Investigation of CO2 Variation and Mapping Through Wearable Sensing Techniques for Measuring Pedestrians’ Exposure in Urban Areas
Abstract
:1. Introduction
2. Material and Methods
2.1. Monitoring System
2.2. Monitoring Campaign and Data Analysis
3. Case Study
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- 2018 Revision of World Urbanization Prospects | Multimedia Library—United Nations Department of Economic and Social Affairs. Available online: https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html (accessed on 5 February 2020).
- Shukla, A.; Jain, K. Critical analysis of rural-urban transitions and transformations in Lucknow city, India. Remote Sens. Appl. Soc. Environ. 2019, 13, 445–456. [Google Scholar] [CrossRef]
- Xiao, H.; Kopecká, M.; Guo, S.; Guan, Y.; Cai, D.; Zhang, C.; Zhang, X.; Yao, W. Responses of Urban Land Surface Temperature on Land Cover: A Comparative Study of Vienna and Madrid. Sustainability 2018, 10, 260. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.S.; da Silva, R.M.; Santos, C.A.G. Spatiotemporal impact of land use/land cover changes on urban heat islands: A case study of Paço do Lumiar, Brazil. Build. Environ. 2018, 136, 279–292. [Google Scholar] [CrossRef]
- Levi, Y.; Dayan, U.; Levy, I.; Broday, D.M. On the association between characteristics of the atmospheric boundary layer and air pollution concentrations. Atmos. Res. 2020, 231, 104675. [Google Scholar]
- Yang, B.; Yang, X.; Leung, L.R.; Zhong, S.; Qian, Y.; Zhao, C.; Chen, F.; Zhang, Y.; Qi, J. Modeling the Impacts of Urbanization on Summer Thermal Comfort: The Role of Urban Land Use and Anthropogenic Heat. J. Geophys. Res. Atmos. 2019, 124, 6681–6697. [Google Scholar] [CrossRef]
- WHO. United Nations Millennium Development Goals; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- United Nations Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/sdgs (accessed on 4 July 2019).
- Shen, L.; Kyllo, J.; Guo, X. An integrated model based on a hierarchical indices system for monitoring and evaluating urban sustainability. Sustainability 2013, 5, 524–559. [Google Scholar] [CrossRef] [Green Version]
- Torgal, F.P. Nearly Zero Energy Building Refurbishment: A Multidisciplinary Approach; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9781447155225. [Google Scholar]
- Qiu, G.; Song, R.; He, S. The aggravation of urban air quality deterioration due to urbanization, transportation and economic development—Panel models with marginal effect analyses across China. Sci. Total Environ. 2019, 651, 1114–1125. [Google Scholar] [CrossRef]
- Sorte, S.; Arunachalam, S.; Naess, B.; Seppanen, C.; Rodrigues, V.; Valencia, A.; Borrego, C.; Monteiro, A. Assessment of source contribution to air quality in an urban area close to a harbor: Case-study in Porto, Portugal. Sci. Total Environ. 2019, 662, 347–360. [Google Scholar] [CrossRef]
- Li, B.; Wang, F.; Yin, H.; Li, X. Mega events and urban air quality improvement: A temporary show? J. Clean. Prod. 2019, 217, 116–126. [Google Scholar] [CrossRef]
- Krellenberg, K.; Bergsträßer, H.; Bykova, D.; Kress, N.; Tyndall, K. Urban sustainability strategies guided by the SDGs—A tale of four cities. Sustainability 2019, 11, 1116. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency. Sources of Greenhouse Gas Emissions; United States Environmental Protection Agency: Washington, DC, USA, 2018.
