RETRACTED: Soil Microbiome Manipulation Gives New Insights in Plant Disease-Suppressive Soils from the Perspective of a Circular Economy: A Critical Review
Abstract
:1. Introduction
2. Soil-Borne Plant Pathogens and Microbiota Determine Disease Suppression
3. Microbiological Basis in Soil Suppression
3.1. Case Studies of Soil-Borne Pathogens and Diseases
3.1.1. Contribution of Pathogenic Fungi and Oomycetes
3.1.2. Contribution of Pathogenic Bacteria
3.2. Soil Microbiome Influences Disease Suppression
3.2.1. Contribution of Bacterial and Archaeal Communities
3.2.2. Contribution of Fungal Community
3.3. Omics Approach for Studying Soil Microbiome
4. Microbiota Disturbance Influences the Suppressive Properties
4.1. Microbiome Induces Defense Response
4.1.1. Microbiostasis (Fungistasis)
4.1.2. Production of Antibiotics and Toxins
4.1.3. Production of Volatile Organic Compounds (VOCs)
4.1.4. Adherence and Colonization of the Pathogen
4.1.5. Pathogen Destroying
4.1.6. Competition for the Nutritional Sources
4.1.7. Competition for the Infection Sites
4.1.8. Activation of Induced Systemic Resistance (ISR)
4.2. Sustainable Agronomical Practices Re-Shape the Soil Microbiome
4.2.1. Land Use and Conservative Agriculture
4.2.2. Crop and Cultivar Choice
4.2.3. Rotation, Crop Diversification, Intercropping and Cover Cropping
4.2.4. Organic Amendments Application
4.2.5. Chitosan Application
4.2.6. Reductive Soil Disinfestation (RSD)
4.2.7. Soil Pre-Fumigation Combined with Supplementation of OAs and Bio-Organic Fertilizers
5. Recycling Agricultural Biomass for Sustainable Soil Microbiome Management
5.1. Background of a Circular Economy System
5.2. Application of On-Farm Green Compost and Bio-Organic Fertilizer
6. Concluding Remarks and Potential Directions of Future Researches
Funding
Conflicts of Interest
References
- De Corato, U. Towards New Soil Management Strategies for Improving Soil Quality and Ecosystem Services in Sustainable Agriculture: Editorial Overview. Sustainability 2020, 12, 9398. [Google Scholar] [CrossRef]
- Cao, Z.H.; Huang, J.F.; Zhang, C.S.; Li, A.F. Soil quality evolution after land use change from paddy soil to vegetable land. Environ. Geochem. Health 2004, 26, 97–103. [Google Scholar] [CrossRef]
- Lal, R. Managing soil quality for humanity and the planet. Front. Agric. Sci. Eng. 2020, 7, 251–253. [Google Scholar] [CrossRef]
- Mandeel, Q.; Baker, R. Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology 1991, 81, 462–469. [Google Scholar] [CrossRef]
- Li, S.D. Quantitative assay of Rhizoctonia solani Kuhn AG-1 in soil. Soil Biol. Biochem. 1995, 27, 251–256. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Ding, C.; Jia, Z.; He, Z.; Zhang, T.; Wang, X. Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biol. Fertil. Soils 2015, 51, 935–946. [Google Scholar] [CrossRef]
- Jambhulkar, P.P.; Babu, S.R.; Ameta, G.S. Comparative efficacy of fungicides and antagonists against fusarium wilt of chickpea. J. Mycol. Plant. Pathol. 2011, 41, 399–401. [Google Scholar]
- Agrios, G.N. Plant Pathology, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2005; 952p, ISBN1 9780120445653. ISBN2 9780080473789. [Google Scholar]
- Noble, R.; Coventry, E. Suppression of soil-borne plant diseases with composts. Biocon. Sci. Tech. 2005, 15, 3–20. [Google Scholar] [CrossRef]
- Bonilla, N.; Gutiérrez-Barranquero, J.A.; de Vicente, A.; Cazorla, F.M. Enhancing soil quality and plant health through suppressive organic amendments. Diversity 2012, 4, 475–491. [Google Scholar] [CrossRef]
- Borrero, C.; Castillo, S.; Segarra, G.; Trillas, M.I.; Castãno, R.; Avilés, M. Capacity of composts made from agriculture industry residues to suppress different plant diseases. Acta Hort. 2013, 1013, 459–463. [Google Scholar] [CrossRef]
- Rovira, A.D. Ecology, epidemiology and control of take-all, Rhizoctonia bare patch and cereal cyst nematode in wheat. Aust. Plant. Path. 1990, 19, 101–111. [Google Scholar] [CrossRef]
- Neate, S.M. Soil and crop management practices that affect root diseases of crop plants. CSIRO East Melb. 1994, 96–106. Available online: https://publications.csiro.au/rpr/pub?list=BRO&pid=procite:2686684e-cf9f-4bad-a522-46467d7c209c (accessed on 20 December 2020).
- Jeger, M.J.; Hide, G.A.; van Den Boogert, P.H.J.F.; Termorshuizen, A.J.; van Baarlen, P. Pathology and control of soil-borne fungal pathogens of potato. Potato Res. 1996, 39, 437–469. [Google Scholar] [CrossRef]
- Duveiller, E.; Singh, R.P.; Nicol, J.M. The challenges of maintaining wheat productivity: Pests, diseases, and potential epidemics. Euphytica 2007, 157, 417–430. [Google Scholar] [CrossRef]
- Persson, L.; Olsson, S. Abiotic characteristics of soils suppressive to Aphanomyces root rot. Soil. Biol. Biochem. 2000, 32, 1141–1150. [Google Scholar] [CrossRef]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdisc. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Honaganahalli, P.S.; Seiber., J.N. Health and environmental concerns over the use of fumigants in agriculture: The case of methyl bromide. Am. Chem. Soc. 1996, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Moorman, T.B. A review of pesticide effects on microorganisms and microbial processes related to soil fertility. J. Prod. Agric. 1989, 2, 14–23. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Kannan, K.; Subramanian, A.; Tanabe, S. Accumulation of Organochlorine Pesticides and Polychlorinated Biphenyls in Sediments, Aquatic Organisms, Birds, Bird Eggs and Bat Collected from South India. Environ. Sci. Pollut. Res. 2000, 7, 1–13. [Google Scholar] [CrossRef]
- Gupta, S.K.; Jani, J.P.; Saiyed, H.N.; Kashyap, S.K. Health hazards in pesticide formulators exposed to a combination of pesticides. Indian J. Med. Res. 1984, 79, 666. [Google Scholar]
- Weller, D.M.; Raaijmakers, J.M.; Gardener, B.B.M.; Thomashow, L.S. Microbial populations responsible for specific soil suppressiveness. Annu. Rev. Phytopathol. 2002, 40, 309–348. [Google Scholar] [CrossRef] [Green Version]
- Weller, D.M.; Landa, B.B.; Mavrodi, O.V.; Schroeder, K.L.; De La Fuente, L.; Blouin Bankhead, S.; Allende Molar, R.; Bonsall, R.F.; Mavrodi, D.V.; Thomashow, L.S. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant. Biol. 2007, 9, 4–20. [Google Scholar] [CrossRef] [Green Version]
- Siegel-Hertz, K.; Edel-Hermann, V.; Chapelle, E.; Terrat, S.; Raaijmakers, J.M.; Steinberg, C. Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Châteaurenard region. Front. Microbiol. 2018, 9, 568. [Google Scholar] [CrossRef]
- Schlatter, D.; Kinkel, L.; Thomashow, L.; Weller, D.; Paulitz, T. Disease suppressive soils: New insights from the soil microbiome. Phytopathology 2017, 107, 1284–1297. [Google Scholar] [CrossRef] [Green Version]
- Mazzola, M. Manipulation of rhizosphere bacterial communities to induce suppressive soils. J. Nematol. 2007, 39, 213–220. [Google Scholar]
- Kinkel, L.L.; Bakker, M.G.; Schlatter, D.C.A. Coevolutionary framework for managing disease suppressive soils. Annu. Rev. Phytopathol. 2011, 49, 47–67. [Google Scholar] [CrossRef] [Green Version]
- Kyselková, M.; Kopecký, J.; Frapolli, M.; Défago, G.; Ságová-Marečková, M.; Grundmann, G.L.; Moënne- Loccoz, Y. Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME J. 2009, 3, 1127–1138. [Google Scholar] [CrossRef] [Green Version]
- De Corato, U. Soil microbiota manipulation and its role in suppressing soil-borne plant pathogens in organic farming systems under the light of microbiome-assisted strategies. Chem Biol.Technol Agric. 2020, 7, 17. [Google Scholar] [CrossRef]
- Martin, S.C.C.G. Enhancing soil suppressiveness using compost. In Organic Amendments and Soil Suppressiveness in Plant Disease Management; Meghvansi, M.K., Varma, A., Eds.; Springer: Cham, Switzerland, 2015; Volume 46, pp. 25–49. ISBN1 978-3-319-23074-0. ISBN2 978-3-319-23075-7. [Google Scholar] [CrossRef]
- Stutz, E.; Kahr, G.; Défago, G. Clays involved in suppression of tobacco black root rot by a strain of Pseudomonas fluorescens. Soil Biol. Biochem. 1989, 21, 361–366. [Google Scholar] [CrossRef]
- Cook, R.J.; Thomashow, L.S.; Weller, D.M.; Fujimoto, D.; Mazzola, M.; Bangera, G.; Kim, D. Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. USA 1995, 92, 4197–4201. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, J.; Cavalhais, L.C.; Percy, C.; Verma, J.P.; Schenk, P.M.; Singh, B. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogen. New Phytol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hadar, Y.; Papadopoulou, K.K. Suppressive composts: Microbial ecology links between abiotic environments and healthy plants. Annu. Rev. Phytopathol. 2012, 50, 133–153. [Google Scholar] [CrossRef] [PubMed]
- Mousa, W.K.; Raizada, M.N. Natural Disease Control in Cereal Grains, 2nd ed.; Oxford Academic Press: Oxford, UK, 2016. [Google Scholar]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; van Themaat, E.V.L.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant. Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anton, T. Planet of Microbes: The Perils and Potential of Earth’s Essential Life Forms; University of Chicago Press: Chicago, IL, USA, 2017. [Google Scholar]
- D’Costa, V.M.; Griffith, E.; Wright, G.D. Expanding the soil antibiotic resistome: Exploring environmental diversity. Curr. Opin. Microbiol. 2007, 10, 481–489. [Google Scholar] [CrossRef]
- Guerra, C.A.; Heintz-Buschart, A.; Sikorski, J.; Chatzinotas, A.; Guerrero-Ramírez, N.; Cesarz, S.; Beaumelle, L.; Rillig, M.C.; Maestre, F.T.; Delgado-Baquerizo, M.; et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal. Microbiome 2015, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.C.C.; Charles, T.; Xiaoyulong, C.; Luca, C.; Kellye, E.; Gema Herrero, C.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Whipps, J.; Lewis, K.; Cooke, R. Mycoparasitism and plant disease control. In Fungi in Biological Control Systems; Burge, M., Ed.; Manchester University Press: Manchester, UK, 1988; pp. 161–187. [Google Scholar] [CrossRef]
