Assessing Riparian Areas of Greece—An Overview
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Assessment Methods
3. Results
3.1. Visual Assesement Tools
3.2. Bioindicators
3.3. Geographical Information Systems
3.4. Remote Sensing-Vegetation Indices
3.5. Random Forest Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buchanan, S.W.; Baskerville, M.; Oelbermann, M.; Gordon, A.M.; Thevathasan, N.V.; Isaac, M.E. Plant diversity and agroecosystem function in riparian agroforests: Providing ecosystem services and land-use transition. Sustainability 2020, 12, 568. [Google Scholar] [CrossRef] [Green Version]
- Molina-Holgado, P.; Jendrzyczkowski Rieth, L.; Berrocal Menárguez, A.-B.; Álvarez, F.A. The analysis of urban fluvial landscapes in the centre of Spain, their characterization, values and interventions. Sustainability 2020, 12, 4661. [Google Scholar] [CrossRef]
- Naiman, R.J.; Decamps, H.; McClain, M.E. Riparia: Ecology, Conservation, and Management of Streamside Communities; Elsevier Academies Press: London, UK, 2005. [Google Scholar]
- National Research Council. Riparian Areas: Functions and Strategies for Management; National Academies Press: Washington, DC, USA, 2002. [Google Scholar]
- Stella, J.C.; Rodríguez-González, P.M.; Dufour, S.; Bendix, J. Riparian vegetation research in Mediterranean-climate regions: Common patterns, ecological processes, and considerations for management. Hydrobiologia 2013, 719, 291–315. [Google Scholar] [CrossRef]
- Baker, M., Jr.; Ffolliott, P.F.; DeBano, L.F.; Neary, D.G. Riparian Areas in the Southwestern United States: Hydrology, Ecology and Management; Lewis Publ.: Boca Raton, FL, USA, 2003. [Google Scholar]
- Zaimes, G.N.; Iakovoglou, V.; Emmanouloudis, D.; Gounaridis, G. Riparian areas of Greece: Their definition and characteristics. J. Eng. Sci. Technol. Rev. 2010, 3, 176–183. [Google Scholar] [CrossRef]
- Manning, A.; Julian, J.P.; Doyle, M.W. Riparian vegetation as an indicator of stream channel presence and connectivity in arid environments. J. Arid Environ. 2020, 178, 104167. [Google Scholar] [CrossRef]
- Stromberg, J.C.; Boudell, J.A. Floods, drought, and seed mass of riparian plant species. J. Arid Environ. 2013, 97, 99–107. [Google Scholar] [CrossRef]
- Kramer, K.; Vreugdenhil, S.J.; van der Werf, D.C. Effects of flooding on the recruitment, damage and mortality of riparian tree species: A field and simulation study on the Rhine floodplain. For. Ecol. Manag. 2008, 255, 3893–3903. [Google Scholar] [CrossRef]
- De Sosa, L.L.; Glanville, H.C.; Marshall, M.R.; Williams, A.P.; Jones, D.L. Quantifying the contribution of riparian soils to the provision of ecosystem services. Sci. Total Environ. 2018, 624, 807–819. [Google Scholar] [CrossRef] [Green Version]
- Tufekcioglu, M.; Schultz, R.C.; Isenhart, T.M.; Kovar, J.L.; Russell, J.R. Riparian land-use, stream morphology and streambank erosion within grazed pastures in Southern Iowa, USA: A catchment-wide perspective. Sustainability 2020, 12, 6461. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Tufekcioglu, M.; Schultz, R.C. Riparian land-use impacts on stream bank and gully erosion in agricultural watersheds: What we have learned. Water 2019, 11, 1343. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Natuhra, Y. Effect of urbanization on vegetation in riparian area: Plant communities in artificial and semi-natural habitats. Sustainability 2020, 12, 204. [Google Scholar] [CrossRef] [Green Version]
