Evaluation of Mechanical Characteristics of Cement Mortar with Fine Recycled Concrete Aggregates (FRCA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cement and Water
2.1.2. Fine Aggregates
2.2. Mix Proportions
- Four mixes of mortar are prepared, in which one is a controlled mix and the other three mixes contain FRCA substitutions.
- FRCA blended mortars are prepared with replacement of FNA with FRCA as 0%, 25%, 50%, and 100%.
- The W/C ratio is obtained for standard consistency as: OPC = 0.42, CM 25% = 0.5, CM 50% = 0.54, and CM 100% = 0.62.
2.3. Methods
3. Results and Discussion
3.1. Characterization of the Recycled Fine Concrete Aggregates
3.2. Influence of W/C Ratio
3.3. Density
3.4. Flexural Strength
3.5. Compressive Strength
3.6. Statistical Analysis
4. Conclusions
- The FRCA analyzed in this study presents a particle size curve with a continuous distribution similar to the curve of normalized sand. The water absorption is significantly greater than the one of natural sand. Water absorption value of 4.8% is slightly below the acceptable limits.
- The W/C ratio for mortar mixes is determined from standard consistency. The control mortar was manufactured with a W/C ratio of 0.42. The recycled mortars with 25%, 50%, and 100% substitution had W/C ratios of 0.50, 0.54, and 0.62 respectively. Recycled mortar with 100% of replacement requires 52% extra mixing water to achieve the same workability and flowability. Due to the negative impact of some properties of recycled aggregate, there is an increase in the W/C ratio.
- The increase in the replacement of FNA by FRCA results in the decrease in density of recycled mortar for all curing periods. The decrease in density is due to poor property and its behavior in mortar system.
- The compressive strength of recycled mortars decreases as the percentage of replacement increases. Compressive strength of recycled aggregate mortar decreases with the increase in the FRCA content of mortar mixes. Compressive strength of recycled mortar at 7 and 28 days shows lower strength compared to control mortar. In a curing period of 90 days, compressive strength of CM 25 mortar shows higher compressive strength than control mortar and for CM 50 aslight decrease in compressive strength is observed. The increase in compressive strength is due to the slow formation of additional CSH (because of the internal curing effect) and filler effect of fine particles.
- Flexural strength shows the same trend observed for compressive strength; it decreases as FNA replacement increases, but to a lesser extent for 7 and 28-day curing period. The results of flexural strength at 90 days do not show a significant decrease. At 90 days, the mortars with higher percentages of FRCA, showed a significant gain in flexural strength. The values are very close to the reference value and even CM 25 has 4% higher flexural strength than the control mortar. Samples CM 50 and CM 100 show a decrease in flexural strength of 1% and 7% respectively with respect to the control mortar.
- Best fit statistical relationship is derived between compressive strength and flexural strength of mortar and it is observed that the first constant is twice than that of constant observed from concrete.
- Based on current investigation, the optimal percentage of substitution of FNA for FRCA is 25% with respect to compressive and flexural strength tests.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNEP Global Environmental Alert Service: Sand, Rarer than One Thinks. Available online: http://unepineurope.org/index.php?option=com_content&view=article&id=86:unep-global-environmental-alert-service-sand-rarer-than-one-thinks&catid=15&Itemid=101 (accessed on 27 September 2020).
- De Brito, J.; Agrela, F. New Trends in Eco-Efficient and Recycled Concrete; Woodhead Pulishing: Cambridge, UK, 2019. [Google Scholar]
- Pacheco-Torgal, F. High Tech Startup Creation for Energy Efficient Built Environment. Renew. Sustain. Energy Rev. 2017, 618–629. [Google Scholar] [CrossRef] [Green Version]
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. A Review of Recycled Aggregate in Concrete Applications (2000–2017). Constr. Build. Mater. 2018, 172, 272–292. [Google Scholar] [CrossRef]
- Eurostat. Recycling Rate of Waste Excluding Major Mineral Wastes. Available online: https://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=ten00106&language=en (accessed on 24 April 2020).