- Garceau, T.J. Impacts of roundabouts on urban air quality: A case study of Keene, New Hampshire, USA. J. Transp. Heal. 2018, 10, 144–155. [Google Scholar] [CrossRef]
- Schmitz, S.; Becker, S.; Weiand, L.; Niehoff, N.; Schwartzbach, F.; von Schneidemesser, E. Determinants of public acceptance for traffic-reducing policies to improve urban air quality. Sustainability 2019, 11, 3991. [Google Scholar] [CrossRef] [Green Version]
- Hooftman, N.; Oliveira, L.; Messagie, M.; Coosemans, T.; Van Mierlo, J.; Hooftman, N.; Oliveira, L.; Messagie, M.; Coosemans, T.; Van Mierlo, J. Environmental analysis of petrol, diesel and electric passenger cars in a belgian urban setting. Energies 2016, 9, 84. [Google Scholar] [CrossRef]
- Yang, J.; Shi, B.; Zheng, Y.; Shi, Y.; Xia, G. Urban form and air pollution disperse: Key index and mitigation strategies. Sustain. Cities Soc. 2019, 57, 101955. [Google Scholar] [CrossRef]
- Pisoni, E.; Christidis, P.; Thunis, P.; Trombetti, M. Evaluating the impact of “Sustainable Urban Mobility Plans” on urban background air quality. J. Environ. Manag. 2019, 231, 249–255. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Changes in urban air quality during urbanization in China. J. Clean. Prod. 2018, 188, 312–321. [Google Scholar] [CrossRef]
- Lai, L.-W. The influence of urban heat island phenomenon on PM concentration: An observation study during the summer half-year in metropolitan Taipei, Taiwan. Theor. Appl. Climatol. 2018, 131, 227–243. [Google Scholar] [CrossRef]
- Matthaios, V.N.; Kramer, L.J.; Sommariva, R.; Pope, F.D.; Bloss, W.J. Investigation of vehicle cold start primary NO2 emissions inferred from ambient monitoring data in the UK and their implications for urban air quality. Atmos. Environ. 2019, 199, 402–414. [Google Scholar] [CrossRef]
- Langford, N.J. Carbon dioxide poisoning. Toxicol. Rev. 2005, 24, 229–235. [Google Scholar] [CrossRef]
- Kettner, M.; Ramsthaler, F.; Juhnke, C.; Bux, R.; Schmidt, P. A Fatal Case of CO2 Intoxication in a Fermentation Tank. J. Forensic Sci. 2013, 58, 556–558. [Google Scholar] [CrossRef]
- Gill, J.R.; Ely, S.F.; Hua, Z. Environmental Gas Displacement. Am. J. Forensic Med. Pathol. 2002, 23, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Cotana, F.; Vittori, S.; Marseglia, G.; Medaglia, C.M.; Coccia, V.; Petrozzi, A.; Nicolini, A.; Cavalaglio, G. Pollutant emissions of a biomass gasifier inside a multifuel energy plant. Atmos. Pollut. Res. 2019, 10, 2000–2009. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2. Sensors Actuators B Chem. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Arnfield, A.J. Review two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. Int. J. Clim. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Oke, T.R. The urban energy balance. Prog. Phys. Geogr. 1988, 12, 471–508. [Google Scholar] [CrossRef]
- Jin, H.; Cui, P.; Wong, N.; Ignatius, M. Assessing the effects of urban morphology parameters on microclimate in Singapore to control the urban heat island effect. Sustainability 2018, 10, 206. [Google Scholar] [CrossRef] [Green Version]
- Sarrat, C.; Lemonsu, A.; Masson, V.; Guedalia, D. Impact of urban heat island on regional atmospheric pollution. Atmos. Environ. 2006, 40, 1743–1758. [Google Scholar] [CrossRef]
- Abbassi, Y.; Ahmadikia, H.; Baniasadi, E. Prediction of pollution dispersion under urban heat island circulation for different atmospheric stratification. Build. Environ. 2020, 168, 106374. [Google Scholar] [CrossRef]
- Memon, R.A.; Leung, D.Y.C.; Liu, C.-H. An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmos. Res. 2009, 94, 491–500. [Google Scholar] [CrossRef]
- Piselli, C.; Castaldo, V.L.; Pigliautile, I.; Pisello, A.L.; Cotana, F. Outdoor comfort conditions in urban areas: On citizens’ perspective about microclimate mitigation of urban transit areas. Sustain. Cities Soc. 2018, 39, 16–36. [Google Scholar] [CrossRef]
- Rosso, F.; Golasi, I.; Castaldo, V.L.; Piselli, C.; Pisello, A.L.; Salata, F.; Ferrero, M.; Cotana, F.; de Lieto Vollaro, A. On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons. Renew. Energy 2018, 118, 825–839. [Google Scholar] [CrossRef]
- Zhang, X.; Steeneveld, G.-J.; Zhou, D.; Duan, C.; Holtslag, A.A.M. A diagnostic equation for the maximum urban heat island effect of a typical Chinese city: A case study for Xi’an. Build. Environ. 2019, 158, 39–50. [Google Scholar] [CrossRef]
- Pakarnseree, R.; Chunkao, K.; Bualert, S. Physical characteristics of Bangkok and its urban heat island phenomenon. Build. Environ. 2018, 143, 561–569. [Google Scholar] [CrossRef]
