Using a Text Mining Approach to Hear Voices of Customers from Social Media toward the Fast-Food Restaurant Industry
Abstract
:1. Introduction
2. Literature Review
2.1. Online Reviews in Social Media Websites
2.2. Leveraging Customer Satisfaction through Online Reviews
2.3. Data Mining
2.3.1. Feature Selection with LASSO
2.3.2. Decision Trees
2.4. Text Mining
3. Presented Text Mining Scheme
3.1. Data Collection
3.2. Data Preprocessing
3.3. Feature Selection by Using LASSO
3.4. Performance Evaluation of Selected Features
- Step 1. Defined input and output variables.
- Step 2. Separate training and test data sets.
- Step 3. Use the C5.0 algorithm to establish a decision tree.
- Step 4. Establish the initial rule tree.
- Step 5. Prune this rule tree to make it more readable.
- Step 6. Choose the best performing rule tree.
3.5. Defining the Key Factors
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reuters. McDonald’s Global Sales Suffer as COVID-19 Lockdowns Limit Operations. 2020. Available online: https://www.reuters.com/article/us-mcdonald-s-corp-results/mcdonalds-global-sales-suffer-as-covid-19-lockdowns-limit-operations-idUSKCN24T1FO (accessed on 15 September 2020).
- Forbes. Fast Food Breakfast Faces a Long Recovery from the COVID-19 Crisis. 2020. Available online: https://www.forbes.com/sites/aliciakelso/2020/06/24/fast-food-breakfast-faces-a-long-recovery-from-the-covid-19-crisis/#cd75fc739d44 (accessed on 15 September 2020).
- McKinsey & Company. Delivering When It Matters: Quick-Service Restaurants in Coronavirus Times. 2020. Available online: https://www.mckinsey.com/industries/retail/our-insights/delivering-when-it-matters-quick-service-restaurants-in-coronavirus-times (accessed on 15 September 2020).
- OECD. Food Supply Chains and COVID-19: Impacts and Policy Lessons. 2020. Available online: https://read.oecd-ilibrary.org/view/?ref=134_134305-ybqvdf0kg9&title=Food-Supply-Chains-and-COVID-19-Impacts-and-policy-lessons (accessed on 15 September 2020).
- World Economic Forum. China Offers Insight into What Restaurants Could Look Like Post-COVID. 2020. Available online: https://www.weforum.org/agenda/2020/07/how-china-s-restaurants-are-adapting-to-a-post-coronavirus-world/ (accessed on 15 September 2020).
- Namin, A. Revisiting customers’ perception of service quality in fast food restaurants. J. Retail. Consum. Serv. 2017, 34, 70–81. [Google Scholar] [CrossRef]
- Uddin, M.B. Customer loyalty in the fast food restaurants of Bangladesh. Br. Food J. 2019, 121, 2791–2808. [Google Scholar] [CrossRef]
- Chang, J.-R.; Chen, M.-Y.; Chen, L.-S.; Chien, W.-T. Recognizing Important Factors of Influencing Trust in O2O Models: An Example of OpenTable. Soft Comput. 2020, 24, 7907–7923. [Google Scholar] [CrossRef]
- Cenni, I.; Goethals, P. Negative hotel reviews on TripAdvisor: A cross-linguistic analysis. Discourse Context Media 2017, 16, 22–30. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, T.; Li, W.; Geng, S.; Hussain, S. Who should pay for online reviews? Design of an online user feedback mechanism. Electron. Commer. Res. Appl. 2017, 23, 38–44. [Google Scholar] [CrossRef]
- Sohail, S.S.; Siddiqui, J.; Ali, R. Feature extraction and analysis of online reviews for the recommendation of books using opinion mining technique. Perspect. Sci. 2016, 8, 754–756. [Google Scholar] [CrossRef] [Green Version]
- Bhole, B.; Hanna, B. The effectiveness of online reviews in the presence of self-selection bias. Simul. Model. Pract. Theory 2017, 77, 108–123. [Google Scholar] [CrossRef]