- Iakovoglou, V.; Zaimes, G.N.; Gounaridis, G. Riparian areas in urban settings: Two case studies from Greece. Int. J. Innov. Sustain. Dev. 2013, 7, 271. [Google Scholar] [CrossRef]
- Johnson, L.R.; Trammell, T.L.E.; Bishop, T.J.; Barth, J.; Drzyzga, S.; Jantz, C. Squeezed from all sides: Urbanization, invasive species, and climate change threaten riparian forest buffers. Sustainability 2020, 12, 1448. [Google Scholar] [CrossRef] [Green Version]
- Cole, L.J.; Stockan, J.; Helliwell, J. Managing riparian buffer strips to optimise ecosystem services: A review. Agric. Ecosyst. Environ. 2020, 296, 106891. [Google Scholar] [CrossRef]
- Zaimes, G.N. Mediterranean riparian areas. Climate change implications and recommendations. J. Environ. Biol. 2020, 41, 957–965. [Google Scholar] [CrossRef]
- Albano, C.M.; McGwire, K.C.; Hausner, M.B.; McEvoy, D.J.; Morton, C.G.; Huntington, J.L. Drought sensitivity and trends of riparian vegetation vigor in Nevada, USA (1985–2018). Remote Sens. 2020, 12, 1362. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Gounarids, G.; Iakovoglou, V.; Emmanouloudis, D. Riparian area studies in Greece: A literature review. Fresen. Environ. Bull. 2011, 20, 1470–1477. [Google Scholar]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the world: A new map of life on Earth. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Feio, M.J.; Aguiar, F.C.; Almeida, S.F.P.; Ferreira, J.; Ferreira, M.T.; Elias, C.; Serra, S.R.Q.; Buffagni, A.; Cambra, J.; Chauvin, C.; et al. Least disturbed condition for European Mediterranean rivers. Sci. Total Environ. 2014, 476–477, 745–756. [Google Scholar] [CrossRef]
- Ferreira, M.T.; Globevnik, L.; Schinegger, R. Water stressors in Europe: New threats in the old world. In Multiple Stressors in River Ecosystems: Status, Impacts and Prospects for the Future; Sabater, S., Elosegi, A., Ludwig, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 131–137. [Google Scholar]
- Bonada, N.; Resh, V.C. Mediterranean-climate streams and rivers: Geographically separated but ecologically comparable freshwater systems. Hydrobiologia 2013, 719, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.J. Encroachment of upland Mediterranean plant species in riparian ecosystems of southern Portugal. Biodivers. Conserv. 2010, 19, 2667–2684. [Google Scholar] [CrossRef] [Green Version]
- Cid, N.; Bonada, N.; Carlson, S.M.; Grantham, T.E.; Gasith, A.; Resh, V.H. High variability is a defining component of Mediterranean-Climate rivers and their biota. Water 2017, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Lobera, G.; Batalla, R.J.; Vericat, D.; Lopez-Tarazin, J.A.; Tena, A. Sediment transport in two Mediterranean regulated rivers. Sci. Total Environ. 2016, 540, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Emmanouloudis, D.; Garcia Rodriguez, J.L.; Zaimes, G.N.; Giminez Suarez, M.C.; Filippidis, E. 2011. Euro-Mediterranean torrents: Case studies on tools that can improve their management. In Mountain Ecosystems: Dynamics, Management and Conservation; Richards, K.E., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 1–44. [Google Scholar]
- Rault, P.A.K.; Koundouri, P.; Akinsete, E.; Ludwig, R.; Huber-Garcia, V.; Tsani, S.; Acuna, V.; Kalogianni, E.; Luttik, J.; Kok, K.; et al. Down scaling of climate change scenarii to river basin level: A transdisciplinary methodology applied to Evrotas river basin, Greece. Sci. Total Environ. 2019, 660, 1623–1632. [Google Scholar] [CrossRef]