- Berg, G.; Rybakova, D.; Grube, M.; Köberl, M. The plant microbiome explored: Implications for experimental botany. J. Exp. Bot. 2016, 67, 995–1002. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; Semenov, A.M. In search of biological indicators for soil health and disease suppression. Appl. Soil. Ecol. 2000, 15, 13–24. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; Sharma, K.; Kaku, E.; Karfopoulos, S.; Zelenev, V.V.; Blok, W.J. Soil health indicators and Fusarium wilt suppression in organically and conventionally managed greenhouse soils. Appl. Soil Ecol. 2015, 86, 192–201. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; London Academic Press: London, UK, 1995. [Google Scholar]
- Kariuki, G.M.; Muriuki, L.K.; Kibiro, E.M. The impact of suppressive soils on plant pathogens and agricultural productivity. In Organic Amendments and Soil Suppressiveness in Plant Disease Management; Meghvansi, M.K., Varma, A., Eds.; Springer: Cham, Switzerland, 2015; Volume 46, pp. 3–24. ISBN1 978-3-319-23074-0. ISBN2 978-3-319-23075-7. [Google Scholar] [CrossRef]
- Mendes, R.; Kruijt, M.; de Bruijn, I.; Dekkers, E.; van der Voort, M.; Schneider, J.H.M.; Piceno, Y.M.; De Santis, T.Z.; Andersen, G.L.; Bakker, P.A.H.M.; et al. Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science 2011, 332, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- De Corato, U. Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: A critical review. Rhizosphere 2020, 13, 100192. [Google Scholar] [CrossRef]
- Haas, D.; Défago, G. Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nat. Rev. Microbiol. 2005, 3, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Smukler, S.M.; Sánchez-Moreno, S.; Fonte, S.J.; Ferris, H.; Klonsky, K.; O’Geen, A.T.; Scow, K.M.; Steenwerth, K.L.; Jackson, L.E. Biodiversity and multiple ecosystem functions in an organic farmscape. Agric. Ecosyst. Environ. 2010, 139, 80–97. [Google Scholar] [CrossRef]
- Lin, B.B. Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience 2011, 61, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Scholthof, K.B.G. The disease triangle: Pathogens, the environment and society. Nat. Rev. Microbiol. 2007, 5, 152–156. [Google Scholar] [CrossRef]
- Penton, C.R.; Gupta, V.V.S.R.; Tiedje, J.M.; Neate, S.M.; Ophel-Keller, K.; Gillings, M.; Harvey, P.; Pham, A.; Roget, D.K. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS ONE 2014, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Scotti, R.; Pane, C.; Spaccini, R.; Palese, A.M.; Piccolo, A.; Celano, G.; Zaccardelli, M. On-farm compost: A useful tool to improve soil quality under intensive farming systems. Appl. Soil Ecol. 2016, 107, 13–23. [Google Scholar] [CrossRef]
- Cesarano, G.; De Filippis, F.; La Storia, A.; Scala, F.; Bonanomi, G. Organic amendment type and application frequency affect crop yields, soil fertility and microbiome composition. Appl. Soil Ecol. 2017, 120, 254–264. [Google Scholar] [CrossRef]
- Bonanomi, G.; De Filippis, F.; Zotti, M.; Idbella, M.; Cesarano, G.; Al-Rowaily, S.; Abd-ElGawad, A. Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield. Appl. Soil Ecol. 2020, 156, 103714. [Google Scholar] [CrossRef]
- Yin, C.; Hulbert, S.H.; Schroeder, K.L.; Mavrodi, O.; Mavrodi, D.; Dhingra, A.; Schillinger, W.F.; Paulitz, T.C. Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). Appl. Environ. Microbiol. 2013, 79, 7428–7438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Gumpertz, M.L.; Hu, S.; Ristaino, J.B. Long-term effects of organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight. Soil Biol. Biochem. 2007, 39, 2302–2316. [Google Scholar] [CrossRef]
- Meghvansi, M.K.; Varma, A. Organic Amendments and Soil Suppressiveness. In Plant Disease Management; Book Springer Series Soil Biology; Springer: Cham, Switzerland, 2015; Volume 46, 531p, ISBN1 978-3-319-23074-0. ISBN2 978-3-319-23075-7. [Google Scholar] [CrossRef]
- Termorshuizen, A.J.; van Rijn, E.; van der Gaag, D.J.; Alabouvette, C.; Chen, Y.; Lagerlof, J.; Malandrakis, A.A.; Paplomatas, E.J.; Ramert, B.; Ryckeboer, J.; et al. Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response. Soil. Biol. Biochem. 2006, 38, 2461–2477. [Google Scholar] [CrossRef]
- Bonanomi, G.; Antignani, V.; Capodilupo, M.; Scala, F. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil. Biol. Biochem. 2010, 42, 136–144. [Google Scholar] [CrossRef]
- Menzies, J.D. Occurrence and transfer of a biological factor in soil that suppresses potato scab. Phytopathology 1959, 49, 648–652. [Google Scholar]
- Kao, C.W.; Ko, W.H. Nature of suppression of Pythium splendens in a pasture soil in South Kohala, Hawaii. Phytopathology 1983, 73, 1284–1289. [Google Scholar] [CrossRef]
- Martin, F.N.; Hancock, J.G. Association of chemical and biological factors in soils suppressive to Pythium ultimum. Phytopathology 1986, 76, 1221–1231. [Google Scholar] [CrossRef]
- Stutz, E.W.; Défago, G.; Kern, H. Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 1986, 76, 181–185. [Google Scholar] [CrossRef]
- Ko, W.H.; Shiroma, S.S. Distribution of Phytophthora cinnamomi-suppressive soil in nature. J. Phytopathol. 1989, 127, 75–80. [Google Scholar] [CrossRef]
- Andrivon, D. Dynamics of the survival and infectivity to potato tubers of sporangia of Phytophthora infestans in three different soils. Soil. Biol. Biochem. 1994, 26, 945–952. [Google Scholar] [CrossRef]
- Alabouvette, C.; Lemanceau, P.; Steinberg, C. Recent advances in the biological control of Fusarium wilts. Pestic. Sci. 1993, 37, 365–373. [Google Scholar] [CrossRef]
- Wiseman, B.M.; Neate, S.M.; Keller, K.O.; Smith, S.E. Suppression of Rhizoctonia solani anastomosis group 8 in Australia and its biological nature. Soil. Biol. Biochem. 1996, 28, 727–732. [Google Scholar] [CrossRef]
- Hornby, D. Take-All Disease of Cereals: A Regional Perspective; CAB International: Wallingford, UK, 1998; 384p. [Google Scholar]
- Shiomi, Y.; Nishiyama, M.; Onizuka, T.; Marumoto, T. Comparison of bacterial community structures in the rhizoplane of tomato plants grownin soils suppressive and conducive toward bacterial wilt. Appl. Environ. Microbiol. 1999, 65, 3996–4001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson, L.; Larsson-Wikström, M.; Gerhardson, B. Assessment of soil suppressiveness to Aphanomyces root rot of pea. Plant. Dis. 1999, 83, 1108–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, H.; Tsushima, S.; Shishido, Y. Soil suppressiveness to clubroot disease of Chinese cabbage caused by Plasmodiophora brassicae. Soil Biol. Biochem. 2000, 32, 1637–1642. [Google Scholar] [CrossRef]
- Mazzola, M.; Fujimoto, D.K.; Thomashow, L.S.; Cook, R.J. Variation in sensitivity of Gaeumannomyces graminis to antibiotics produced by fluorescent Pseudomonas spp. and effect on biological control of take-all of wheat. Appl. Environ. Microbiol. 1995, 61, 2554–2559. [Google Scholar] [CrossRef] [Green Version]
- Mazzola, M. Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 2002, 81, 557–564. [Google Scholar] [CrossRef]
- Garbeva, P.; vanVeen, J.A.; van Elsas, J.D. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 2004, 42, 243–270. [Google Scholar] [CrossRef]
- Anees, M.; Tronsom, A.; Edel-Hermann, V.; Gautheron, N.; Faloya, V.; Steinberg, C. Biotic changes in relation to local decrease in soil conduciveness to disease caused by Rhizoctonia solani. Eur. J. Plant. Pathol. 2010, 126, 29–41. [Google Scholar] [CrossRef]
- Baker, K.F.; Cook, R.J. Biological Control of Plant Pathogens; WH Freeman and Company: San Francisco, CA, USA, 1974. [Google Scholar]
- Cook, R.J.; Baker, K.F. The Nature and Practice of Biological Control of Plant Pathogens; American Phytopathological Society: St. Paul, MN, USA, 1983; 539p. [Google Scholar]
- Zak, D.R.; Holmes, W.E.; White, D.C.; Peacock, A.D.; Tilman, D. Plant diversity, soil microbial communities and ecosystem function: Are there any links? Ecology 2003, 84, 2042–2050. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, R.L.; Pieterse, C.M.; Bakker, P.A. The rhizosphere microbiome and plant health. Trends Plant. Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, J.M.; Sheflin, A.M.; Manter, D.K.; Vivanco, J.M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol.Fertil Soils 2012, 48, 489–499. [Google Scholar] [CrossRef]
- Latz, E.; Eisenhauer, N.; Rall, B.C.; Allan, E.; Roscher, C.; Scheu, S.; Jousset, A. Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. J. Ecol. 2012, 100, 597–604. [Google Scholar] [CrossRef]
- Rovira, A.D.; Wildermuth, G.B. The nature and mechanisms of suppression. In Biology and Control of Take-All; Asher, M.J.C., Shipton, P., Eds.; London Academic Press: London, UK, 1981; pp. 385–415. [Google Scholar]
- Bonanomi, G.; Gaglione, S.A.; Cesarano, G.; Sarker, T.C.; Pascale, M.; Scala, F.; Zoina, A. Frequent application of organic matter to agricultural soil increases fungistasis. Pedosphere 2017, 27, 86–95. [Google Scholar] [CrossRef]
- Huber, D.M.; Watson, R.D. Effect of organic amendment on soil-borne plant pathogens. Phytopathology 1970, 60, 22–26. [Google Scholar] [CrossRef]
- Gerlagh, M. Introduction of Ophiobolus graminis into new polders and its decline. Neth. J. Plant. Pathol. 1968, 74, 1–97. [Google Scholar] [CrossRef] [Green Version]
- Cook, R.J.; Rovira, A.D. The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils. Soil Biol. Biochem. 1976, 8, 269–273. [Google Scholar] [CrossRef]
- Andrade, O.A.; Mathre, D.E.; Sands, D.C. Suppression of Gaeumannomycesgraminis var. tritici in Montana soils and its transferability between soils. Soil Biol.Biochem. 1994, 26, 397–402. [Google Scholar]
- Cook, R.J. Plant health management: Pathogen suppressive soils. In Encyclopedia of Agriculture and Food Systems; Elsevier: Amsterdam, The Netherlands, 2014; pp. 441–455. [Google Scholar]
- Chandrashekara, C.; Bhatt, J.C.; Kumar, R.; Chandrashekara, K.N. Suppressive soils in plant disease management. In Eco-Friendly Innovative Approaches in Plant Disease Management; Singh, V.K., Singh, Y., Singh, A., Eds.; International Book Distributors: Dehradun, India, 2012; pp. 241–256. [Google Scholar]
- Bruehl, G.W. Soilborne Plant Pathogens; Macmillan Publishing Company: New York, NY, USA, 1987; 369p. [Google Scholar]
- Peters, R.D.; Sturz, A.V.; Carter, M.R.; Sanderson, J.B. Developing disease-suppressive soils through crop rotation and tillage management practices. Soil Tillage Res. 2003, 72, 181–192. [Google Scholar] [CrossRef]