- Vásquez, C. Complaints online: The case of TripAdvisor. J. Pragmat. 2011, 43, 1707–1717. [Google Scholar] [CrossRef] [Green Version]
- Amaro, S.; Duarte, P.; Henriques, C. Travelers’ use of social media: A clustering approach. Ann. Tour. Res. 2016, 59, 1–15. [Google Scholar] [CrossRef]
- Abubakar, A.M.; Ilkan, M.; Al-Tal, R.M.; Eluwole, K.K. eWOM, revisit intention, destination trust and gender. J. Hosp. Tour. Manag. 2017, 31, 220–227. [Google Scholar] [CrossRef]
- Bronner, F.; De Hoog, R. Vacationers and eWOM: Who posts, and why, where, and what? J. Travel Res. 2011, 50, 15–26. [Google Scholar] [CrossRef]
- Erkan, I.; Evans, C. The influence of eWOM in social media on consumers’ purchase intentions: An extended approach to information adoption. Comput. Hum. Behav. 2016, 61, 47–55. [Google Scholar] [CrossRef]
- Xu, X. Does traveler satisfaction differ in various travel group compositions? Evidence from online reviews. Int. J. Contemp. Hosp. Manag. 2018, 30, 1663–1685. [Google Scholar] [CrossRef]
- Bilgihan, A.; Seo, S.; Choi, J. Identifying restaurant satisfiers and dissatisfiers: Suggestions from online reviews. J. Hosp. Mark. Manag. 2018, 27, 601–625. [Google Scholar] [CrossRef]
- Banerjee, S.; Chua, A.Y.K. In search of patterns among travellers’ hotel ratings in TripAdvisor. Tour. Manag. 2016, 53, 125–131. [Google Scholar] [CrossRef]
- Schuckert, M.; Liu, X.; Law, R. Hospitality and Tourism Online Reviews: Recent Trends and Future Directions. J. Travel Tour. Mark. 2015, 32, 608–621. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, X.; Wang, M. Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. Int. J. Hosp. Manag. 2019, 76, 111–121. [Google Scholar] [CrossRef]
- Berezina, K.; Bilgihan, A.; Cobanoglu, C.; Okumus, F. Understanding Satisfied and Dissatisfied Hotel Customers: Text Mining of Online Hotel Reviews. J. Hosp. Mark. Manag. 2016, 25, 1–24. [Google Scholar] [CrossRef]
- Korfiatis, N.; Stamolampros, P.; Kourouthanassis, P.; Sagiadinos, V. Measuring service quality from unstructured data: A topic modeling application on airline passengers’ online reviews. Expert Syst. Appl. 2019, 116, 472–486. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Ortega, B. Don’t believe strangers: Online consumer reviews and the role of social psychological distance. Inf. Manag. 2018, 55, 31–50. [Google Scholar] [CrossRef]
- Li Hengyun Zhang, Z.; Meng, F.; Janakiraman, R. Is peer evaluation of consumer online reviews socially embedded?—An examination combining reviewer’s social network and social identity. Int. J. Hosp. Manag. 2017, 67, 143–153. [Google Scholar] [CrossRef]
- Li, H.; Xie, K.L.; Zhang, Z. The effects of consumer experience and disconfirmation on the timing of online review: Field evidence from the restaurant business. Int. J. Hosp. Manag. 2020, 84, 1023442. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Meng, F.; Qiao, S. Gender difference in restaurant online booking timing and the moderating effects of sell-out risk and information type. J. Electron. Commer. Res. 2018, 19, 266–279. [Google Scholar]
- Khorsand, R.; Rafiee, M.; Kayvanfar, V. Insights into TripAdvisor’s online reviews: The case of Tehran’s hotels. Tour. Manag. Perspect. 2020, 34, 100673. [Google Scholar] [CrossRef]
- EHL. Online Customer Reviews: Their Impact on Restaurants. 2020. Available online: https://hospitalityinsights.ehl.edu/online-customer-reviews-restaurants (accessed on 15 September 2020).