- Van den Broeck, M.; Waterkeyna, A.; Rhazic, L.; Grillas, P.; Brendoncka, L. Assessing the ecological integrity of endorheic wetlands, with focus on Mediterranean temporary ponds. Ecol. Indic. 2015, 54, 1–11. [Google Scholar] [CrossRef]
- Magdaleno, F.; Martinez, R. Evaluating the quality of riparian forest vegetation. The Riparian Forest Evaluation (RFV) index. For. Syst. 2014, 23, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Schismenos, S.; Zaimes, G.N.; Iakovoglou, V.; Emmanouloudis, D. Environmental sustainability and ecotourism of riparian and deltaic ecosystems: Opportunities for rural Eastern Macedonia and Thrace, Greece. Int. J. Environ. Stud. 2019, 76, 675–688. [Google Scholar] [CrossRef]
- Zogaris, S.; Hatzivarsanis, V.; Ecomomou, A.N.; Hatznikolaou, Y.; Giakoumi, S.; Dimopoulos, P. Riparian Zones in Greece: Protecting Riverine Oasis of Life; IIW and HCMR: Athens, Greece, 2007. [Google Scholar]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Bjorkland, R.; Pringle, C.M.; Newton, B. A stream visual assessment protocol (SVAP) for riparian landowners. Environ. Monit. Assess. 2001, 68, 99–125. [Google Scholar] [CrossRef]
- Munné, A.; Prat, N.; Solà, C.; Bonada, N.; Rieradeval, M. 2003. A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquat. Conserv. 2003, 13, 147–163. [Google Scholar] [CrossRef]
- Iakovoglou, V.; Koutsoumis, A.; Zaimes, G.N.; Emmanouloudis, D. Using the Stream Visual Assessment Protocol (SVAP) to Evaluate the Streams and their Riparian Areas of Lake Volvi in Greece. In Proceedings of the International Caucasian Forestry Symposium, Artvin, Turkey, 24–26 October 2013; pp. 1139–1146. [Google Scholar]
- Giatas, G.; Pagonis, G.; Iakovoglou, V.; Raptis, D.; Emmanouloudis, D.; Zaimes, G.N. Assessing rural and agricultural riparian areas of Greece with the use of GIS and SVAP. In Proceedings of the 2nd International Conference Natural Resources Green Technology & Sustainable Management, Zagreb, Croatia, 5–7 October 2016; Redovnikovic, I.R., Srcek, V.G., Radosevic, L., Jakovljevic, T., Stojacovic, R., Hendrih, D.E., Eds.; Faculty of Food Technology and Biorechnology, University of Zagreb: Zagreb, Croatia, 2016; pp. 24–30. [Google Scholar]
- Kasapidis, K.; Giatas, G.; Pagonis, G.; Kiourtziadis, P.; Iakovoglou, V.; Zaimes, G.N. Assessing mountainous riparian areas of North Greece adjacent to forested and rural areas with the use of GIS, SVAP and QBR. In Proceedings of the Sixth International Conference on Environmental Management, Engineering, Planning & Economics, Thessaloniki, Greece, 25–30 June 2017; pp. 1167–1178. [Google Scholar]
- Kiourtziadis, P.; Iakovoglou, V.; Zaimes, G.N.; Emmanouloudis, D. Hydrologic and anthropogenic impacts on riparian areas in agricultural dominated landscapes of Greece. In Proceedings of the 3rd International Conference Water Resources and Wetlands, Tulcea, Romania, 8–10 September 2016; Gastescu, P., Bretcan, P., Eds.; Romanian Limnogeographical Association: Tulcea, Romania, 2016; pp. 107–112. [Google Scholar]
- Savopoulou, A.; Giatas, G.; Pagonis, G.; Iakovoglou, V.; Zaimes, G.N. Visual protocols and GIS as preliminary investigative tools to locate potential ecoengineering in streams and riparian areas. Procedia Environ. Sci. Eng. Manag. 2017, 4, 227–234. [Google Scholar]