- Matzarakis, A.; Amelung, B. Physiological Equivalent Temperature as Indicator for Impacts of Climate Change on Thermal Comfort of Humans, Chapter 9. In Seasonal Forecasts, Climatic Change and Human Health. Advances in Global Change Research, Vol 30; Thomson, M.C., Garcia-Herrera, R., Beniston, M., Eds.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Rizvi, S.H.; Alam, K.; Iqbal, M.J. Spatio -temporal variations in urban heat island and its interaction with heat wave. J. Atmos. Solar-Terr. Phys. 2019, 185, 50–57. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Oppenheimer, M.; Zhu, Q.; Baldwin, J.W.; Ebi, K.L.; Bou-Zeid, E.; Guan, K.; Liu, X. Interactions between urban heat islands and heat waves. Environ. Res. Lett. 2018, 13, 034003. [Google Scholar] [CrossRef]
- Sun, R.; Lü, Y.; Yang, X.; Chen, L. Understanding the variability of urban heat islands from local background climate and urbanization. J. Clean. Prod. 2019, 208, 743–752. [Google Scholar] [CrossRef]
- Gu, Y.; Li, D. A modeling study of the sensitivity of urban heat islands to precipitation at climate scales. Urban Clim. 2018, 24, 982–993. [Google Scholar] [CrossRef]
- Jato-Espino, D. Spatiotemporal statistical analysis of the Urban Heat Island effect in a Mediterranean region. Sustain. Cities Soc. 2019, 46, 101427. [Google Scholar] [CrossRef]
- Paolini, R.; Antretter, F.; Cotana, F.; Pisello, A.L.; MeshkinKiya, M.; Zani, A.; Poli, T.; Castaldo, V.L. The hygrothermal performance of residential buildings at urban and rural sites: Sensible and latent energy loads and indoor environmental conditions. Energy Build. 2016, 152, 792–803. [Google Scholar] [CrossRef]
- Parece, T.E.; Li, J.; Campbell, J.B.; Carroll, D. Assessing urban landscape variables’ contributions to microclimates. Adv. Meteorol. 2016, 2016, 8736263. [Google Scholar] [CrossRef] [Green Version]
- Mofarrah, A.; Husain, T. A holistic approach for optimal design of air quality monitoring network expansion in an urban area. Atmos. Environ. 2010, 44, 432–440. [Google Scholar] [CrossRef]
- Vuckovic, M.; Kiesel, K.; Mahdavi, A. The extent and implications of the microclimatic conditions in the urban environment: A Vienna case study. Sustainability 2017, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Cunha-Lopes, I.; Martins, V.; Faria, T.; Correia, C.; Almeida, S.M. Children’s exposure to sized-fractioned particulate matter and black carbon in an urban environment. Build. Environ. 2019, 155, 187–194. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, Y.; Yang, Y.; Ye, F. ALC2: When Active Learning meets Compressive Crowdsensing for Urban Air Pollution Monitoring. IEEE Internet Things J. 2019, 6, 9427–9438. [Google Scholar] [CrossRef]
- Xu, S.; Zou, B.; Lin, Y.; Zhao, X.; Li, S.; Hu, C. Strategies of method selection for fine-scale PM2.5 mapping in an intra-urban area using crowdsourced monitoring. Atmos. Meas. Tech. 2019, 12, 2933–2948. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Duan, N.; Ji, P.; Ma, C.; Ding, Y.; Yu, Y.; Zhou, Q.; Sun, W. A Crowdsource-Based Sensing System for Monitoring Fine-Grained Air Quality in Urban Environments. IEEE Internet Things J. 2019, 6, 3240–3247. [Google Scholar] [CrossRef]
- Domínguez, F.; Dauwe, S.; Cuong, N.T.; Cariolaro, D.; Touhafi, A.; Dhoedt, B.; Botteldooren, D.; Steenhaut, K. Towards an environmental measurement cloud: Delivering pollution awareness to the public. Int. J. Distrib. Sens. Networks 2014, 10, 541360. [Google Scholar] [CrossRef] [Green Version]
- Dhingra, S.; Madda, R.B.; Gandomi, A.H.; Patan, R.; Daneshmand, M. Internet of things mobile-air pollution monitoring system (IoT-Mobair). IEEE Internet Things J. 2019, 6, 5577–5584. [Google Scholar] [CrossRef]
- Pigliautile, I.; Pisello, A.L. A new wearable monitoring system for investigating pedestrians’ environmental conditions: Development of the experimental tool and start-up findings. Sci. Total Environ. 2018, 630, 690–706. [Google Scholar] [CrossRef] [PubMed]
- Pioppi, B.; Pigliautile, I.; Piselli, C.; Pisello, A.L. Cultural heritage microclimate change: Human-centric approach to experimentally investigate intra-urban overheating and numerically assess foreseen future scenarios impact. Sci. Total Environ. 2020, 703, 134448. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, S. Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy 2009, 37, 4208–4219. [Google Scholar] [CrossRef]
- Pigliautile, I.; Pisello, A.L. Environmental data clustering analysis through wearable sensing techniques: New bottom-up process aimed to identify intra-urban granular morphologies from pedestrian transects. Build. Environ. 2020, 171, 106641. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.; Ryoo, H.-Y.; Shin, B.-S. Sustainable wearables: Wearable technology for enhancing the quality of human life. Sustainability 2016, 8, 466. [Google Scholar] [CrossRef] [Green Version]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Enhancement of Local Air Pollution by Urban CO2 Domes. Environ. Sci. Technol. 2010, 44, 2497–2502. [Google Scholar] [CrossRef]
- ARPA Lazio—Agenzia Regionale Protezione Ambientale del Lazio. Available online: http://www.arpalazio.gov.it/ (accessed on 8 April 2020).