- Cook, R.J.; Weller, D.M. Management of take-all in consecutive crops of wheat or barley. In Innovative Approaches to Plant. Disease Control; Chet, I., Ed.; Wiley: New York, NY, USA, 1987; 372p. [Google Scholar]
- Rouxel, F.; Alabouvette, C.; Louvet, J. Recherches sur la résistance des sols aux maladies. Part II: Incidence de traitements thermiques sur la résistance microbiologique d’un sol à la Fusariose vasculaire du melon. Annu. Rev. Phytopathol. 1977, 9, 183–192. [Google Scholar]
- Zhang, H.; Wang, R.; Chen, S.; Qi, G.; He, Z.; Zhao, X. Microbial taxa and functional genes shift in degraded soil with bacterial wilt. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Govers, G.; Merckx, R.; Wesemael van, B.; Oost van, K. Soil conservation in the 21st century: Why we need smart agricultural intensification. Soil 2017, 3, 45. [Google Scholar] [CrossRef] [Green Version]
- Pervaiz, Z.H.; Iqbal, J.; Zhang, Q.; Chen, D.; Wei, H.; Saleem, M. Continuous Cropping Alters Multiple Biotic and Abiotic Indicators of Soil Health. Soil Syst. 2020, 4, 59. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, X.; Liu, T.; Wang, H.; Yang, Y.; Chen, X.; Zhu, S. Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmeria nivea L. Gaud) fields in different areas in China. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Kong, W.; Wu, Y.; Wang, J. Effect of monoculture soybean on soil microbial community in the Northeast China. Plant. Soil 2010, 330, 423–433. [Google Scholar] [CrossRef]
- Liu, D.; Sun, H.; Ma, H. Deciphering Microbiome Related to Rusty Roots of Panax ginseng and Evaluation of Antagonists against Pathogenic Ilyonectria. Front. Microbiol. 2019, 10, 1350. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Yu, Z.; Yao, Q.; Li, Y.; Liang, A.; Zhang, W.; Mi, G.; Jin, J.; Liu, X.; et al. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil Tillage Res. 2020, 197, 104503. [Google Scholar] [CrossRef]
- Dong, L.; Xu, J.; Feng, G.; Li, X.; Chen, S. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jie, W.; Bai, L.; Yu, W.; Cai, B. Analysis of interspecific relationships between Funneliformis mosseae and Fusarium oxysporum in the continuous cropping of soybean rhizosphere soil during the branching period. Biocontrol Sci. Technol. 2015, 25, 1036–1051. [Google Scholar] [CrossRef]
- Shipton, P.J. Monoculture and soilborne plant pathogens. Monocult. Soilborne Plant. Pathogens. 1977, 15, 387–407. [Google Scholar] [CrossRef]
- Cook, R.J. Take-all of wheat. Physiol Mol. Plant Pathol. 2003, 62, 73–86. [Google Scholar] [CrossRef]
- Chen, M.; Li, X.; Yang, Q.; Chi, X.; Pan, L.; Chen, N.; Yang, Z.; Wang, T.; Wang, M.; Yu, S. Soil Eukaryotic Microorganism Succession as Affected by Continuous Cropping of Peanut—Pathogenic and Beneficial Fungi were Selected. PLoS ONE 2012, 7, e40659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Cui, J.; Jie, W.; Cai, B. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields. Microbiol. Res. 2015, 180, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Zhao, Q.; Zhao, J.; Xun, W.; Li, R.; Zhang, R.; Wu, H.; Shen, Q. Different Continuous Cropping Spans Significantly Affect Microbial Community Membership and Structure in a Vanilla-Grown Soil as Revealed by Deep Pyrosequencing. Microb. Ecol. 2015, 70, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Penton, C.R.; Lv, N.; Xue, C.; Yuan, X.; Ruan, Y.; Li, R.; Shen, Q. Banana Fusarium Wilt Disease Incidence Is Influenced by Shifts of Soil Microbial Communities Under Different Monoculture Spans. Microb Ecol. 2018, 75, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Karlsson, I.; Geisen, S.; Kowalchuk, G.; Jousset, A. Protists: Puppet masters of the rhizosphere microbiome. Trends Plant. Sci. 2019, 24, 165–176. [Google Scholar] [CrossRef]
- De Corato, U.; Patruno, L.; Avella, N.; Salimbeni, R.; Lacolla, G.; Cucci, G.; Crecchio, C. Soil management under tomato-wheat rotation increases the suppressive response against Fusarium wilt and tomato shoot growth by changing the microbial composition and chemical parameters. Appl. Soil. Ecol. 2020, 154, 10360. [Google Scholar] [CrossRef]
- Niu, J.; Rang, Z.; Zhang, C.; Chen, W.; Tian, F.; Yin, H.; Dai, L. The succession pattern of soil microbial communities and its relationship with tobacco bacterial wilt. BMC Microbiol. 2016, 16, 233. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.; Zhang, S.; Liu, X.; Jiang, Q.; Ding, W. Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field. Appl. Microbiol. Biotechnol. 2018, 102, 9781–9791. [Google Scholar] [CrossRef] [Green Version]
- Ciampi-Panno, L.; Fernandez, C.; Bustamante, P.; Andrade, N.; Ojeda, S.; Contreras, A. Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. Am. Potato J. 1989, 66, 315–332. [Google Scholar] [CrossRef]
- Saleem, M.; Hu, J.; Jousset, A. More Than the Sum of Its Parts: Microbiome Biodiversity as a Driver of Plant Growth and Soil Health. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 145–168. [Google Scholar] [CrossRef]
- Luan, F.G.; Zhang, L.L.; Lou, Y.Y.; Wang, L.; Liu, Y.N.; Zhang, H.Y. Analysis of microbial diversity and niche in rhizosphere soil of healthy and diseased cotton at the flowering stage in southern Xinjiang. Genet. Mol. Res. 2015, 14, 1602–1611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Du, B.-H.; Jin, Z.; Li, Z.; Song, H.; Ding, Y.Q. Analysis of bacterial communities in rhizosphere soil of healthy and diseased cotton (Gossypium sp.) at different plant growth stages. Plant. Soil 2011, 339, 447–455. [Google Scholar] [CrossRef]
- Wu, Z.; Hao, Z.; Zeng, Y.; Guo, L.; Huang, L.; Chen, B. Molecular characterization of microbial communities in the rhizosphere soils and roots of diseased and healthy Panax notoginseng. Antonie Van Leeuwenhoek 2015, 108, 1059–1074. [Google Scholar] [CrossRef] [PubMed]
- She, S.; Niu, J.; Zhang, C.; Xiao, Y.; Chen, W.; Dai, L.; Liu, X.; Yin, H. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system. Arch. Microbiol. 2017, 199, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xiao, Y.; Lv, F.; Hu, L.; Wei, L.; Yuan, Z.; Lin, H. Bacterial community structure and functional potential of rhizosphere soils as influenced by nitrogen addition and bacterial wilt disease under continuous sesame cropping. Appl. Soil Ecol. 2018, 125, 117–127. [Google Scholar] [CrossRef]
- Araujo, R.; Dunlap, C.; Barnett, S.; Barnett, S.; Franco, C.M.M. Decoding wheat endosphere–rhizosphere microbiomes in Rhizoctonia solani–infested soils challenged by Streptomyces biocontrol agents. Front. Plant. Sci. 2019, 10, 1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, J.H. Biological control in the phyllosphere. Annu. Rev. Phytopathol. 1992, 30, 603–635. [Google Scholar] [CrossRef] [PubMed]
- Bloemberg, G.V.; Lugtenberg, B.J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin Plant. Biol. 2001, 4, 343–350. [Google Scholar] [CrossRef]
- Rabelo de Faria, M.; Soares Costa, L.S.A.; Barros Chiaramonte, J.; Bettiol, W.; Mendes, R. The rhizosphere microbiome: Functions, dynamics, and role in plant protection. Trop. Plant Pathol. 2020. [Google Scholar] [CrossRef]
- Foster, R.C. The ultrastructure of the rhizoplane and rhizosphere. Annu. Rev. Phytopathol. 1986, 24, 211–234. [Google Scholar] [CrossRef]
- Gomes, N.C.M.; Heuer, H.; Schönfeld, J.; Costa, R.; Smalla, K. Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 2001, 232, 167–180. [Google Scholar] [CrossRef]
- Berg, G.; Roskot, N.; Steidle, A.; Eberl, L.; Zock, A.; Smalla, K. Plant dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl. Microbiol. Biotechnol. 2002, 68, 3328–3338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marilley, L.; Aragno, M. Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl. Soil Ecol. 2007, 13, 127–136. [Google Scholar] [CrossRef]
- Grunert, O.; Robles-Aguilar, A.A.; Hernandez-Sanabria, E.; Schrey, S.D.; Reheul, D.; Van Labeke, M.; Vlaeminck, S.E.; Vandekerckhove, T.G.L.; Mysara, M.; Monsieurs, P.; et al. Tomato plants rather than fertilizers drive microbial community structure in horticultural growing media. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Liesack, W.; Janssen, P.; Rainey, F.; Ward-Rainey, N.L.; Stackebrandt, E. Microbial diversity in soil: The need for a combined approach using molecular and cultivation techniques. In Modern Soil Microbiology; Trevors, J., Wellington, E., Elsas, J.D., Eds.; CRC Press: Florida, FL, USA, 1997. [Google Scholar]
- Grayston, S.J.; Wang, S.; Campbell, C.D.; Edwards, A.C. Selective influence of plant species on microbial diversity in the rhizosphere. Soil. Biol. Biochem. 1998, 30, 369–378. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [Green Version]
- Micallef, S.A.; Shiaris, M.P.; Colón-Carmona, A.; Colón-Carmona, A. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J. Exp. Bot. 2009, 60, 1729–1742. [Google Scholar] [CrossRef] [Green Version]
- Mendes, L.W.; Tsai, S.M.; Navarrete, A.A.; de Hollander, M.; van Veen, J.A.; Kuramae, E.E. Soil-Borne Microbiome: Linking Diversity to Function. Microb. Ecol. 2015, 70, 255–265. [Google Scholar] [CrossRef]
- Marques, J.M.; da Silva, T.F.; Vollu, R.E.; Blank, A.F.; Ding, G.C.; Seldin, L.; Smalla, K. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol. Ecol. 2014, 88, 424–435. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, T.; Friman, V.P.; Xu, Y.; Shen, Q.; Jousset, A. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Q.; Wang, F.; Zhang, J.; Chen, Y.; Zhang, C.; Liu, G.; Zhang, H.; Ma, C.; Zhang, J. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carríon, V.J.; Perez-Jaramillo, J.; Cordovez, V.; Tracanna, V.; de Hollander, M.; Ruiz-Buck, D.; Mendes, L.W.; van Ijcken, W.W.F.J.; Gomez-Exposito, R.; Elsayed, S.S.; et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 2019, 366, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Zorner, P.; Farmer, S.; Alibek, K. Quantifying crop rhizosphere microbiome ecology: The next frontier in enhancing the commercial utility of agricultural microbes. Ind. Biotechnol. 2018, 14, 116–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alabouvette, C. Fusarium wilt suppressive soils: An example of disease-suppressive soils. Australas. Plants Pathol. 1999, 28, 57. [Google Scholar] [CrossRef]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef]