- Sharifinia, M.; Mahmoudifard, A.; Imanpour Namin, J.; Ramezanpour, Z.; Kong Yap, C. Pollution evaluation in the Shahrood River: Do physico-chemical and macroinvertebrate-based indices indicate same responses to anthropogenic activities? Chemosphere 2016, 159, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.P.; Sharma, S.; Goel, V.; Sharma, P.; Kumar, A. Water quality assessment of Nigland stream using benthic macroinvertebrates. Life Sci. J. 2008, 5, 67–72. [Google Scholar]
- Berges, S.A.; Schulte Moore, L.A.; Isenhart, T.M.; Schultz, R.C. Bird species diversity in riparian buffers, row crop fields, and grazed pastures within agriculturally dominated watersheds. Agrofor. Syst. 2010, 79, 97–110. [Google Scholar] [CrossRef]
- Hassall, C. Odonata as candidate macroecological barometers for global climate change. Freshw. Sci. 2015, 34, 1040–1049. [Google Scholar] [CrossRef]
- Viegas, G.; Stenert, C.; Schulz, U.W.; Maltchik, L. Dung beetle communities as biological indicators of riparian forest widths in southern Brazil. Ecol. Indic. 2014, 36, 703–710. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Loisios, P.; Fytopoulos, P.; Mersina, C.; Fyllas, N.; Iakovoglou, V.; Avtzis, D. Ground dwelling insects as environmental indicators of riparian habitats in agricultural Mediterranean landscapes. Environ. Eng. Manag. J. 2019, 18, 1977–1986. [Google Scholar] [CrossRef]
- Kontsiotis, V.; Zaimes, G.N.; Tsiftsis, S.; Kiourtziadis, P.; Bakaloudis, D. Assessing the influence of riparian vegetation structure on bird communities in agricultural Mediterranean landscapes. Agrofor. Syst. 2019, 93, 675–687. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Manikas, N.; Spanos, T.; Chrisopoulos, V.; Avtzis, D.N. Odonata as indicators of riverine habitats in Central Greece. Fresen Environ. Bull. 2017, 26, 4244–4253. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; Illinois University Press: Urbana, IL, USA, 1949. [Google Scholar]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Gounarids, D.; Fotakis, D. Assessing riparian land-uses/vegetation cover along the Nestos River in Greece. Fresen Environ. Bull. 2011, 20, 3217–3225. [Google Scholar]
- Zaimes, G.N.; Gounaridis, D.; Symeonakis, E. Assessing the impact of dams on riparian and deltaic vegetation using remotely-sensed vegetation indices and Random Forests modelling. Ecol. Indic. 2019, 103, 630–641. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Symeonakis, E. Assessing land degradation and desertification using vegetation index data: Current frameworks and future directions. Remote Sens. 2014, 6, 9552–9575. [Google Scholar] [CrossRef] [Green Version]
- Wilson, N.R.; Norman, L.M.; Villarreal, M.; Gass, L.; Tiller, R.; Salywon, A. Comparison of remote sensing indices for monitoring of desert cienegas. Arid Land Res. Manag. 2016, 30, 460–478. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Huete, A.R.; Kim, Y.; Didan, K. 2-band enhanced vegetation index without a blue band and its application to AVHRR data. Remote Sensing and Modeling of Ecosystems for Sustainability. Proc. SPIE 2007, 6679, 667905. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS vegetation index product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.; Ohlen, D.; Howard, S.; McKinley, R.; Zhu, Z. The normalized burn ratio and relationships to burn severity: Ecology, remote sensing and implementation. In Proceedings of the Ninth Forest Service Remote Sensing Applications Conference, San Diego, CA, USA, 8–12 April 2002; Greer, J.D., Ed.; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2002.