- Eusrostat. Generation of Waste by Economic Activity. Available online: https://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=ten00106&language=en (accessed on 3 February 2020).
- UEPG Asociación Europea de Productores de Áridos. Estimaciones de Datos de Producción de Agregados. 2017. Available online: http://www.uepg.eu/statistics/estimates-of-production-data/data-2017 (accessed on 24 April 2020).
- Eurostat. Municipal Waste Landfilled, Incinerated, Recycled and Composted in the EU-28, 1995 to 2017. Available online: https://ec.europa.eu/eurostat/statistics-explained/images/1/11/Municipal_waste_landfilled%2C_incinerated%2C_recycled_and_composted_in_the_EU-28%2C_1995_to_2017.png (accessed on 27 April 2020).
- Official Journal of European Union, 2008. 22.11.2008, L. 312 3-30. European Parliament and Council Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Available online: https://www.legislation.gov.uk/eudr/2008/98/contents# (accessed on 24 April 2020).
- Ginga, C.P.; Ongpeng, J.M.C.; Daly, M.K.M. Circular Economy on Construction and Demolition Waste: A Literature Review on Material Recovery and Production. Materials 2020, 13, 2970. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Wang, J.; Li, J.; Lu, W.; Li, C.Z.; Xu, X. Quantifying the Potential of Recycling Demolition Waste Generated from Urban Renewal: A Case Study in Shenzhen, China. J. Clean. Prod. 2020, 247. [Google Scholar] [CrossRef]
- Evangelista, A.C.J.; Tam, V.W.Y.; Santos, J. Recycled Ceramic Fine Aggregate for Masonry Mortar Production. Proc. Inst. Civ. Eng. Constr. Mater. 2019, 172, 225–234. [Google Scholar] [CrossRef]
- Kenai, S.; Menadi, B.; Khatib, J.M. Sustainable Construction and Low-Carbon Dioxide Concrete: Algeria Case. Proc. Inst. Civ. Eng. Eng. Sustain. 2014, 167, 45–52. [Google Scholar] [CrossRef]
- Gear. Guía Española de Áridos Reciclados Procedentes de Residuos de Ocnstrucción y Demolición (RCD). 2018. Available online: https://www.activatie.org/publicacion?772 (accessed on 11 May 2020).
- Zhao, Z.; Remond, S.; Damidot, D.; Xu, W. Influence of Fine Recycled Concrete Aggregates on the Properties of Mortars. Constr. Build. Mater. 2015, 81, 179–186. [Google Scholar] [CrossRef]
- Gonçalves, T.; Silva, R.V.; de Brito, J.; Fernández, J.M.; Esquinas, A.R. Mechanical and Durability Performance of Mortars with Fine Recycled Concrete Aggregates and Reactive Magnesium Oxide as Partial Cement Replacement. Cem. Concr. Compos. 2020, 105. [Google Scholar] [CrossRef]
- Cuenca-Moyano, G.M.; Martín-Morales, M.; Valverde-Palacios, I.; Valverde-Espinosa, I.; Zamorano, M. Influence of Pre-Soaked Recycled Fine Aggregate on the Properties of Masonry Mortar. Constr. Build. Mater. 2014, 70, 71–79. [Google Scholar] [CrossRef]
- Jiménez, J.R.; Ayuso, J.; López, M.; Fernández, J.M.; De Brito, J. Use of Fine Recycled Aggregates from Ceramic Waste in Masonry Mortar Manufacturing. Constr. Build. Mater. 2013, 40, 679–690. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Xiao, J.; Zhong, P. Internal Curing Effect of Saturated Recycled Fine Aggregates in Early-Age Mortar. Cem. Concr. Compos. 2020, 108. [Google Scholar] [CrossRef]