- Šerić, M.; Praničević, D. Consumer-Generated Reviews on Social Media and Brand Relationship Outcomes in the Fast-Food Chain Industry. J. Hosp. Mark. Manag. 2018, 27, 218–238. [Google Scholar] [CrossRef]
- Chang, J.-R.; Chen, M.-Y.; Chen, L.-S.; Tseng, S.-C. Why Customers Don’t Revisit in Tourism and Hospitality Industry? IEEE Access 2019, 7, 146588–146606. [Google Scholar] [CrossRef]
- Rahrovi Dastjerdi, A.; Foroghi, D.; Kiani, G.H. Detecting manager’s fraud risk using text analysis: Evidence from Iran. J. Appl. Account. Res. 2019, 20, 154–171. [Google Scholar] [CrossRef]
- Tian, S.; Yu, Y.; Guo, H. Variable selection and corporate bankruptcy forecasts. J. Bank. Financ. 2015, 52, 89–100. [Google Scholar] [CrossRef]
- Sermpinis, G.; Tsoukas, S.; Zhang, P. Modelling market implied ratings using LASSO variable selection techniques. J. Empir. Financ. 2018, 48, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Wang, H.; Kochenberger, G. Distressed Chinese firm prediction with discretized data. Manag. Decis. 2017, 55, 786–807. [Google Scholar] [CrossRef]
- Sant’Anna, L.R.; Caldeira, J.F.; Filomena, T.P. LASSO-based index tracking and statistical arbitrage long-short strategies. N. Am. J. Econ. Financ. 2020, 51, 101055. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S. Explaining customer ratings and recommendations by combining qualitative and quantitative user generated contents. Decis. Support Syst. 2019, 119, 14–22. [Google Scholar] [CrossRef]
- Liu, Z.; Park, S. What makes a useful online review? Implication for travel product websites. Tour. Manag. 2015, 47, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Li, Y. The antecedents of customer satisfaction and dissatisfaction toward various types of hotels: A text mining approach. Int. J. Hosp. Manag. 2016, 55, 57–69. [Google Scholar] [CrossRef]
- Ibrahim, B.; Aljarah, A. Dataset of relationships among social media marketing activities, brand loyalty, revisit intention. Evidence from the hospitality industry in Northern Cyprus. Data Brief 2018, 21, 1823–1828. [Google Scholar] [CrossRef]
- Kim, K.; Park, O.J.; Yun, S.; Yun, H. What makes tourists feel negatively about tourism destinations? Application of hybrid text mining methodology to smart destination management. Technol. Forecast. Soc. Chang. 2017, 123, 362–369. [Google Scholar] [CrossRef]
- Huifeng, P.; Ha, H.Y.; Lee, J.W. Perceived risks and restaurant visit intentions in China: Do online customer reviews matter? J. Hosp. Tour. Manag. 2020, 43, 179–189. [Google Scholar] [CrossRef]
- Nakayama, M.; Wan, Y. The cultural impact on social commerce: A sentiment analysis on Yelp ethnic restaurant reviews. Inf. Manag. 2019, 56, 271–279. [Google Scholar] [CrossRef]
- Calheiros, A.C.; Moro, S.; Rita, P. Sentiment Classification of Consumer-Generated Online Reviews Using Topic Modeling. J. Hosp. Mark. Manag. 2017, 26, 675–693. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-García, I.; Currás-Pérez, R. Effects of dissatisfaction in tourist services: The role of anger and regret. Tour. Manag. 2011, 32, 1397–1406. [Google Scholar] [CrossRef]
- Wang, X.; Tang, L. (Rebecca); Kim, E. More than words: Do emotional content and linguistic style matching matter on restaurant review helpfulness? Int. J. Hosp. Manag. 2019, 77, 438–447. [Google Scholar] [CrossRef]
- Wang, H.; Gao, S.; Yin, P.; Liu, J.N.K. Competitiveness analysis through comparative relation mining Evidence from restaurants’ online reviews. Ind. Manag. Data Syst. 2017, 117, 672–687. [Google Scholar] [CrossRef]