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information (by gray mapping of Landsat MSS data. Photogramm. Eng. Remote Sens. 1987, 47, 1541–1552. [Google Scholar]
- Liu, W.T.; Kogan, F.N. 1996. Monitoring regional drought using the Vegetation Condition. Index. Int. J. Remote Sens. 1996, 17, 2761–2782. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breiman, L. Random forests. Machine Learn. 2001, 40, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cortes, R.M.V.; Hughes, S.J.; Pereira, V.R.; Da Grac, S.; Varandas, P. 2013. Tools for bioindicator assessment in rivers: The importance of spatial scale, land use patterns and biotic integration. Ecol. Indic. 2013, 34, 460–477. [Google Scholar] [CrossRef]
- Nguyen, U.; Glenn, E.P.; DucDang, T.; Pham, L.T.H. Mapping vegetation types in semi-arid riparian regions using random forest and object-based image approach: A case study of the Colorado River Ecosystem, Grand Canyon, Arizona. Ecol Inform. 2019, 50, 43–50. [Google Scholar] [CrossRef]
- Gounaridis, D.; Chorianopoulos, I.; Koukoulas, S. Exploring prospective urban growth trends under different economic outlooks and land-use planning scenarios: The case of Athens. Appl. Geograp. 2018, 90, 134–144. [Google Scholar] [CrossRef]
- Gounaridis, D.; Chorianopoulos, I.; Symeonakis, E.; Koukoulas, S. A multi-scale Random Forest/Cellular Automata modelling approach for mapping land use/cover changes in Attica (Greece), under divergent socioeconomic realities. Sci. Total Environ. 2019, 646, 320–335. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Zogaris, S.; Chatzinikolaou, Y.; Dimopoulos, P. Assessing environmental degradation of montane riparian zones in Greece. J. Environ. Biol. 2009, 30, 719–726. [Google Scholar]
- Kazoglou, Y.; Fotiadis, G.; Vrahnakis, M.; Koutseri, I.; Crivelli, A. Assessment of riparian forest vegetation of rivers supporting the Prespa trout in the Transboundary Prespa Park. Ecohydrol. Hydrobiol. 2011, 11, 63–78. [Google Scholar] [CrossRef]
- Bruno, D.; Belmar, O.; Sánchez-Fernández, D.; Guareschi, S.; AndrésMillán, A.; Velasco, J. Responses of Mediterranean aquatic and riparian communities to human pressures at different spatial scales. Ecol. Indic. 2014, 45, 456–464. [Google Scholar] [CrossRef]
- Larsen, S.; Scalici, M.; Tancioni, L. Scale dependent biodiversity patterns in Mediterranean river catchments: A multi taxa approach. Aquat. Sci. 2015, 77, 455–463. [Google Scholar] [CrossRef]
- Batisteli, A.F.; Tanaka, M.O.; Souza, A.L. Bird functional traits respond to forest structure in riparian areas undergoing active restoration. Diversity 2018, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Perry, K.I.; Herms, D.A. Dynamic responses of ground-dwelling invertebrate communities to disturbance in forest ecosystems. Insects 2019, 10, 61. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-Y.; Lee, D.-S.; Bae, M.-J.; Hwang, S.-J.; Noh, S.-Y.; Moon, J.-S.; Park, Y.-S. Distribution patterns of odonate assemblages in relation to environmental variables in streams of South Korea. Insects 2018, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- Sirabahenda, Z.; St-Hilaire, A.; Courtenay, S.C.; van den Heuvel, M.R. Assessment of the effective width of riparian buffer strips to reduce suspended sediment in an agricultural landscape using ANFIS and SWAT models. Catena 2020, 195, 104762. [Google Scholar] [CrossRef]