- Li, L.; Zhan, B.J.; Lu, J.; Poon, C.S. Systematic Evaluation of the Effect of Replacing River Sand by Different Particle Size Ranges of Fine Recycled Concrete Aggregates (FRCA) in Cement Mortars. Constr. Build. Mater. 2019, 209, 147–155. [Google Scholar] [CrossRef]
- Cuenca-Moyano, G.M.; Martín-Pascual, J.; Martín-Morales, M.; Valverde-Palacios, I.; Zamorano, M. Effects of Water to Cement Ratio, Recycled Fine Aggregate and Air Entraining/Plasticizer Admixture on Masonry Mortar Properties. Constr. Build. Mater. 2020, 230. [Google Scholar] [CrossRef]
- Ledesma, E.F.; Jiménez, J.R.; Fernández, J.M.; Galvín, A.P.; Agrela, F.; Barbudo, A. Properties of Masonry Mortars Manufactured with Fine Recycled Concrete Aggregates. Comput. Chem. Eng. 2014, 71, 289–298. [Google Scholar] [CrossRef]
- Lee, S.T. Influence of Recycled Fine Aggregates on the Resistance of Mortars to Magnesium Sulfate Attack. Waste Manag. 2009, 29, 2385–2391. [Google Scholar] [CrossRef]
- Senin, M.S.; Shahidan, S.; Shamsuddin, S.M.; Ariffin, S.F.A.; Othman, N.H.; Rahman, R.; Khalid, F.S.; Nazri, F.M. The Optimum Content of Rubber Ash in Concrete: Flexural Strength. IOP Conf. Ser. Mater. Sci. Eng. 2017, 271. [Google Scholar] [CrossRef]
- Carro-López, D.; González-Fonteboa, B.; De Brito, J.; Martínez-Abella, F.; González-Taboada, I.; Silva, P. Study of the Rheology of Self-Compacting Concrete with Fine Recycled Concrete Aggregates. Constr. Build. Mater. 2015, 96, 491–501. [Google Scholar] [CrossRef]
- Coelho, A.; De brito, J. Conventional Demolition Versus Deconstruction Techniques in Managing Construction and Demolition Waste (CDW); Woodhead Publishing Limited: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Kumbhar, S.A.; Gupta, A.; Desai, D.B. Recycling and Reuse of Construction and Demolition Waste for Sustainable Development. OIDA Int. J. Sustain. Dev. 2013, 6, 83–92. [Google Scholar]
- Akbarnezhad, A.; Ong, K.C.G.; Chandra, L.R. Economic and Environmental Assessment of Deconstruction Strategies Using Building Information Modeling. Autom. Constr. 2014, 37, 131–144. [Google Scholar] [CrossRef]
- Santos, S.A.; da Silva, P.R.; de Brito, J. Mechanical Performance Evaluation of Self-Compacting Concrete with Fine and Coarse Recycled Aggregates from the Precast Industry. Materials 2017, 10, 904. [Google Scholar] [CrossRef] [Green Version]
- Grdic, Z.J.; Toplicic-Curcic, G.A.; Despotovic, I.M.; Ristic, N.S. Properties of Self-Compacting Concrete Prepared with Coarse Recycled Concrete Aggregate. Constr. Build. Mater. 2010, 24, 1129–1133. [Google Scholar] [CrossRef]
- Safiuddin, M.; Salam, M.A.; Jumaat, M.Z. Effects of Recycled Concrete Aggregate on the Fresh Properties of Self-Consolidating Concrete. Arch. Civ. Mech. Eng. 2011, 11, 1023–1041. [Google Scholar] [CrossRef] [Green Version]
- Güneyisi, E.; Gesoğlu, M.; Algın, Z.; Yazıcı, H. Effect of Surface Treatment Methods on the Properties of Self-Compacting Concrete with Recycled Aggregates. Constr. Build. Mater. 2014, 64, 172–183. [Google Scholar] [CrossRef]