- Crecchio, C.; Mimmo, T.; Bulgarelli, D.; Pertot, I.; Pii, Y.; Perazzolli, M.; Scagliola, M.; Cesco, S. Beneficial Soil Microbiome for Sustainable Agriculture Production. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing AG, Part of Springer Nature: New York, NY, USA, 2018; Volume 31, pp. 443–481. [Google Scholar] [CrossRef]
- Dini-Andreote, F. Endophytes: The second layer of plant defense. The plant microbiome at work. Trends Plant. Sci. 2020, 25, 1–3. [Google Scholar] [CrossRef]
- Schlaeppi, K.; Bulgarelli, D. Molecular Plant-Microbe Interactions. Trends Plant. Sci. 2015, 28, 212–217. [Google Scholar]
- Shi, W.; Li, M.; Wei, G.; Tian, R.; Li, C.; Wang, B.; Lin, R.; Shi, C.; Chi, X.; Zhou, B.; et al. The occurrence of potato common scab correlates with the community composition and function of the geocaulosphere soil microbiome. Microbiome 2019, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kyselková, M.; Moënne-Loccoz, Y. Pseudomonas and other microbes in disease-suppressive soils. In Organic Fertilisation, Soil Quality and Human Health, Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer, Business Media B.V.: Berlin, Germany, 2012; Volume 9, pp. 93–140. [Google Scholar]
- Brader, G.; Compant, S.; Mitter, B.; Trognitz, F.; Sessitsch, A. Metabolic potential of endophytic bacteria. Curr. Opin. Biotechnol. 2014, 27, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Uroz, S.; Oger, P.; Tisserand, E.; Cébron, A.; Turpault, M.-P.; Buée, M.; De Boer, W.; Leveau, J.H.J.; Frey-Klett, P. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ditt, R.F.; Nester, E.W.; Comai, L. Plant gene expression response to Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 2002, 98, 10954–10959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loudon, A.H.; Holland, J.A.; Umile, T.P.; Burzynski, E.A.; Minbiole, K.P.C.; Harris, R.N. Interactions between amphibian’s symbiotic bacteria cause the production of emergent antifungal metabolites. Front. Microbiol. 2014, 5, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claessen, D.; Rozen, D.E.; Kuipers, O.P.; Søgaard-Andersen, L.; van Wezel, G.P. Bacterial solutions to multicellularity: A tale of biofilms, filaments and fruiting bodies. Nat. Rev. Microbiol. 2014, 12, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Chellemi, D.O.; Graham, J.H.; Martin, K.J.; Rosskopf, E.N. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices. Microb. Ecol. 2008, 55, 293–310. [Google Scholar] [CrossRef]
- Hoitink, H.A.J.; Stone, A.G.; Han, D.Y. Suppression of plant disease by composts. Hort. Sci. 1997, 32, 184–187. [Google Scholar] [CrossRef]
- Zahn, G.; Wagai, R.; Yonemura, S. The effects of amoebal bacterivory on carbon and nitrogen dynamics depend on temperature and soil structure interactions. Soil Biol. Biochem. 2016, 94, 133–137. [Google Scholar] [CrossRef]
- Gupta, V.V.S.R.; Reddy, N.P.E. Response of soil microbial communities to stubble addition differs between disease suppressive and non-suppressive soils. In Proceedings of the Sixth Australian Soilborne Diseases Symposium, Twin Waters, Australia, 9–11 August 2010. [Google Scholar]
- Xu, L.; Ravnskov, S.; Larsen, J.; Nilsson, R.H.; Nicolaisen, M. Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biol. Biochem. 2012, 46, 26–32. [Google Scholar] [CrossRef]
- Li, B.; Ravnskov, S.; Xie, G.; Larsen, J. Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus. BioControl 2007, 52, 863–875. [Google Scholar] [CrossRef]
- Secilia, J.; Bagyaraj, D.J. Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can. J. Microbiol. 1987, 33, 1069–1073. [Google Scholar] [CrossRef]
- Barea, J.M.; Tobar, R.M.; Azcon-Aguilar, C. Effect of a genetically-modified Rhizobium meliloti inoculant on the development of arbuscular mycorrhizas, root morphology, nutrient uptake and biomass accumulation in Medicago sativa L. New Phytol. 1996, 134, 361–369. [Google Scholar] [CrossRef]
- Cardoso, I.M.; Kuyper, T.W. Mycorrhizas and tropical soil fertility. Agric. Ecosyst. Environ. 2006, 116, 72–84. [Google Scholar] [CrossRef]
- Meyer, J.R.; Linderman, R.G. Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol. Biochem. 1986, 18, 191–196. [Google Scholar] [CrossRef]
- Abdallah, R.Z.; Wegner, C.E.; Liesack, W. Community transcriptomics reveals drainage effects on paddy soil microbiome across all three domains of life. Soil Biol. Biochem. 2019, 132, 131–142. [Google Scholar] [CrossRef]
- Krištůfek, V.; Diviš, J.; Dostálková, I.; Kalčík, J. Accumulation of mineral elements in tuber periderm of potato cultivars differing in susceptibility to common scab. Potato Res. 2000, 43, 107–114. [Google Scholar] [CrossRef]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evolut. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Stackebrandt, E.; Goebel, B.M. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Evolut. Microbiol. 1994, 44, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Janda, J.M.; Abbott, S.L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J. Clin. Microbiol. 2007, 45, 2761–2764. [Google Scholar] [CrossRef] [Green Version]
- Lagier, J.C.; Hugon, P.; Khelaifia, S.; Fournier, P.E.; La Scola, B.; Raoult, D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin. Microbiol. Rev. 2015, 28, 237–264. [Google Scholar] [CrossRef] [Green Version]
- Lagier, J.-C.; Dubourg, G.; Million, M.; Cadoret, F.; Bilen, M.; Fenollar, F.; Levasseur, A.; Rolain, J.-M.; Fournier, P.-E.; Raoult, D. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 2018, 16, 540–550. [Google Scholar] [CrossRef] [Green Version]
- Rossi-Tamisier, M.; Benamar, S.; Raoult, D.; Fournier, P.E. Cautionary tale of using 16S rRNA gene sequence similarity values in identification of human-associated bacterial species. Int. J. Syst. Evolut. Microbiol. 2015, 65, 1929–1934. [Google Scholar] [CrossRef] [PubMed]
- Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, K.; Salehi, B.; Bevilacqua, A.; Rosaria Corbo, M.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M.; et al. Advances in chemical and biological methods to identify microorganisms from past to present. Microorganisms 2019, 7, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prates Júnior, P.; Moreira, B.C.; da Silva, M.C.S.; Veloso, T.G.R.; Stürmer, S.L.; Fernandes, R.B.A.; de Sá Mendonça, E.; Kasuya, M.C.M. Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE 2019, 14, e0209093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samson, R.A.; Houbraken, J.A.M.P.; Kuijpers, A.F.A.; Frank, J.M.; Frisvad, J.C. New ochratoxin A or Sclerotium producing species in Aspergillus section Nigri. Stud. Mycol. 2004, 50, 45–61. [Google Scholar]
- De Almeida, Â.B.; Corrêa, I.P.; Furuie, J.L.; De Farias Pires, T.; Do Rocio Dalzoto, P.; Pimentel, I.C. Inhibition of growth and ochratoxin A production in Aspergillus species by fungi isolated from coffee beans. Braz. J. Microbiol. 2019, 50, 1091–1098. [Google Scholar] [CrossRef]
- Amann, J. Die direkte zählung der wasserbakterien mittels des ultramikroskops (In German) (Direct counting of water bacteria by means of ultramicroscope). Central Blatt Bakteriol. (Central Sheet Bacteriol.) 1911, 29, 381–384. [Google Scholar]
- Ghosh, A.; Bhadury, P. Methods of assessment of microbial diversity in natural environments. In Microbial Diversity in the Genomic Era; Das, S., Dash, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–14. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.; van Aerle, R.; Barrientos, L.; Martinez-Urtaza, J. Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Comput. Struct. Biotechnol. J. 2020, 18, 296–305. [Google Scholar] [CrossRef]
- Cabrera-Rodríguez, A.; Trejo-Calzada, R.; García-De la Peña, C.; Arreola-Ávila, G.C.; Nava-Reyna, E.; Vaca-Paniagua, F.; Díaz-Velásquez, C.; Meza-Herrera, C.A. A metagenomic approach in the evaluation of the soil microbiome in coffee plantations under organic and conventional production in tropical agroecosystems. Emir. J. Food Agric. 2020, 32, 2633–2700. [Google Scholar]
- Veloso, T.G.R.; da Silva, M.d.C.S.; Cardoso, W.S.; Guarçoni, R.C.; Kasuya, M.C.M.; Pereira, L.L. Effects of environmental factors on microbiota of fruits and soil of Coffea arabica in Brazil. Sci. Rep. 2020, 10, 14692. [Google Scholar] [CrossRef]
- Lozupone, C.; Hamady, M.; Knight, R. UniFrac–An online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinform. 2006, 7, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, C.G.D.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapelle, E.; Mendes, R.; Bakker, P.A.H.; Raaijmakers, J.M. Fungal invasion of the rhizosphere microbiome. ISME J. 2016, 10, 265–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacquard, S.; Spaepen, S.; Garrido-Oter, R.; Schulze-Lefert, P. Interplay between innate immunity and the plant microbiota. Annu. Rev. Phytopathol. 2017, 55, 565–589. [Google Scholar] [CrossRef] [PubMed]
- Allison, S.D.; Martiny, J.B.H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 2008, 105, 11512–11519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeleder, R.D. Fungal plant pathogens and soil biodiversity. Can. J. Soil Sci. 2003, 83, 331–336. [Google Scholar] [CrossRef]
- Hoitink, H.A.J.; Boehm, M.J. Biocontrol within the context of soil microbial communities: A substrate dependent phenomenon. Annu. Rev. Phytopathol. 1999, 37, 427–446. [Google Scholar] [CrossRef]
- Garbeva, P.; Postma, J.; van Veen, J.A.; van Elsas, J.D. Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environ. Microbiol. 2006, 8, 233–246. [Google Scholar] [CrossRef]
- Adesina, M.F.; Lembke, A.; Costa, R.; Speksnijder, A.; Smalla, K. Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum: Site- dependent composition and diversity revealed. Soil Biol. Biochem. 2007, 39, 2818–2828. [Google Scholar] [CrossRef]
- Lemanceau, P.; Alabouvette, C. Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop. Prot. 1991, 10, 279–286. [Google Scholar] [CrossRef]
- Peralta, A.L.; Sun, Y.; McDaniel, M.D.; Lennon, J.T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 2018, 9, e02235. [Google Scholar] [CrossRef]