- Elliott, K.J.; Voseb, J.M. Effects of riparian zone buffer widths on vegetation diversity in southern Appalachian headwater catchments. For. Ecol. Manag. 2016, 376, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Clerici, N.; Paracchini, M.L.; Maes, J. Land-cover change dynamics and insights into ecosystem services in European stream riparian zones. Ecohydrol. Hydrobiol. 2014, 14, 107–120. [Google Scholar] [CrossRef]
- Corbacho, C.; Sanchez, J.M.; Costillo, E. Patterns of structural complexity and human disturbance of riparian vegetation in agricultural landscapes of a Mediterranean area. Agric. Ecosyst. Environ. 2003, 95, 495–507. [Google Scholar] [CrossRef]
- Riis, T.; Kelly-Quinn, M.; Aguiar, F.C.; Manolaki, P.; Bruno, D.; Bejarano, M.D.; Clerici, N.; Fernandes, M.R.; Franco, J.C.; Pettit, N.; et al. Global overview of ecosystem services provided by riparian vegetation. BioScience 2020, 70, 501–514. [Google Scholar] [CrossRef]
- Duke, J.R.; White, J.D.; Prochnow, J.S.; Zygo, L.; Allen, P.M.; Muttiah, R.S. The use of remote sensing and modelling to detect small-dam influences on land-use changes along downstream riparian zones. Ecohydrol. Hydrobiol. 2007, 7, 23–35. [Google Scholar] [CrossRef]
- Bejarano, M.D.; Sarneel, J.; Su, X.; Sordo-Ward, A. Shifts in riparian plant life forms following flow regulation. Forests 2020, 11, 518. [Google Scholar] [CrossRef]
- Ibáñez, C.; Caiola, N.; Belmar, O. Environmental flows in the lower Ebro river and delta: Current status and guidelines for a holistic approach. Water 2020, 12, 2670. [Google Scholar] [CrossRef]
- Lozanovska, I.; Rivaes, R.; Vieira, C.; Ferreira, M.T.; Aguiar, F.C. Streamflow regulation effects in the Mediterranean rivers: How far and to what extent are aquatic and riparian communities affected? Sci. Total Environ. 2020, 749, 141616. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, Y.; Zhu, C.; Li, Z.; Fang, G.; Li, Y.; Fu, A. Climate change may accelerate the decline of desert riparian forest in the lower Tarim River, Northwestern China: Evidence from tree-rings of Populus euphratica. Ecol. Indic. 2020, 111, 105997. [Google Scholar] [CrossRef]
- Shakhane, T.; Fourie, F.D.; Du Preez, P.J. Mapping riparian vegetation and charactersing its groundwater dependency at the modder river government water scheme. Groundw. Sustain. Dev. 2017, 5, 216–228. [Google Scholar] [CrossRef]
- Ye, C.; Butler, O.M.; Chen, C.; Liu, W.; Du, M.; Zhang, Q. Shifts in characteristics of the plant-soil system associated with flooding and revegetation in the riparian zone of Three Gorges Reservoir, China. Geoderma 2020, 361, 114015. [Google Scholar] [CrossRef]
- Bergillos, R.F.; Ortega-Sánchez, M. 2017. Assessing and mitigating the landscape effects of river damming on the Guadalfeo River delta, southern Spain. Landsc. Urban Plann. 2017, 165, 117–129. [Google Scholar] [CrossRef]
- Wang, H.; Wu, X.; Bi, N.; Li, S.; Yuan, P.; Wang, A.; Syvitski, J.P.M.; Saito, Y.; Yang, Z.; Liu, S.; et al. Impacts of the dam orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review. Glob. Planet. Change 2017, 157, 93–113. [Google Scholar] [CrossRef]
- Poulos, S.; Collins, M. Fluviatile sediment fluxes to the Mediterranean Sea: A quantitative approach and the influence of dams. Geol. Soc. Lond. Spec. Publ. 2002, 191, 227–245. [Google Scholar] [CrossRef]
- UNEP/MAP. State of the Mediterranean Marine and Coastal Environment; UNEP/MAP–Barcelona Convention: Athens, Greece, 2012. [Google Scholar]
