °C | 50 °C | 60 °C | 70 °C | 80 °C |
---|---|---|---|---|---|---|
4H | 18.49 | 18.46 | 7.30 | 8.28 | 5.52 | 18.21 |
3H | 48.39 | 42.61 | 55.93 | 57.46 | 57.04 | 50.59 |
2H | 1.47 | 5.02 | 2.57 | 2.48 | 2.92 | 3.41 |
1H | 31.64 | 33.92 | 34.20 | 31.77 | 34.52 | 27.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Zeng, M.; Lu, Z.; Du, X.; Yin, H.; Yang, L. Effects of Supercritical CO2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO2 Sequestration. Sustainability 2020, 12, 3927. https://doi.org/10.3390/su12093927
Cheng Y, Zeng M, Lu Z, Du X, Yin H, Yang L. Effects of Supercritical CO2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO2 Sequestration. Sustainability. 2020; 12(9):3927. https://doi.org/10.3390/su12093927
Chicago/Turabian StyleCheng, Yugang, Mengru Zeng, Zhaohui Lu, Xidong Du, Hong Yin, and Liu Yang. 2020. "Effects of Supercritical CO2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO2 Sequestration" Sustainability 12, no. 9: 3927. https://doi.org/10.3390/su12093927
APA StyleCheng, Y., Zeng, M., Lu, Z., Du, X., Yin, H., & Yang, L. (2020). Effects of Supercritical CO2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO2 Sequestration. Sustainability, 12(9), 3927. https://doi.org/10.3390/su12093927