- Cha, J.Y.; Han, S.; Hong, H.J.; Cho, H.; Kim, D.; Kwon, Y.; Kwon, S.K.; Crusemann, M.; Lee, Y.B.; Kim, J.F.; et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 2016, 10, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wall, D.H.; Bardgett, R.D.; Behan-Pelletier, V.; Herrick, J.E.; Jones, T.H.; Ritz, K.; Six, J.; Strong, D.R.; van der Putten, W.H. Soil Ecology and Ecosystem Services; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Raaijmakers, J.M.; Paulitz, T.C.; Steinberg, C.; Alabouvette, C.; Moënne-Loccoz, Y. The rhizosphere: A playground and battlefield for soil borne pathogens and beneficial microorganisms. Plant Soil 2009, 321, 341–361. [Google Scholar] [CrossRef] [Green Version]
- Emmert, E.A.; Handelsman, J. Biocontrol of plant disease: A (Gram-) positive perspective. FEMS Microbiol. Lett. 1999, 171, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Berg, G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009, 84, 11–18. [Google Scholar] [CrossRef]
- Pérez-García, A.; Romero, D.; de Vicente, A. Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Curr. Opin. Microbiol. 2011, 22, 187–193. [Google Scholar] [CrossRef]
- Kumar, M.; Ashraf, S. Role of Trichoderma spp. as a biocontrol agent of fungal plant pathogens. In Probiotics and Plant Health; Kumar, V., Kumar, M., Sharma, S., Prasad, R., Eds.; Springer: Singapore, 2017; pp. 497–506. [Google Scholar]
- Arseneault, T.; Goyer, C.; Filion, M. Pseudomonas fluorescens LBUM223 increases potato yield and reduces common scab symptoms in the field. Phytopathology 2015, 105, 1311–1317. [Google Scholar] [CrossRef] [Green Version]
- Rais, A.; Jabeen, Z.; Shair, F.; Hafeez, F.Y.; Hassan, M.N. Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS ONE 2017, 12, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, A.; Latif, Z.; Zhang, S.; Zhu, J.; Zechel, D.L.; Bechthold, A. Biological control of potato common scab with rare isatropolone compound produced by plant growth promoting Streptomyces A1RT. Front. Microbiol. 2018, 9, 1126. [Google Scholar] [CrossRef] [Green Version]
- De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total. Environ. 2020, 738, 139840. [Google Scholar] [CrossRef] [PubMed]
- Jambhulkar, P.P.; Sharma, M.; Lakshman, D.; Sharma, P. Natural Mechanisms of Soil Suppressiveness Against Diseases Caused by Fusarium, Rhizoctonia, Pythium, and Phytophthora. In Organic Amendments and Soil Suppressiveness in Plant Disease Management; Meghvansi, M.K., Varma, A., Eds.; Springer: Cham, Switzerland, 2015; Volume 46, pp. 95–124. ISBN1 978-3-319-23074-0. ISBN2 978-3-319-23075-7. [Google Scholar] [CrossRef]
- Bonanomi, G.; Antignani, V.; Pane, C.; Scala, F. Suppression of soilborne fungal diseases with organic amendments. J. Plant. Pathol. 2007, 89, 311–324. [Google Scholar]
- Watve, M.G.; Tickoo, R.; Jog, M.M.; Bhole, B.D. How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 2001, 176, 386–390. [Google Scholar] [CrossRef]
- Lorang, J.M.; Liu, D.; Anderson, N.A.; Schottel, J.L. Identification of potato scab inducing and suppressive species of Streptomyces. Phytopathol. 1995, 85, 261–268. [Google Scholar] [CrossRef]
- Rosenzweig, N.; Tiedje, J.M.; Quensen, J.F.; Meng, Q.; Hao, J.J. Microbial communities associated with potato common scabsuppressive soil determined by pyrosequencing analyses. Plant. Dis. 2012, 96, 718–725. [Google Scholar] [CrossRef] [Green Version]
- Picard, C.; di Cello, F.; Ventura, M.; Fani, R.; Guckert, A. Frequency and biodiversity of 2,4-diacetylphloroglucinol producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 2000, 66, 948–955. [Google Scholar] [CrossRef] [Green Version]
- Di Cello, F.; Bevivino, A.; Chiarini, L.; Fani, R.; Paffetti, D.; Tabacchioni, S.; Dalmastri, C. Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl. Environ. Microbiol. 1997, 63, 4485–4493. [Google Scholar] [CrossRef] [Green Version]
- De Leij, F.A.A.M.; Lynch, J.M. The use of colony development for the characterization of bacterial communities in soil and on roots. FEMS Microbiol. Ecol. 1993, 27, 81–97. [Google Scholar] [CrossRef]
- De Leij, F.A.A.M.; Sutton, S.J.; Whipps, J.M.; Fenlon, J.S.; Lynch, J.M. Impact of field release of genetically modified Pseudomonas fluorescens on indigenous microbial population of wheat. Appl. Environ. Microbiol. 1995, 61, 3443–3453. [Google Scholar] [CrossRef] [Green Version]
- Nacamulli, C.B.; Dalmastri, C.; Tabacchioni, S.; Chiarini, L. Perturbation of maize rhizosphere microflora following seed bacterization with Burkholderia cepacia. MCI7. FEMS Microbiol. Ecol. 1997, 23, 183–193. [Google Scholar] [CrossRef]
- Boukaew, S.; Plubrukam, A.; Prasertsan, P. Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. BioControl 2013, 58, 471–482. [Google Scholar] [CrossRef]
- Cheng, Z.; McCann, S.; Faraone, N.; Clarke, J.-A.; Hudson, E.A.; Cloonan, K.; Hillier, N.K.; Tahlan, K. Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp. Microorganisms 2020, 8, 1767. [Google Scholar] [CrossRef] [PubMed]
- Van Wezel, G.P.; McKenzie, N.L.; Nodwell, J.R. Applying the genetics of secondary metabolism in model actinomycetes to the discovery of new antibiotics. Methods Enzymol. 2009, 458, 117–141. [Google Scholar] [PubMed]
- Schulz, S.; Dickschat, J.S. Bacterial volatiles: The smell of small organisms. Nat. Prod. Rep. 2007, 24, 814–842. [Google Scholar] [CrossRef]
- Schmidt, R.; Cordovez, V.; de Boer, W.; Raaijmakers, J.; Garbeva, P. Volatile affairs in microbial interactions. ISME J. 2015, 9, 2329–2335. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yuan, J.E.Y.; Raza, W.; Shen, Q.; Huang, Q. Effects of volatile organic compounds from Streptomyces albus NJZJSA2 on growth of two fungal pathogens. J. Basic Microbiol. 2015, 55, 1104–1117. [Google Scholar] [CrossRef]
- Fernando, W.G.D.; Ramarathnam, R.; Krishnamoorthy, A.S.; Savchuk, S.C. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol.Biochem. 2005, 37, 955–964. [Google Scholar] [CrossRef]
- Park, Y.S.; Dutta, S.; Ann, M.; Raaijmakers, J.M.; Park, K. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem. Biophys. Res. Commun. 2015, 461, 361–365. [Google Scholar] [CrossRef]
- Cordovez, V.; Carrion, V.J.; Etalo, D.W.; Mumm, R.; Zhu, H.; van Wezel, G.P.; Raaijmakers, J.M. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front. Microbiol. 2015, 6, 1081. [Google Scholar] [CrossRef] [Green Version]
- Toyota, K.; Kimura, M. Colonization of chlamydospores of Fusarium oxysporum f. sp. raphani by soil bacteria and their effects on germination. Soil Biol. Biochem. 1993, 25, 193–197. [Google Scholar] [CrossRef]
- Lockwood, J.L. Relation of energy stress to behaviour of soilborne plant pathogens and to disease development. In Biological Control of Soilborne Plant Pathogens; Hornby, D., Ed.; CAB International: Wallingford, UK, 1990; pp. 197–214. [Google Scholar]
- Fradkin, A.; Patrick, Z.A. Effect of matric potential, pH, temperature, and clay minerals on bacterial colonization of conidia of Cochliobolus sativus and on their survival in soils. Can. J. Plant. Pathol. 1985, 7, 19–27. [Google Scholar] [CrossRef]
- Costa, J.L.; Menge, J.A.; Casal, W.L. Biological control of Phytophthora root rot of avocado with microorganisms grown in organic mulches. Braz. J. Microbiol. 2000, 31, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Paulitz, T.; Baker, R. The formation of secondary sporangia by Pythium ultimum: The influence of organic amendments and Pythium nunn. Soil Biol. Biochem. 1988, 20, 151–156. [Google Scholar] [CrossRef]
- Paulitz, T.; Ahmad, J.S.; Baker, R. Integration of Pythium nunn and Trichoderma harzianum isolate T-95 for the biological control of Pythium damping-off of cucumber. Plant. Soil 1990, 121, 243–250. [Google Scholar] [CrossRef]
- Davis, J.R.; Huisman, O.C.; Westermann, D.T.; Hafez, S.L.; Everson, D.O.; Sorenson, L.H.; Schneider, A.T. Effects of green manures on verticillium wilt of potato. Phytopathology 1996, 86, 444–453. [Google Scholar] [CrossRef]
- Larkin, R.P.; Hopkins, D.L.; Martin, F.N. Suppression of fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease suppressive soil. Phytopathology 1996, 86, 812–819. [Google Scholar] [CrossRef]
- Pharand, B.; Carisse, O.; Benhamou, N. Cytological aspects of compost-mediated induced resistance against fusarium crown and root rot in tomato. Phytopathology 2002, 92, 424–438. [Google Scholar] [CrossRef]
- Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009, 68, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Compant, S.; Clément, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 2010, 42, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.P.; Gill, S.S.; Tuteja, N. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant. Signal. Behav. 2011, 6, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Bender, S.F.; Wagg, C.; van der Heijden, M.G.A. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evolut. 2016, 31, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Vannier, N.; Agler, M.; Hacquard, S. Microbiota-mediated disease resistance in plants. PLoS ONE 2019, 15, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janvier, C.; Villeneuve, F.; Alabouvette, C.; Edel-Hermann, V.; Mateille, T.; Steinberg, C. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biol. Biochem. 2007, 39, 1–23. [Google Scholar] [CrossRef]
- Qiu, Z.; Egidi, E.; Liu, H.; Kaur, S.; Singh, B.K. New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv. 2019, 37, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, C.; Edel-Hermann, V.; Alabouvette, C.; Lemanceau, P. Soil suppressiveness to plant diseases. In Modern Soil Microbiology, 2nd ed.; Elsas, J.D., Trevors, J.T., Jansson, J.K., Nannipieri, P., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 455–478. [Google Scholar]
- Mavrodi, D.V.; Mavrodi, O.V.; Elbourne, L.D.H.; Tetu, S.; Bonsall, R.F.; Parejko, J.; Yang, M.; Paulsen, I.T.; Weller, D.M.; Thomashow, L.S. Long-term irrigation affects the dynamics and activity of the wheat rhizosphere microbiome. Front. Plant. Sci. 2018, 9, 345. [Google Scholar] [CrossRef] [PubMed]
- El-Hassan, S.A.; Gowen, S.R. Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. J. Phytopathol. 2006, 154, 148–155. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, Z.; Ling, N.; Yuan, Y.; Zheng, X.; Shen, B.; Shen, Q. Bacillus subtilis SQR9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol. Fertil. Soils 2011, 47, 495–506. [Google Scholar] [CrossRef]