- Wan, Y.; Gao, Q. An Ensemble Sentiment Classification System of Twitter Data for Airline Services Analysis. In Proceedings of the 15th IEEE International Conference on Data Mining Workshop, ICDMW 2015, Atlantic City, NJ, USA, 14–17 November 2015; pp. 1318–1325. [Google Scholar] [CrossRef]
- Chow, C.K.W. On-time performance, passenger expectations and satisfaction in the Chinese airline industry. J. Air Transp. Manag. 2015, 47, 39–47. [Google Scholar] [CrossRef]
- Guo, Y.; Barnes, S.J.; Jia, Q. Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tour. Manag. 2017, 68, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Lucini, F.R.; Tonetto, L.M.; Fogliatto, F.S.; Anzanello, M.J. Text mining approach to explore dimensions of airline customer satisfaction using online customer reviews. J. Air Transp. Manag. 2020, 83, 101760. [Google Scholar] [CrossRef]
- Gao, B.; Li, X.; Liu, S.; Fang, D. How power distance affects online hotel ratings: The positive moderating roles of hotel chain and reviewers’ travel experience. Tour. Manag. 2018, 5, 176–186. [Google Scholar] [CrossRef]
- Wang, J.-Q.; Zhang, X.; Zhang, H.-Y. Hotel recommendation approach based on the online consumer reviews using interval neutrosophic linguistic numbers. J. Intell. Fuzzy Syst. 2018, 34, 381–394. [Google Scholar] [CrossRef]
- Rajaguru, R.; Hassanli, N. The role of trip purpose and hotel star rating on guests’ satisfaction and WOM. Int. J. Contemp. Hosp. Manag. 2018, 30, 2268–2286. [Google Scholar] [CrossRef]
- Padma, P.; Ahn, J. Guest satisfaction & dissatisfaction in luxury hotels: An application of big data. Int. J. Hosp. Manag. 2020, 84, 1023182. [Google Scholar] [CrossRef]
- Tao, S.; Kim, H.S. Cruising in Asia: What can we dig from online cruiser reviews to understand their experience and satisfaction. Asia Pac. J. Tour. Res. 2019, 24, 514–528. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Tan, C.W.; Hu, F. Comprehending customer satisfaction with hotels: Data analysis of consumer-generated reviews. Int. J. Contemp. Hosp. Manag. 2020, 32, 1713–1735. [Google Scholar] [CrossRef]
- Cheng, M.; Jin, X. What do Airbnb users care about? An analysis of online review comments. Int. J. Hosp. Manag. 2019, 76, 58–70. [Google Scholar] [CrossRef]
- Farhadloo, M.; Patterson, R.A.; Rolland, E. Modeling customer satisfaction from unstructured data using a Bayesian approach. Decis. Support Syst. 2016, 90, 1–11. [Google Scholar] [CrossRef]
- Pournarakis, D.E.; Sotiropoulos, D.N.; Giaglis, G.M. A computational model for mining consumer perceptions in social media. Decis. Support Syst. 2017, 93, 98–110. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, Z.; Jeon, S.; Zhou, Y. Mining customer requirements from online reviews: A product improvement perspective. Inf. Manag. 2016, 53, 951–963. [Google Scholar] [CrossRef]
- Bi, J.W.; Liu, Y.; Fan, Z.P.; Cambria, E. Modelling customer satisfaction from online reviews using ensemble neural network and effect-based Kano model. Int. J. Prod. Res. 2019, 57, 7068–7088. [Google Scholar] [CrossRef]
- Culotta, A.; Cutler, J. Mining brand perceptions from twitter social networks. Mark. Sci. 2016, 35, 343–362. [Google Scholar] [CrossRef]
- Arashpour, M.; Wakefield, R.; Abbasi, B.; Arashpour, M.; Hosseini, R. Optimal process integration architectures in off-site construction: Theorizing the use of multi-skilled resources. Archit. Eng. Des. Manag. 2018, 14, 46–59. [Google Scholar] [CrossRef]