- Jandacka, D.; Durcanska, D.; Kovalova, D. Concentrations of traffic related pollutants in the vicinity of different types of urban crossroads. Commun.-Sci. Lett. Univ. Zilina 2019, 21, 49–58. [Google Scholar]
Monitored Parameter | Technical Specifications |
---|---|
Air Temperature (Ta) [°C] | Operation range: −40 < Ta < +85°C Absolute accuracy: ± 0.5°C at 25°C |
Relative Humidity (RH) [%] | Absolute tolerance: ± 3% |
Atmospheric Pressure (Pa) [hPa] | Operation range: 300 < Pa < 1100 hPa Sensitivity error: ± 0.25% |
Global Solar Radiation (SR) [W/m2] | Spectral range: 360 < SR < 1120 nm Calibration uncertainty: ± 5% |
Lighting (E) [lux] | Spectral error: 2.3% |
Wind Speed (ws) [m/s] | Operational range: 0.25 < E < 40 m/s Resolution: 0.1 m/s Sensitivity: 0.13 m/s |
Wind Direction (wd) [deg] | Resolution: 1° Sensitivity: ± 1° |
CO2 Concentration (CO2) [ppm] | Accuracy: ± 2% full scale at 20°C and 1000 hPa |
Number of Monitoring Sessions | |||
---|---|---|---|
Time | 9:30 a.m. | 6:30 p.m. | |
Weekdays | 6 | 5 | 11 |
Weekend days | 2 | 3 | 5 |
8 | 8 | Total: 16 |
Monitoring Session | ||||||||
---|---|---|---|---|---|---|---|---|
9.30 am | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Min [ppm] | 290 | 330 | 360 | 260 | 350 | 190 | 160 | 290 |
Max [ppm] | 620 | 710 | 570 | 600 | 800 | 750 | 700 | 790 |
Ave [ppm] | 441 | 445 | 448 | 419 | 524 | 441 | 449 | 479 |
St. Dev. [ppm] | 49 | 44 | 27 | 44 | 65 | 95 | 60 | 78 |
6.30 pm | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Min [ppm] | 350 | 300 | 310 | 230 | 260 | 350 | 340 | 390 |
Max [ppm] | 610 | 540 | 660 | 620 | 560 | 610 | 1340 | 550 |
Ave [ppm] | 458 | 442 | 425 | 430 | 419 | 462 | 592 | 469 |
St. Dev. [ppm] | 38 | 35 | 44 | 51 | 41 | 27 | 205 | 27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pigliautile, I.; Marseglia, G.; Pisello, A.L. Investigation of CO2 Variation and Mapping Through Wearable Sensing Techniques for Measuring Pedestrians’ Exposure in Urban Areas. Sustainability 2020, 12, 3936. https://doi.org/10.3390/su12093936
Pigliautile I, Marseglia G, Pisello AL. Investigation of CO2 Variation and Mapping Through Wearable Sensing Techniques for Measuring Pedestrians’ Exposure in Urban Areas. Sustainability. 2020; 12(9):3936. https://doi.org/10.3390/su12093936
Chicago/Turabian StylePigliautile, Ilaria, Guido Marseglia, and Anna Laura Pisello. 2020. "Investigation of CO2 Variation and Mapping Through Wearable Sensing Techniques for Measuring Pedestrians’ Exposure in Urban Areas" Sustainability 12, no. 9: 3936. https://doi.org/10.3390/su12093936
APA StylePigliautile, I., Marseglia, G., & Pisello, A. L. (2020). Investigation of CO2 Variation and Mapping Through Wearable Sensing Techniques for Measuring Pedestrians’ Exposure in Urban Areas. Sustainability, 12(9), 3936. https://doi.org/10.3390/su12093936