- Bettiol, W.; Ghini, R.; Mariano, R.L.R.; Michereff, S.J.; Mattos, L.P.V.; Alvarado, I.C.M. Supressividade a fitopatógenos habitantes do solo (In Portuguese) (Suppressivity to soil inhabitants phytopathogens). In Biocontrole de Doenças de Plantas: Uso e Perspectivas (Biocontrol of Plant Diseases: Use and Perspectives); Bettiol, W., Morandi, M.A.B., Eds.; Embrapa: Jaguariúna, Brazil, 2009; pp. 183–205. [Google Scholar]
- Mitsuboshi, M.; Kioka, Y.; Noguchi, K.; Asakawa, S. Evaluation of suppressiveness of soils exhibiting soil-borne disease suppression after long-term application of organic amendments by the cocultivation method of pathogenic Fusarium oxysporum and indigenous soil microorganisms. Microbes Environ. 2018, 33, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Elad, Y.; Cytryn, E.; Harel, Y.M.; Lew, B.; Graber, E.R. The biochar effect: Plant resistance to biotic stresses. Phytopathol. Mediterr. 2012, 50, 335–349. [Google Scholar]
- Jaiswal, A.K.; Elad, Y.; Cytryn, E.; Graber, E.R.; Frenkel, O. Activating biochar by manipulating the bacterial and fungal microbiome through pre-conditioning. New Phytol. 2018, 219, 363–377. [Google Scholar] [CrossRef] [Green Version]
- Larkin, R.P.; Griffin, T.S. Control of soilborne potato diseases using Brassica green manures. Crop. Prot. 2007, 26, 1067–1077. [Google Scholar] [CrossRef]
- Croteau, G.; Zibilske, L. Influence of paper mill processing residuals on saprophytic growth and disease caused by Rhizoctonia solani. Appl. Soil Ecol. 1998, 10, 103–115. [Google Scholar] [CrossRef]
- Klein, E.; Katan, J.; Gamliel, A. Soil suppressiveness to Fusarium disease following organic amendments and solarization. Plant. Dis. 2011, 95, 1116–1123. [Google Scholar] [CrossRef] [Green Version]
- Kanaan, H.; Medina, S.; Raviv, M. The effects of soil solarization and compost on soil suppressiveness against Fusarium oxysporum f. sp. melonis. Compost. Sci. Util. 2017, 25, 206–210. [Google Scholar] [CrossRef]
- Löbmann, M.T.; Vetukuri, R.R.; de Zinger, L.; Alsanius, B.W.; Grenville-Briggs, L.J.; Walter, A.J. The occurrence of pathogen suppressive soils in Sweden in relation to soil biota, soil properties, and farming practices. Appl. Soil Ecol. 2016, 107, 57–65. [Google Scholar] [CrossRef]
- Grünwald, N.J.; van Bruggen, A.H.C. Short-term cover crop decomposition in organic and conventional soils: Soil microbial and nutrient cycling indicator variables associated with different levels of soil suppressiveness to Pythium aphanidermatum. Eur. J. Plant. Pathol. 2000, 106, 51–65. [Google Scholar] [CrossRef]
- Knudsen, I.M.B.; Larsen, K.M.; Jensen, D.F.; Hockenhull, J. Potential suppressiveness of different field soils to Pythium damping-off of sugar beet. Appl. Soil Ecol. 2002, 21, 119–129. [Google Scholar] [CrossRef]
- Bailey, K.L.; Lazarovits, G. Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res. 2003, 72, 169–180. [Google Scholar] [CrossRef]
- Ghorbani, R.; Wilcockson, S.; Koocheki, A.; Leifert, C. Soil management for sustainable crop disease control: A review. Environ. Chem. Lett. 2008, 6, 149–162. [Google Scholar] [CrossRef]
- Postma, J.; Montanari, M.; van den Boogert, P.H.J.F. Microbial enrichment to enhance the disease suppressive activity. Eur. J. Soil Biol. 2003, 39, 157–163. [Google Scholar] [CrossRef]
- Campos, S.B.; Lisboa, B.B.; Camargo, F.A.O.; Bayer, C.; Sczyrba, A.; Dirksen, P.; Albersmeier, A.; Kalinowski, J.; Beneduzi, A.; Costa, P.B.; et al. Soil suppressiveness and its relations with the microbial community in a Brazilian subtropical agroecosystem under different management systems. Soil Biol. Biochem. 2016, 96, 191–197. [Google Scholar] [CrossRef]
- Van Agtmaal, M.; Straathof, A.L.; Termorshuizen, A.; Lievens, B.; Hoffland, E.; de Boer, W. Volatile mediated suppression of plant pathogens is related to soil properties and microbial community composition. Soil Biol. Biochem. 2018, 117, 164–174. [Google Scholar] [CrossRef]
- Manici, L.M.; Caputo, F.; Baruzzi, G. Additional experiences to elucidate the microbial component of soil suppressiveness towards strawberry black root rot complex. Ann. Appl. Biol. 2005, 146, 421–431. [Google Scholar] [CrossRef]
- Medvecky, B.A.; Ketterings, Q.M.; Nelson, E.B. Relationships among soilborne bean seedling diseases, Lablab purpureus L. and maize stover residue management, bean insect pests, and soil characteristics in Trans Nzoia district, Kenya. Appl. Soil Ecol. 2007, 35, 107–119. [Google Scholar] [CrossRef]
- Bonanomi, G.; Cesarano, G.; Antignani, V.; Di Maio, C.; De Filippis, F.; Scala, F. Conventional farming impairs Rhizoctonia solani disease suppression by disrupting soil food web. J. Phytopath. 2018, 166, 663–673. [Google Scholar] [CrossRef]
- Crowder, D.W.; Jabbour, R. Relationships between biodiversity and biological control in agroecosystems: Current status and future challenges. Biol. Control. 2014, 75, 8–17. [Google Scholar] [CrossRef]
- D’Hose, T.; Molendijk, L.; Van Vooren, L.; van den Berg, W.; Hoek, H.; Runia, W.; van Evert, F.; Berge, H.; Spiegel, H.; Sandèn, T.; et al. Responses of soil biota to non-inversion tillage and organic amendments: An analysis on European multiyear field experiments. Pedobiologia 2018, 66, 18–28. [Google Scholar] [CrossRef]
- Bonanomi, G.; Lorito, M.; Vinale, F.; Woo, S.L. Organic amendments, beneficial microbes, and soil microbiota: Toward a unified framework for disease suppression. Annu. Rev. Phytopathol. 2018, 56, 1–20. [Google Scholar] [CrossRef]
- Litterick, A.M.; Harrier, L.; Wallace, P.; Watson, C.A.; Wood, M. The role of un-composted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production—A review. Crit. Rev. Plant. Sci. 2004, 23, 453–479. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kobayashi, Y.O.; Someya, N.; Ikeda, S. Community analysis of root- and tuber-associated bacteria in field-grown potato plants harboring different resistance levels against common scab. Microbes Environ. 2015, 30, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Mavrodi, O.V.; Walter, N.; Elateek, S.; Taylor, C.G.; Okubara, P.A. Suppression of Rhizoctonia and Pythium root rot of wheat by new strains of Pseudomonas. Biol. Control. 2012, 62, 93–102. [Google Scholar] [CrossRef]
- Rudrappa, T.; Kirk, J.; Czymmek, P.W.; Paré, P.W.; Bais, H.P. Root-secreted malic acid recruits beneficial soil bacteria. Plant. Physiol. 2008, 148, 1547–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, S.J.; Richardson, A.E.; O’Callaghan, M.; De Angelis, K.M.; Jones, E.E.; Stewart, A.; Firestone, M.K.; Condron, L.M. Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol. Ecol. 2011, 77, 600–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minz, D.; Ofek, M.; Hadar, Y. Plant rhizosphere microbial communities. In The Prokaryotes—Prokaryotic Communities and Ecophysiology; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin, Germany, 2013; pp. 56–84. [Google Scholar]
- Karlen, D.L.; Varvel, G.E.; Bullock, D.G.; Cruse, R.M. Crop rotations for the 21st century. In Advances in Agronomy; Sparks, D.L., Ed.; Cambridge Academic Press: Cambridge, MA, USA, 1994; pp. 1–45. [Google Scholar]
- Liebman, M.; Dyck, E. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 1993, 3, 92–122. [Google Scholar] [CrossRef]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef]
- Venter, Z.S.; Jacobs, K.; Hawkins, H.J. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia 2016, 59, 215–223. [Google Scholar] [CrossRef]
- Bennett, A.J.; Bending, G.D.; Chandler, D.; Hilton, S.; Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biol. Rev. 2012, 87, 52–71. [Google Scholar] [CrossRef]
- McLaughlin, A.; Mineau, P. The impact of agricultural practices on biodiversity. Agric. Ecosyst. Environ. 1995, 55, 201–212. [Google Scholar] [CrossRef]
- Jousset, A.; Scheu, S.; Bonkowski, M. Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria. Funct. Ecol. 2008, 22, 714–719. [Google Scholar] [CrossRef]
- Jousset, A.; Rochat, L.; Scheu, S.; Bonkowski, M.; Keel, C. Predator-prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated Pseudomonas fluorescens. Appl. Environ. Microbiol. 2010, 76, 5263–5268. [Google Scholar] [CrossRef] [Green Version]
- Kwak, Y.S.; Weller, D.M. Take-all of wheat and natural disease suppression: A review. Plant. Pathol. J. 2013, 29, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhou, T.F.; Wang, Y.Y.; Chen, J.B.; He, X.H.; Li, C.Y.; Zhu, Y.Y. Effect of intercropping on disease management and yield of chili pepper and maize. Acta Hortic. Sin. 2006, 33, 995–1000. [Google Scholar]
- Michel, V.V.; Wang, J.F.; Midmore, D.J.; Hartman, G.L. Effects of intercropping and soil amendment with urea and calcium oxide on the incidence of bacterial wilt of tomato and survival of soil-borne Pseudomonas solanacearum in Taiwan. Plant. Pathol. 1997, 46, 600–610. [Google Scholar] [CrossRef]
- Abdel-Monaim, M.F.; Abo-Elyousr, K.A.M. Effect of preceding and intercropping crops on suppression of lentil damping-off and root rot disease in New Valley, Egypt. Crop. Prot. 2012, 32, 41–46. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, Y.; Qi, L.; Mei, X.; Liao, J.; Ding, X.; Deng, W.; Fan, L.; He, X.; Vivanco, J.M.; et al. Plant-Plant-Microbe Mechanisms Involved in Soil-Borne Disease Suppression on a Maize and Pepper Intercropping System. PLoS ONE 2014, 9, e115052. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; de Boer, W.; Zhang, Y.; Ding, C.; Zhang, T.; Wang, X. Suppression of soil-borne Fusarium pathogens of peanut by intercropping with the medicinal herb Atractylodes lancea. Soil Biol. Biochem. 2018, 116, 120–130. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- McDaniel, M.D.; Tiemann, L.K.; Grandy, A.S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 2014, 24, 560–570. [Google Scholar] [CrossRef] [Green Version]
- Finney, D.M.; Buyer, J.S.; Kaye, J.P. Living cover crops have immediate impacts on soil microbial community structure and function. J. Soil Water Cons. 2017, 72, 361–373. [Google Scholar] [CrossRef] [Green Version]
- Imperiali, N.; Dennert, F.; Schneider, J.; Laessle, T.; Velatta, C.; Fesselet, M.; Wyler, M.; Mascher, F.; Mavrodi, O.; Mavrodi, D.; et al. Relationships between root pathogen resistance, abundance and expression of Pseudomonas antimicrobial genes, and soil properties in representative Swiss agricultural soils. Front. Plant. Sci. 2017, 8, 427. [Google Scholar] [CrossRef] [Green Version]