- Chen, K.; Kou, G.; Shang, J.; Chen, Y. Visualizing market structure through online product reviews: Integrate topic modeling, TOPSIS, and multi-dimensional scaling approaches. Electron. Commer. Res. Appl. 2015, 14, 58–74. [Google Scholar] [CrossRef]
- Cui, R.; Gallino, S.; Moreno, A.; Zhang, D.J. The Operational Value of Social Media Information. Prod. Oper. Manag. 2018, 27, 1749–1769. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, Y.; Ding, Y.; Liang, K.; Duan, R. Capturing helpful reviews from social media for product quality improvement: A multi-class classification approach. Int. J. Prod. Res. 2017, 55, 3528–3541. [Google Scholar] [CrossRef]
- Brown, A.; Reade, J.J. The wisdom of amateur crowds: Evidence from an online community of sports tipsters. Eur. J. Oper. Res. 2019, 272, 1073–1081. [Google Scholar] [CrossRef]
- Kim, Y.J.; Ban, H.-J.; Kim, D.-H.; Ban, H.J. Understanding Customer Experience of Airline Lounge Using Text Mining of Online Review. Culin. Sci. Hosp. Res. 2020, 26, 36–44. [Google Scholar] [CrossRef]
- Chamikara, M.A.P.; Bertok, P.; Liu, D.; Camtepe, S.; Khalil, I. Efficient privacy preservation of big data for accurate data mining. Inf. Sci. 2020, 527, 420–443. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.W.; Park, S.B. The Identification of Marketing Performance Using Text Mining of Airline Review Data. Mob. Inf. Syst. 2019. [Google Scholar] [CrossRef]
- Križanić, S. Educational data mining using cluster analysis and decision tree technique: A case study. Int. J. Eng. Bus. Manag. 2020, 12, 1–9. [Google Scholar] [CrossRef]
- Cho, G.; Park, H.-M.; Jung, W.-M.; Cha, W.-S.; Lee, D.; Chae, Y. Identification of candidate medicinal herbs for skincare via data mining of the classic Donguibogam text on Korean medicine. Integr. Med. Res. 2020, 9, 100436. [Google Scholar] [CrossRef]
- Lim, J.; Lee, H.C. Comparisons of service quality perceptions between full service carriers and low cost carriers in airline travel. Curr. Issues Tour. 2020, 23, 1261–1276. [Google Scholar] [CrossRef]
- Tang, X.; Dai, Y.; Xiang, Y. Feature selection based on feature interactions with application to text categorization. Expert Syst. Appl. 2019, 120, 207–216. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Guo, W.; Liu, G. Structured learning for unsupervised feature selection with high-order matrix factorization. Expert Syst. Appl. 2020, 140, 112878. [Google Scholar] [CrossRef]
- Bommert, A.; Sun, X.; Bischl, B.; Rahnenführer, J.; Lang, M. Benchmark for filter methods for feature selection in high-dimensional classification data. Comput. Stat. Data Anal. 2020, 143, 106839. [Google Scholar] [CrossRef]
- Zheng, W.; Zhu, X.; Wen, G.; Zhu, Y.; Yu, H.; Gan, J. Unsupervised feature selection by self-paced learning regularization. Pattern Recognit. Lett. 2020, 132, 4–11. [Google Scholar] [CrossRef]
- Zhang, R.; Nie, F.; Li, X.; Wei, X. Feature selection with multi-view data: A survey. Inf. Fusion 2019, 50, 158–167. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the LASSO. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Choudhury, S.; Thatoi, D.N.; Hota, J.; Sau, S.; Rao, M.D. Predicting crack in a beam-like structure through an over fitting verified regression model. Multidiscip. Modeling Mater. Struct. 2019, 15, 1190–1211. [Google Scholar] [CrossRef]