- Zaimes, G.N.; Tardio, G.; Iakovoglou, V.; Gimenez, M.; Garcia-Rodriguez, J.L.; Sangalli, P. New tools and approaches to promote soil and water bioengineering in the Mediterranean. Sci. Total Environ. 2019, 693, 133677. [Google Scholar] [CrossRef] [PubMed]
- Symmank, L.; Natho, S.; Scholz, M.; Schröder, U.; Raupach, K.; Schulz-Zunkel, C. The impact of bioengineering techniques for riverbank protection on ecosystem services of riparian zones. Ecol. Eng. 2020, 158, 106040. [Google Scholar] [CrossRef]
- Lilli, M.A.; Nerantzaki, S.D.; Riziotis, C.; Kotronakis, M.; Efstathiou, D.; Kontakos, D.; Lymberakis, P.; Avramakis, M.; Tsakirakis, A.; Protopapadakis, K.; et al. Vision-based decision-making methodology for riparian forest restoration and flood protection using nature-based solutions. Sustainability 2020, 12, 3305. [Google Scholar] [CrossRef] [Green Version]
- Doswald, N.; Munroe, R.; Roe, D.; Giuliani, A.; Castelli, I.; Stephens, J.; Möller, I.; Spencer, T.; Vira, B.; Reid, H. Effectiveness of ecosystem-based approaches for adaptation: Review of the evidence-base. Clim. Dev. 2014, 6, 185–201. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environ. Sci. Pol. 2019, 98, 20–29. [Google Scholar] [CrossRef]
Landscape/ Stream # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plains | 3.7 | 3.5 | 3.5 | 3.2 | 4.1 | 3.9 | 5.4 | 4.7 | 6.0 | 3.7 | 4.4 | 5.9 | 4.7 | 4.4 |
Semi-Mountainous | 4.2 | 3.9 | 3.0 | 4.0 | 5.0 | 4.3 | 4.4 | 5.5 | 5.7 | 4.2 | 4.1 | 7.3 | 5.9 | 5.4 |
Mountainous | 6.4 | 6.9 | 6.4 | 6.0 | 7.6 | 6.8 | 7.2 | 6.7 | 7.2 | 5.7 | 6.0 | 5.8 | 6.3 | 6.8 |
Reach Characteristics | Torrent— Forested | Stream— Agriculture 1 | Torrent— Agriculture | Stream— Forested | Stream— Agriculture 2 | Stream— Agriculture 3 |
---|---|---|---|---|---|---|
Average | 5.5 | 7.2 | 6.2 | 7.4 | 6.4 | 5.8 |
Range | 3.8–7.1 | 6.5–7.7 | 5.0–7.3 | 6.9–7.8 | 4.6–7.6 | 4.5–7.6 |
Sample plots | 21 | 20 | 20 | 20 | 20 | 25 |
Reach Characteristics | Torrent—Forested | Stream—Agriculture 1 | Torrent—Agriculture | Stream—Forested |
---|---|---|---|---|
Average | 63 | 58 | 59 | 83 |
Range | 15–95 | 45–75 | 40–80 | 65–95 |
Sampling plots | 21 | 20 | 20 | 20 |
Habitat/Indices | H | Eh | D |
---|---|---|---|
Ground-dwelling insects | |||
Torrent adjacent to Natural forested area in a Hilly landscape (TNH) | 0.90 | 0.41 | 0.62 |
Torrent adjacent to a Natural forest in a Flat landscape (TNF) | 0.64 | 027 | 0.77 |
Stream adjacent to a Forest Planation in a Flat landscape (SPF) | 0.41 | 0.59 | 0.76 |
Dragonflies | |||
River with a Wide riparian zone (>30 m) (RW) | 1.29 | 0.80 | 0.34 |
Torrent with Medium riparian zone (>15 m) (TM) | 1.31 | 0.73 | 0.35 |
Spring, thermal with the Narrow riparian zone (<15 m) (SN) | 1.05 | 0.75 | 0.38 |
Small birds | |||
Torrent adjacent to Natural forested area (TN) | 4.3 | 0.54 | - |
Stream adjacent to Natural forested area (SN) | 3.9 | 0.50 | - |
Stream adjacent to a Forested Planation (SP) | 3.2 | 0.30 | - |
Watershed Landscape | Land-Use | Stream Order (%) | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | Irrigation Canals | ||
Entire | Forest | 77.94 | 75.44 | 84.55 | 65.26 | 69.04 | 74.07 | 1.41 |
Agriculture | 9.60 | 14.22 | 8.00 | 30.76 | 30.96 | 3.17 | 83.45 | |
Grassland | 8.82 | 6.49 | 6.07 | 3.58 | 0.00 | 21.90 | 7.49 | |
Urban | 0.67 | 1.30 | 1.06 | 0.00 | 0.00 | 0.00 | 4.20 | |
Other | 2.97 | 2.55 | 0.32 | 0.39 | 0.00 | 0.86 | 3.25 | |
Plains | Forest | 6.53 | 6.76 | 0.00 | 0.0 | 0.00 | 53.58 | 1.62 |