- Neumann, G.; Romheld, V. The release of root exudates as affects by the plant physiological status. In The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface, 2nd ed.; Pinton, R., Varanini, Z., Nannipieri, P., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 23–72. [Google Scholar]
- Dijkstra, F.A.; Morgan, J.A.; Blumenthal, D.; Follett, R.F. Water limitation and plant inter-specific competition reduce rhizosphere-induced C decomposition and plant N uptake. Soil Biol. Biochem. 2010, 42, 1073–1082. [Google Scholar] [CrossRef]
- Ruano-Rosa, D.; Mercado-Blanco, J. Combining Biocontrol Agents and Organics Amendments to Manage Soil-Borne Phytopathogens. In Organic Amendments and Soil Suppressiveness in Plant Disease Management; Meghvansi, M.K., Varma, A., Eds.; Springer: Cham, Switzerland, 2015; Volume 46, pp. 457–478. ISBN1 978-3-319-23074-0. ISBN2 978-3-319-23075-7. [Google Scholar] [CrossRef]
- Postma, J.; Scheper, R.W.A.; Schilder, M.T. Effect of successive cauliflower plantings and Rhizoctonia solani AG2-1 inoculations on disease suppressiveness of a suppressive and a conducive soil. Soil Biol. Biochem. 2010, 42, 804–812. [Google Scholar] [CrossRef]
- Postma, J.; Schilder, M.T. Enhancement of soil suppressiveness against Rhizoctonia solani in sugar beet by organic amendments. Appl. Soil Ecol. 2015, 94, 72–79. [Google Scholar] [CrossRef]
- De Corato, U.; Viola, E.; Arcieri, G.; Valerio, V.; Zimbardi, F. Use of composted agro-energy co-products and agricultural residues against soil-borne pathogens in horticultural soil-less systems. Sci. Hortic. 2016, 210, 166–179. [Google Scholar] [CrossRef]
- De Corato, U.; Salimbeni, R.; De Pretis, A. Suppression of soil-borne pathogens in container media amended with on-farm composted agro-bioenergy wastes and residues under glasshouse condition. J. Plant. Dis. Prot. 2018, 125, 213–226. [Google Scholar] [CrossRef]
- De Corato, U.; Patruno, L.; Avella, N.; Lacolla, G.; Cucci, G. Composts from green sources show an increased suppressiveness to soil-borne plant pathogenic fungi: Relationships between physicochemical properties, disease suppression, and the microbiome. Crop. Prot. 2019, 124, 104870. [Google Scholar] [CrossRef]
- Lutz, S.; Thuerig, B.; Oberhaensli, T.; Mayerhofer, J.; Fuchs, J.G.; Widmer, F.; Freimoser, F.M.; Ahrens, C.H. Harnessing the Microbiomes of Suppressive Composts for Plant Protection: From Metagenomes to Beneficial Microorganisms and Reliable Diagnostics. Front. Microbiol. 2020, 11, 1810. [Google Scholar] [CrossRef]
- Scotti, R.; Mitchell, A.L.; Pane, C.; Finn, R.D.; Zaccardelli, M. Microbiota Characterization of Agricultural Green Waste-Based Suppressive Composts Using Omics and Classic Approaches. Agriculture 2020, 10, 61. [Google Scholar] [CrossRef] [Green Version]
- Yogev, A.; Raviv, M.; Hadar, Y.; Cohen, R.; Wolf, S.; Gil, L.; Katan, J. Induced resistance as a putative component of compost suppressiveness. Biol. Control. 2010, 54, 46–51. [Google Scholar] [CrossRef]
- Barnett, S.J.; Roget, D.K.; Ryder, M.H. Suppression of Rhizoctonia solani AG-8 induced disease on wheat by the interaction between Pantoea, Exiguobacterium, and Microbacteria. Aust. J. Soil Res. 2006, 44, 331–342. [Google Scholar] [CrossRef]
- De Corato, U.; Salimbeni, R.; De Pretis, A.; Patruno, L.; Avella, N.; Lacolla, G.; Cucci, G. Microbiota from ‘next-generation green compost’ improves suppressiveness of composted Municipal-Solid-Waste to soil-borne plant pathogens. Biol. Control. 2018, 124, 1–17. [Google Scholar] [CrossRef]
- Cotxarrera, L.; Trillas-Gay, M.I.; Steinberg, C.; Alabouvette, C. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol. Biochem. 2002, 34, 467–476. [Google Scholar] [CrossRef]
- Reuveni, R.; Raviv, M.; Krasnovsky, A.; Freiman, L.; Medina, S.; Bar, A.; Orion, D. Compost induces protection against Fusarium oxysporum in sweet basil. Crop. Prot. 2002, 21, 583–587. [Google Scholar] [CrossRef]
- Tilston, E.L.; Pitt, D.; Groenhof, A.C. Composted recycled organic matter suppresses soil-borne diseases of field crops. New Phytol. 2002, 154, 731–740. [Google Scholar] [CrossRef]
- Serra-Wittling, C.; Houot, S.; Alabouvette, C. Increased soil suppressiveness to Fusarium wilt of flax after addition of municipal solid waste compost. Soil Biol.Biochem. 1996, 28, 1207–1214. [Google Scholar] [CrossRef]
- El-Masry, M.H.; Khalil, A.I.; Hassouna, M.S.; Ibrahim, H.A.H. In situ and in vivo suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World J. Microbiol Biotech. 2002, 18, 551–558. [Google Scholar] [CrossRef]
- Smolinska, U. Survival of Sclerotium cepivorum sclerotia and Fusarium oxysporum chlamydospores in soil amended with cruciferous residues. J. Phytopathol. Phytopathol. Z. 2000, 148, 343–349. [Google Scholar] [CrossRef]
- Coventry, E.; Noble, R.; Whipps, J.M. Composting of Onion and Other Vegetable Wastes, with Particular Reference to Allium White Rot; Report No. CSA 4862; Horticulture Research International: Warwick, UK, 2001; pp. 1–95. [Google Scholar]
- McKellar, M.E.; Nelson, E.B. Compost-induced suppression of Pythium damping-off is mediated by fatty-acid metabolizing seed-colonizing microbial communities. Appl. Environ. Microbiol. 2003, 69, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, K.; Nelson, E.B. Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl. Environ. Microbiol. 2000, 66, 5340–5347. [Google Scholar] [CrossRef] [Green Version]
- Hoitink, H.A.J.; Krause, M.S.; Han, D.Y. Spectrum and mechanisms of plant disease control with composts. In Compost Utilization in Horticultural Cropping Systems; Stofella, P.J., Kahn, B.A., Eds.; Lewis Publishers: Florida, FL, USA, 2001; pp. 263–274. [Google Scholar]
- Cretoiu, M.S.; Korthals, G.W.; Visser, J.H.; van Elsas, J.D. Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field. Appl. Environ. Microbiol. 2013, 79, 5291–5301. [Google Scholar] [CrossRef] [Green Version]
- Hjort, K.; Bergstrom, M.; Adesina, M.F.; Jansson, J.K.; Smalla, K.; Sjoling, S. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiol. Ecol. 2010, 71, 197–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gooday, G.W. Physiology of microbial degradation of chitin and chitosan. Biodegradation 1990, 1, 177–190. [Google Scholar] [CrossRef]
- Manucharova, N.A.; Vlasenko, A.N.; Stepanov, A.L. Temperature as an autoecological factor of chitinolytic microbial complex formation in soils. Biol. Bull. 2007, 34, 163–169. [Google Scholar] [CrossRef]
- Kawase, T.; Yokokawa, S.; Saito, A.; Fuji, T.; Nikaidou, N.; Miyashita, K.; Watanabe, T. Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci. Biotechnol. Biochem. 2006, 70, 988–998. [Google Scholar] [CrossRef] [Green Version]
- Henis, Y.; Ghaffar, A.; Baker, R. Integrated control of Rhizoctonia solani damping-off of radish: Effect of successive plantings, PCNB and Trichoderma harzianum on pathogen and disease. Phytopathology 1978, 68, 900–907. [Google Scholar] [CrossRef] [Green Version]
- Henis, Y.; Ghaffar, A.; Baker, R. Factors affecting suppressiveness to Rhizoctonia solani in soil. Phytopathology 1979, 69, 1164–1169. [Google Scholar] [CrossRef]
- Blok, W.J.; Lamers, J.G.; Termorshuizen, A.J.; Bollen, G.J. Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 2000, 90, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Huang, X.; Zhao, J.; Zhang, J.; Caia, Z. Characterizing the key agents in a disease-suppressed soil managed by reductive soil disinfestation. Appl. Environ. Microbiol. 2019, 85, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.Q.; Liu, L.L.; Wen, T.; Zhang, J.B.; Shen, Q.R.; Cai, Z.C. Reductive soil disinfestations combined or not with Trichoderma for the treatment of a degraded and Rhizoctonia solani infested greenhouse soil. Sci. Hortic. 2016, 206, 51–61. [Google Scholar] [CrossRef]
- Huang, X.Q.; Liu, L.L.; Wen, T.; Zhang, J.B.; Wang, F.H.; Cai, Z.C. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. Appl. Microbiol. Biotechnol. 2016, 100, 5581–5593. [Google Scholar] [CrossRef]
- Huang, X.Q.; Cui, H.L.; Yang, L.; Lan, T.; Zhang, J.B.; Cai, Z.C. The microbial changes during the biological control of cucumber damping-off disease using biocontrol agents and reductive soil disinfestation. BioControl 2017, 62, 97–109. [Google Scholar] [CrossRef]
- Strauss, S.L.; Greenhut, R.F.; McClean, A.E.; Kluepfel, D.A. Effect of anaerobic soil disinfestation on the bacterial community and key soilborne phytopathogenic agents under walnut tree-crop nursery conditions. Plant. Soil 2017, 415, 493–506. [Google Scholar] [CrossRef]
- Butler, D.M.; Kokalis-Burelle, N.; Albano, J.P.; McCollum, T.G.; Muramoto, J.; Shennan, C.; Rosskopf, E.N. Anaerobic soil disinfestation (ASD) combined with soil solarization as a methyl bromide alternative: Vegetable crop performance and soil nutrient dynamics. Plant. Soil 2014, 378, 365–381. [Google Scholar] [CrossRef]
- Momma, N.; Kobara, Y.; Uematsu, S.; Kita, N.; Shinmura, A. Development of biological soil disinfestations in Japan. Appl. Microbiol. Biotechnol. 2013, 97, 3801–3809. [Google Scholar] [CrossRef] [PubMed]
- De Corato, U.; Pane, C.; Bruno, G.L.; Cancellara, F.A.; Zaccardelli, M. Co-products from a biofuel production chain in crop disease management: A review. Crop. Prot. 2015, 68, 12–26. [Google Scholar] [CrossRef]
- Motisi, N.; Doré, T.; Lucas, P.; Montfort, F. Dealing with the variability in biofumigation efficacy through an epidemiological framework. Soil Biol. Biochem. 2010, 42, 2044–2057. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, N.; Shen, Z.; Zhu, C.; Li, R.; Falcao-Salles, J.; Shen, Q. Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease. Appl. Soil Ecol. 2020, 147, 103364. [Google Scholar] [CrossRef]
- Suárez-Eiroa, B.; Fernández, E.; Méndez-Martínez, G.; Soto-Oñate, D. Operational principles of circular economy for sustainable development: Linking theory and practice. J. Clean Prod. 2019, 214, 952–961. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- MacArthur, E. Delivering the Circular Economy: A Toolkit for Policymakers; Ellen MacArthur Foundation: Cowes, UK, 2015; Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_PolicymakerToolkit.pdf (accessed on 15 April 2020).