- Quinlan, J.-R. C4.5: Programs for Machine Learning; Morgan-Kaufmann: San Francisco, CA, USA, 1993. [Google Scholar]
- Yang, F. An Extended Idea about Decision Trees. In Proceedings of the 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 5–7 December 2019; pp. 349–354. [Google Scholar] [CrossRef]
- Sullivan, D. Document Warehousing and Text Mining: Techniques for Improving Business Operations, Marketing, and Sales; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Thomaz, G.M.; Biz, A.A.; Bettoni, E.M.; Mendes-Filho, L.; Buhalis, D. Content mining framework in social media: A FIFA world cup 2014 case analysis. Inf. Manag. 2017, 54, 786–801. [Google Scholar] [CrossRef]
- Godnov, U.; Redek, T. Application of text mining in tourism: Case of Croatia. Ann. Tour. Res. 2016, 58, 162–166. [Google Scholar] [CrossRef]
- Hu, Y.H.; Chen, Y.L.; Chou, H.L. Opinion mining from online hotel reviews–A text summarization approach. Inf. Process. Manag. 2017, 53, 436–449. [Google Scholar] [CrossRef]
- Wong, C.U.I.; Qi, S. Tracking the evolution of a destination’s image by text-mining online reviews-the case of Macau. Tour. Manag. Perspect. 2017, 23, 19–29. [Google Scholar] [CrossRef]
- Schuckert, M.; Liu, X.; Law, R. A segmentation of online reviews by language groups: How English and non-English speakers rate hotels differently. Int. J. Hosp. Manag. 2015, 48, 143–149. [Google Scholar] [CrossRef]
- Department of Health and Social Care. CMO for England Announces 12 New Cases of Novel Coronavirus: 1 March 2020. Available online: https://www.gov.uk/government/news/cmo-for-england-announces-12-new-cases-of-novel-coronavirus-01-march-2020 (accessed on 15 September 2020).
- European Centre for Disease Prevention and Control. COVID-19 Situation Update for the EU/EEA and the UK, as of 1 September 2020. Available online: https://www.ecdc.europa.eu/en/cases-2019-ncov-eueea (accessed on 15 September 2020).
- Sezgen, E.; Mason, K.J.; Mayer, R. Journal of Air Transport Management Voice of airline passenger: A text mining approach to understand customer satisfaction. J. Air Transp. Manag. 2019, 77, 65–74. [Google Scholar] [CrossRef]
- Atalık, Ö.; Bakır, M.; Akan, Ş. The Role of In-Flight Service Quality on Value for Money in Business Class: A Logit Model on the Airline Industry. Adm. Sci. 2019, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Kim, D.W. MFC: Intialization method for multi-label feature selection based on conditional mutual information. Neurocomputing 2020, 382, 40–51. [Google Scholar] [CrossRef]
Fast-Food Restaurant Name | Number of Reviews | Data Sources |
---|---|---|
Domino’s | 292 | https://www.trustpilot.com/review/www.dominos.co.uk |
KFC | 191 | https://www.trustpilot.com/review/kfc.co.uk |
McDonald’s | 251 | https://www.trustpilot.com/review/www.mcdonalds.co.uk |
Total | 734 |
Groups | Top Mentioned Words |
---|---|
Meal | Pizza, food, burger, chicken, cold, eat, chip, taste, the_food, the_pizza |
Service | Order, service, time, delivery, staff, wait, wrong, told, ask, give, call, rude, customer_service, disgust, minute, quality |
Tangible | Store, branch, restaurant, manage |
Promotion/Refund | Money, price, refund, deal |
COVID-19 | Custom, miss, want, thank, phone, ….(COVID, mask, corona, coronavirus) |
Sentiment | Great, good, bad, love, poor, disappoint |
Experiment Key Words | Fold #1 | Fold #2 | Fold #3 | Fold #4 | Fold #5 | Frequency |
---|---|---|---|---|---|---|