Agriculture | 73.63 | 77.80 | 79.56 | 93.58 | 100.00 | 2.29 | 83.06 | |
Grassland | 13.00 | 8.12 | 13.11 | 6.42 | 0.00 | 44.13 | 7.75 | |
Urban | 2.85 | 5.33 | 7.33 | 0.00 | 0.00 | 0.00 | 4.57 | |
Other | 4.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.00 | |
Mountainous | Forest | 90.00 | 91.53 | 94.03 | 94.97 | 100.00 | 84.99 | 0.00 |
Agriculture | 1.99 | 1.50 | 0.00 | 2.51 | 0.00 | 3.82 | 0.00 | |
Grassland | 7.56 | 6.37 | 5.40 | 2.52 | 0.00 | 11.19 | 0.00 | |
Urban | 0.46 | 0.59 | 0.57 | 0.00 | 0.00 | 0.00 | 0.00 | |
Other | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Land-Use/Vegetation Cover | Buffer 20 Meters | Buffer 50 Meters | ||||
---|---|---|---|---|---|---|
Torrent— Forested | Stream— Agriculture 2 | Stream— Agriculture 3 | Torrent— Forested | Stream— Agriculture 2 | Stream— Agriculture 3 | |
Shrub vegetation | 13.92 | - | - | 13.30 | - | - |
Transition zones (Shrub to Forest) | 9.67 | - | - | 12.97 | - | - |
Broadleaved Forests | 64.73 | 4.51 | 32.32 | 62.47 | 4.62 | 31.37 |
Conifer Forests | 11.68 | - | - | 11.27 | - | - |
Non-irrigated farmland | - | 45.25 | 44.55 | - | 45.21 | 43.86 |
Irrigated farmland | - | 34.91 | 22.89 | - | 35.05 | 23.86 |
Discontinuous rural settlements | - | 0.25 | 0.24 | - | 0.91 | - |
Rangelands | - | 8.88 | - | - | 8.67 | |
Agricultural land with natural vegetation | - | 6.20 | - | - | 6.09 | - |
Mean Decrease Accuracy | ||||||
---|---|---|---|---|---|---|
Rank | Vegetation Cover of 50–75% | Vegetation Coverage of 25–49% | Vegetation Coverage of 0–24% | |||
Parameter | Number of Indices | Parameter | Number of Indices | Parameter | Number of Indices | |
1 | Distance from sea | 8 | Distance from sea | 8 | Distance from dam | 8 |
2 | Distance from river | 8 | Distance from dam | 8 | Distance from sea | 8 |
3 | Distance from dam | 8 | Distance from residential areas | 5 | Mean temp. coldest quarter | 5 |
4 | Mean diurnal range | 7 | Annual precipitation | 5 | Distance from river | 4 |
5 | Isothermality | 6 | Distance from river | 4 | Precipitation seasonality | 4 |
Mean Decrease Gini | ||||||
---|---|---|---|---|---|---|
Rank | Vegetation Cover of 50–75% | Vegetation Coverage of 25–49% | Vegetation Coverage of 0–24% | |||
Parameter | Number of Indices | Parameter | Number of Indices | Parameter | Number of Indices | |
1 | Distance from river | 8 | Distance from sea | 8 | Distance from sea | 8 |
2 | Distance from sea | 8 | Distance from river | 8 | Distance from dam | 8 |
3 | Distance from croplands | 8 | Distance from dam | 8 | Distance from croplands | 8 |
4 | Distance from dam | 8 | Distance from residential areas | 7 | Distance from river | 8 |
5 | Distance from residential areas | 8 | Distance from croplands | 6 | Distance from residential areas | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaimes, G.N.; Iakovoglou, V. Assessing Riparian Areas of Greece—An Overview. Sustainability 2021, 13, 309. https://doi.org/10.3390/su13010309
Zaimes GN, Iakovoglou V. Assessing Riparian Areas of Greece—An Overview. Sustainability. 2021; 13(1):309. https://doi.org/10.3390/su13010309
Chicago/Turabian StyleZaimes, George N., and Valasia Iakovoglou. 2021. "Assessing Riparian Areas of Greece—An Overview" Sustainability 13, no. 1: 309. https://doi.org/10.3390/su13010309
APA StyleZaimes, G. N., & Iakovoglou, V. (2021). Assessing Riparian Areas of Greece—An Overview. Sustainability, 13(1), 309. https://doi.org/10.3390/su13010309