- Toop, T.A.; Ward, S.; Oldfield, T.; Hull, M.; Kirby, M.E.; Theodorou, M.K. AgroCycle—Developing a circular economy in agriculture. Energy Proced. 2017, 123, 76–80. [Google Scholar] [CrossRef]
- Muscio, A.; Sisto, R. Are Agri-Food Systems Really Switching to a Circular Economy Model? Implications for European Research and Innovation Policy. Sustainability 2020, 12, 5554. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; García-Arca, D.; López-Felices, B. Identification of Opportunities for Applying the Circular Economy to Intensive Agriculture in Almería (South-East Spain). Agronomy 2020, 10, 1499. [Google Scholar] [CrossRef]
- Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and vegetable waste management: Conventional and emerging approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef] [PubMed]
- De Corato, U.; De Bari, I.; Viola, E.; Pugliese, M. Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review. Renew. Sustain. Energ. Rev. 2018, 88, 326–346. [Google Scholar] [CrossRef]
- Bosco, M.J.; Bisen, K.; Keswani, C.; Singh, H.B. Biological management of Fusarium wilt of tomato using biofortified vermicompost. Mycosphere 2017, 8, 1–16. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Hieu, N.C.; Hung, N.V.; Thao, H.T.B.; Keswani, C.; Toan, P.V.; Hoat, T.X. Biological control of fusarium root rot of Indian mulberry (Morinda officinalis How.) with consortia of agriculturally important microorganisms in Vietnam. Chem. Biol. Technol. Agric. 2019, 6, 27. [Google Scholar] [CrossRef]
- Ram, R.M.; Keswani, C.; Bisen, K.; Tripathi, R.; Singh, S.P.; Singh, H.B. Biocontrol Technology: Eco-Friendly Approaches for Sustainable Agriculture. In Omics Technologies and Bio-Engineering: Towards Improving Quality of Life; Brah, D., Azevedo, V., Eds.; London Academic Press: London, UK, 2018; Volume 2, pp. 177–190. [Google Scholar]
- Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. Recycling of Organic Wastes through Composting: Process Performance and Compost Application in Agriculture. Agronomy 2020, 10, 1838. [Google Scholar] [CrossRef]
- Pane, C.; Celano, G.; Piccolo, A.; Villecco, D.; Spaccini, R.; Palese, A.M.; Zaccardelli, M. Effects of on-farm composted tomato residues on soil biological activity and yields in a tomato cropping system. Chem. Biol. Technol. Agric. 2015, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Blaya, J.; Frutos, C.; Marhuenda, J.; Pascual, A.; Ros, M. Microbiota characterization of compost using omics approaches opens new perspectives for Phytophthora root rot control. PLoS ONE 2016, 11, 0158048. [Google Scholar] [CrossRef] [Green Version]
- Chilosi, G.; Aleandri, M.P.; Bruni, N.; Tomassini, A.; Torresi, V.; Muganu, M.; Paolocci, M.; Vettraino, A.M.; Vannini, A. Assessment of suitability and suppressiveness of on-farm green compost as a substitute of peat in the production of lavender plants. Biocontrol Sci. Tech. 2017, 27, 539–555. [Google Scholar] [CrossRef]
- Pane, C.; Sorrentino, R.; Scotti, R.; Molisso, M.; Di Matteo, A.; Celano, G.; Zaccardelli, M. Alpha and Beta-diversity of Microbial Communities Associated to Plant Disease Suppressive Functions of On-farm Green Composts. Agriculture 2020, 10, 113. [Google Scholar] [CrossRef] [Green Version]
- Bellini, A.; Ferrocino, I.; Cucu, M.A.; Pugliese, M.; Garibaldi, A.; Gullino, M.L. A Compost Treatment Acts as a Suppressive Agent in Phytophthora capsici–Cucurbita pepo Pathosystem by Modifying the Rhizosphere Microbiota. Front. Plant. Sci. 2020, 11, 885. [Google Scholar] [CrossRef] [PubMed]
- Chilosi, G.; Aleandri, M.P.; Luccioli, E.; Stazi, S.R.; Marabottini, R.; Morales-Rodríguez, C.; Vettraino, A.M.; Vannini, A. Suppression of soil-borne plant pathogens in growing media amended with espresso spent coffee grounds as a carrier of Trichoderma spp. Sci. Hortic. 2020, 259, 108666. [Google Scholar] [CrossRef]
- Tao, C.; Li, R.; Xiong, W.; Shen, Z.; Liu, S.; Wang, B.; Ruan, Y.; Geisen, S.; Shen, Q.; Kowalchuk, G.A. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome 2020, 8, 137. [Google Scholar] [CrossRef] [PubMed]
- Avilés, M.; Borrero, C. Identifying characteristics of V. dahliae wilt suppressiveness in olive mill composts. Plant. Dis. 2017, 101, 1568–1577. [Google Scholar] [CrossRef] [Green Version]
- Kanaan, H.; Hadar, Y.; Medina, S.; Krasnovsky, A.; Mordechai-Lebiush, S.; Tsror, L.; Katan, J.; Raviv, M. Effect of compost properties on progress rate of Verticillium dahliae attack on eggplant (Solanum melongena L.). Compost. Sci. Util. 2018, 26, 71–78. [Google Scholar] [CrossRef]
- Antoniou, A.; Tsolakidou, M.D.; Stringlis, I.A.; Pantelides, I.S. Rhizosphere microbiome recruited from a suppressive compost improves plant fitness and increases protection against vascular wilt pathogens of tomato. Front. Plant. Sci. 2017, 8, 2022. [Google Scholar] [CrossRef] [Green Version]
- Tubeileh, A.M.; Stephenson, G.T. Soil amendment by composted plant wastes reduces the Verticillium dahliae abundance and changes soil chemical properties in a bell pepper cropping system. Curr. Plant. Biol. 2020, 22, 100148. [Google Scholar] [CrossRef]
- Cucu, M.A.; Gilardi, G.; Pugliese, M.; Ferrocino, I.; Gullino, M.L. Effects of biocontrol agents and compost against the Phytophthora capsici of zucchini and their impact on the rhizosphere microbiota. Appl. Soil Ecol. 2020, 154, 103659. [Google Scholar] [CrossRef]
- Ren, G.; Ma, Y.; Guo, D.; Gentry, T.J.; Hu, P.; Pierson, E.A.; Gu, M. Soil Bacterial Community Was Changed after Brassicaceous Seed Meal Application for Suppression of Fusarium Wilt on Pepper. Front. Microbiol. 2018, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Cai, X.; Gong, J.; Xu, T.; Ding, G.; Li, J. Long-term organic farming manipulated rhizospheric microbiome and bacillus antagonism against pepper blight (Phytophthora capsici). Front. Microbiol. 2019, 10, 342. [Google Scholar] [CrossRef] [PubMed]
Amendment | Feedstock | Pathogen | Crop | Disease | Next-Generation Sequencing | Reference |
---|---|---|---|---|---|---|
On-farm green compost |
| Fusarium oxysporum f. sp. lycopersici | Tomato | Fusarium wilt | Amplicon sequencing of the bacterial 16S rDNA gene and the fungal ITS1 and ITS2 regions of the ITS rDNA gene using Illumina MiSeq platform. | [343] |
On-farm green compost |
| Phytophthora nicotianae | Pepper | Phytophthora blight | Amplicon sequencing of the bacterial 16S rRNA gene and the fungal ITS1 and ITS2 regions of the ITS rRNA gene using Ion Torrent PGM platform. | [344] |
On-farm green compost |
| Sclerotinia sclerotiorum | Lettuce | Sclerotinia root rot | Amplicon sequencing of the ITS1 and ITS2 gene regions adjacent to 5.8 S rDNA gene for fungi Aspergillus, Penicillium and Trichoderma using real-time qPCR assay. | [295] |
On-farm green compost | Green nursery compost from residues of pruning of woody plants and grass clippings during the nursery activities. | Rhizoctonia solani | Lavender | Rhizoctonia damping-off |
| [345] |
Phytophthora nicotianae | Lavender | Phytophthora, damping-off | ||||
Sclerotinia sclerotiorum | Lavender | Sclerotinia root rot | ||||
Green compost | Composted olive mill. | Verticillium dahliae | Cotton | Verticillium wilt | Procedure not published. | [350] |
Green compost | Composted tomato waste. | Verticillium dahliae | Eggplant | Verticillium wilt | Procedure not published. | [351] |
Tailoring green compost | Rhizosphere microbiome recruited from a suppressive compost improves plant fitness and increases protection. | Fusarium oxysporum f. sp. Lycopersici | Tomato | Fusarium wilt | Targeting the fungal rDNA ITS gene region and the bacterial 16S rDNA gene by terminal restriction fragments length polymorphisms. | [352] |
Verticillium dahliae | Tomato | Verticillium wilt | ||||
On-farm green compost |
| Verticillium dahliae | Eggplant | Verticillium wilt |
| [297] |
Rhizoctonia solani | Bean | Rhizoctonia damping-off | ||||
Phytophthora cinnamomi | Azalea | Phytophthora damping-off | ||||
Phytophthora nicotianae | Tomato | Phytophthora damping-off | ||||
Pythium ultimum | Cucumber | Pythium damping-off | ||||
Pythium irregulare | Zucchini | Pythium damping-off | ||||
Industrial/On-farm green compost |
| Fusarium oxysporum f. sp. lycopersici | Tomato | Fusarium wilt | Amplicon sequencing of the bacterial 16S rDNA gene and the fungal ITS1 and ITS2 regions of the ITS rDNA gene using real-time qPCR assay. | [297] |
Fusarium oxysporum f. sp. melonis | Melon | Fusarium wilt | ||||
Fusarium oxysporum f. sp. basilici | Basil | Fusarium wilt | ||||
On-farm green compost |
| Verticillium dahliae | Bell pepper | Verticillium wilt | Procedure not published. | [353] |
On-farm green compost |
| Rhizoctonia solani | Cress | Rhizoctonia damping-off | Targeting the 16S rRNA gene for bacteria by terminal restriction fragments length polymorphisms. | [346] |
Sclerotinia minor | Cress | Sclerotinia root rot | ||||
On-farm green compost |
| Rhizoctonia solani | Cress | Rhizoctonia damping-off | Amplicon sequencing of the bacterial hypervariable V3-V4 regions of the 16S rRNA gene and the fungal NS1 and NS2 region of the 18S rRNA gene using Illumina MiSeq platform. | [299] |
Sclerotinia minor | Cress | Sclerotinia root rot | ||||
On-farm green compost |
| Phytophthora capsici | Summer squash | Root, fruit, foliar and crown rot | Mycobiota evaluated amplifying the D1 domain of the 26S gene using Illumina MiSeq platform. | [347] |
Bio-organic fertilizer | Composted spent espresso coffee grounds inoculated with bio-inoculant of Trichoderma atroviridae, Trichoderma citrinoviride and Aspergillus spp. | Sclerotinia sclerotiorum | Cress | Sclerotinia root rot | Procedure not published. | [348] |
Phytophthora nicotianae | Cress | Phytophthora damping-off | ||||
Bio-organic fertilizer | Organic fertilizer inoculated with bio-inoculant of Bacillus amyloliquefaciens W19. | Fusarium oxysporum f. sp. cubense | Banana | Fusarium wilt | Amplicon sequencing of the hypervariable V4 region of the 16S rRNA gene and the ITS gene region of fungal ribosomal DNA with the universal primer pairs (520F/802R for bacteria and ITS1F/ITS2R for fungi) using Illumina MiSeq PE 250 platform. | [349] |
Bio-organic fertilizer | Effects of biocontrol agents and compost against the Phytophthora capsici of zucchini and their impact on the rhizosphere microbiota. | Phytophthora capsici | Zucchini | Phytophthora blight | Amplicon sequencing of the V3–V4 region of the 16S rRNA gene (for bacteria) and the D1 domain of the 26S gene (for fungi) using Illumina Metagenomic sequencing library. | [354] |
Seed meal from oleaginous crop | Change of the soil bacterial community by Brassicaceae seed meal application from Camelina sativa, Brassica juncea and Sinapis alba for suppression of fusarium wilt on pepper. | Fusarium oxysporum f. sp. capsici | Pepper | Fusarium wilt | Amplicon sequencing of the 16S rRNA gene using Roche 454-pyrosequencing with the universal primer pair 27F and 519R. | [355] |
Practice | Topic of the Research | Pathogen | Crop | Disease | Next-Generation Sequencing | Reference |
---|---|---|---|---|---|---|
Intercropping peanut with medicinal herbs | Peanut intercropped with Atractylodes lancea induces suppression against soil-borne Fusarium pathogens. | Fusarium oxysporum | Peanut | Fusarium wilt | Amplicon sequencing of the hypervariable V4 region of the bacterial 16S rRNA gene and the fungal ITS1 gene region using Roche 454-pyrosequencing. | [285] |
Long-term application of organic waste | Long-term organic farming manipulates rhizospheric microbiome and Bacillus antagonism in organic farming system. | Phytophthora capsici | Pepper | Phytophthora blight | Amplicon sequencing of the bacterial 16S rRNA gene using Illumina HiSeq 2500 platform. | [356] |
Soil bio-fumigation combined with compost-fortified application | Rhizosphere bacteria assembles molecules derived from fumigation and organic amendment triggers suppression to Ralstonia bacterial wilt. | Ralstonia solanacearum | Tomato | Bacterial wilt | Amplicon sequencing of the V4 region of the bacterial 16S rRNA gene and the fungal ITS1 gene region using Illumina MiSeq platform. | [330] |
Crop rotation cherry tomato with durum wheat | Soil management under tomato–wheat rotation increases the suppressive response against fusarium wilt and tomato shoot growth by changing the microbial composition and chemical parameters. | Fusarium oxysporum f. sp. lycopersici | Tomato | Fusarium wilt | Amplicon sequencing targeting the bacterial 16S rRNA gene and the ITS1 gene region, respectively, with universal primer pairs (27F/907R for bacteria and ITS1F/ITS4R for fungi) using Illumina MiSeq platform. | [113] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Corato, U. RETRACTED: Soil Microbiome Manipulation Gives New Insights in Plant Disease-Suppressive Soils from the Perspective of a Circular Economy: A Critical Review. Sustainability 2021, 13, 10. https://doi.org/10.3390/su13010010
De Corato U. RETRACTED: Soil Microbiome Manipulation Gives New Insights in Plant Disease-Suppressive Soils from the Perspective of a Circular Economy: A Critical Review. Sustainability. 2021; 13(1):10. https://doi.org/10.3390/su13010010
Chicago/Turabian StyleDe Corato, Ugo. 2021. "RETRACTED: Soil Microbiome Manipulation Gives New Insights in Plant Disease-Suppressive Soils from the Perspective of a Circular Economy: A Critical Review" Sustainability 13, no. 1: 10. https://doi.org/10.3390/su13010010
APA StyleDe Corato, U. (2021). RETRACTED: Soil Microbiome Manipulation Gives New Insights in Plant Disease-Suppressive Soils from the Perspective of a Circular Economy: A Critical Review. Sustainability, 13(1), 10. https://doi.org/10.3390/su13010010