great | 1.637926 | 1.637926 | 1.704888 | 1.761116 | 1.849832 | 5 |
amazing | 1.10379 | 1.10379 | 1.172616 | 1.236456 | 1.346803 | 5 |
the_best | 0.767311 | 0.767311 | 0.886877 | 0.998493 | 1.192214 | 5 |
excellent | 0.93885 | 0.93885 | 1.013615 | 1.078015 | 1.17427 | 5 |
thank | 0.961416 | 0.961416 | 0.988296 | 1.017437 | 1.059731 | 5 |
just_want | 0.295544 | 0.295544 | 0.429106 | 0.551747 | 0.766185 | 5 |
delicious | 0.694805 | 0.694805 | 0.713538 | 0.728697 | 0.753355 | 5 |
Love | 0.621796 | 0.621796 | 0.653782 | 0.684573 | 0.740026 | 5 |
thank_you | 0.535389 | 0.535389 | 0.578148 | 0.607844 | 0.657612 | 5 |
friendly | 0.438428 | 0.438428 | 0.499913 | 0.555955 | 0.651621 | 5 |
Like | 0.159634 | 0.159634 | 0.289013 | 0.397322 | 0.556908 | 5 |
very_good | 0.106712 | 0.106712 | 0.229401 | 0.331597 | 0.486255 | 5 |
the_food | 0.240562 | 0.240562 | 0.315816 | 0.375267 | 0.482474 | 5 |
Kind | 0.041245 | 0.041245 | 0.160647 | 0.273461 | 0.457214 | 5 |
tasty | 0.078806 | 0.078806 | 0.178808 | 0.272535 | 0.411016 | 5 |
good | 0.013915 | 0.013915 | 0.050466 | 0.076977 | 0.123939 | 5 |
quick | 0 | 0 | 0.062702 | 0.19235 | 0.423307 | 3 |
enjoy | 0 | 0 | 0.068385 | 0.150675 | 0.28 | 3 |
Nice | 0 | 0 | 0.007304 | 0.071905 | 0.164957 | 3 |
very_polite | 0 | 0 | 0 | 0.040815 | 0.176512 | 2 |
have_done | 0 | 0 | 0 | 0 | 0.205599 | 1 |
policy | 0 | 0 | 0 | 0 | 0.179153 | 1 |
as_well | 0 | 0 | 0 | 0 | 0.09573 | 1 |
wait_for | 0 | 0 | 0 | 0 | 0.076201 | 1 |
fried_chicken | 0 | 0 | 0 | 0 | 0.067827 | 1 |
staff_and | 0 | 0 | 0 | 0 | 0.062449 | 1 |
hot_and | 0 | 0 | 0 | 0 | 0.029425 | 1 |
Told | 0 | 0 | 0 | 0 | –0.09236 | 1 |
Feature Set | Original Feature Set (1977 Words) | Feature Subset#1 (16 Keywords) | Feature Subset#2 (19 Keywords) | |
---|---|---|---|---|
Metrics | Mean (Standard Deviation) | |||
OA (%) | 85.69 (2.43) | 87.48 (2.74) | 88.70 (2.21) | |
F1 (%) | 49.88 (10.20) | 49.23 (13.27) | 48.68 (14.11) | |
Time (s) | 3.70 (2.55) | 0.02 (0.04) | 0.02 (0.04) |
Frequency | Code | Factors | Extracted Key Words |
---|---|---|---|
5 | F#1 | food quality | delicious, tasty, the_food, just_want |
service quality | friendly, kind, thank_you, thank | ||
sentiment | great, amazing, the_best, excellent, love, very_good, good, like | ||
3 | F#2 | promptness | Quick, enjoy |
sentiment | nice | ||
2 | F#3 | politeness | very_polite |
1 | F#4 | staff policy | have_done, policy, as_well, wait_for, fried_chicken, staff_and, hot_and, told. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-K.; Riantama, D.; Chen, L.-S. Using a Text Mining Approach to Hear Voices of Customers from Social Media toward the Fast-Food Restaurant Industry. Sustainability 2021, 13, 268. https://doi.org/10.3390/su13010268
Chen W-K, Riantama D, Chen L-S. Using a Text Mining Approach to Hear Voices of Customers from Social Media toward the Fast-Food Restaurant Industry. Sustainability. 2021; 13(1):268. https://doi.org/10.3390/su13010268
Chicago/Turabian StyleChen, Wen-Kuo, Dalianus Riantama, and Long-Sheng Chen. 2021. "Using a Text Mining Approach to Hear Voices of Customers from Social Media toward the Fast-Food Restaurant Industry" Sustainability 13, no. 1: 268. https://doi.org/10.3390/su13010268
APA StyleChen, W. -K., Riantama, D., & Chen, L. -S. (2021). Using a Text Mining Approach to Hear Voices of Customers from Social Media toward the Fast-Food Restaurant Industry. Sustainability, 13(1), 268. https://doi.org/10.3390/su13010268