- González-Taboada, I.; González-Fonteboa, B.; Eiras-López, J.; Rojo-López, G. Tools for the Study of Self-Compacting Recycled Concrete Fresh Behaviour: Workability and Rheology. J. Clean. Prod. 2017, 156, 1–18. [Google Scholar] [CrossRef]
- Pereira-de-Oliveira, L.A.; Nepomuceno, M.C.S.; Castro-Gomes, J.P.; Vila, M.F.C. Permeability Properties of Self-Compacting Concrete with Coarse Recycled Aggregates. Constr. Build. Mater. 2014, 51, 113–120. [Google Scholar] [CrossRef]
- Modani, P.O.; Mohitkar, V.M. Self-Compacting Concrete with Recycled Aggregate: A Solution for Sustainable Development. Int. J. Civ. Struct. Eng. 2014, 4, 430–440. [Google Scholar] [CrossRef]
- Tuyan, M.; Mardani-aghabaglou, A.; Ramyar, K. Freeze—Thaw Resistance, Mechanical and Transport Properties of Self-Consolidating Concrete Incorporating Coarse Recycled Concrete Aggregate. Mater. Des. 2014, 53, 983–991. [Google Scholar] [CrossRef]
- Juan-Valdés, A.; Rodríguez-Robles, D.; García-González, J.; Guerra-Romero, M.I.; Morán-del Pozo, J.M. Mechanical and Microstructural Characterization of Non-Structural Precast Concrete Made with Recycled Mixed Ceramic Aggregates from Construction and Demolition Wastes. J. Clean. Prod. 2018, 180, 482–493. [Google Scholar] [CrossRef]
- Pacheco, J.; de Brito, J.; Chastre, C.; Evangelista, L. Experimental Investigation on the Variability of the Main Mechanical Properties of Concrete Produced with Coarse Recycled Concrete Aggregates. Constr. Build. Mater. 2019, 201, 110–120. [Google Scholar] [CrossRef]
- Rodríguez-Robles, D.; García-González, J.; Juan-Valdés, A.; Morán-del Pozo, J.M.; Guerra-Romero, M.I. Effect of Mixed Recycled Aggregates on Mechanical Properties of Recycled Concrete. Mag. Concr. Res. 2015, 67, 247–256. [Google Scholar] [CrossRef]
- Xiao, J.; Li, J.; Zhang, C. Mechanical Properties of Recycled Aggregate Concrete under Uniaxial Loading. Cem. Concr. Res. 2005, 35, 1187–1194. [Google Scholar] [CrossRef]
- Herbudiman, B.; Saptaji, A.M. Self-Compacting Concrete with Recycled Traditional Roof Tile Powder. Procedia Eng. 2013, 54, 805–816. [Google Scholar] [CrossRef] [Green Version]
- Martínez-García, R.; Guerra-Romero, I.M.; Morán-del Pozo, J.M.; de Brito, J.; Juan-Valdés, A. Recycling Aggregates for Self-Compacting Concrete Production: A Feasible Option. Materials 2020, 13, 868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-González, J.; Barroqueiro, T.; Evangelista, L.; de Brito, J.; De Belie, N.; Morán-del Pozo, J.; Juan-Valdés, A. Fracture Energy of Coarse Recycled Aggregate Concrete Using the Wedge Splitting Test Method: Influence of Water-Reducing Admixtures. Mater. Struct. Constr. 2017, 50, 1–15. [Google Scholar] [CrossRef]
- Rodríguez-Robles, D.; García-González, J.; Juan-Valdés, A.; Morán-Del Pozo, J.M.; Guerra-Romero, M.I. Overview Regarding Construction and Demolition Waste in Spain. Environ. Technol. 2015, 36, 3060–3070. [Google Scholar] [CrossRef]
- Frías, M.; Vigil de la Villa, R.; García, R.; Sánchez de Rojas, M.I.; Juan Valdés, A. The Influence of Slate Waste Activation Conditions on Mineralogical Changes and Pozzolanic Behavior. J. Am. Ceram. Soc. 2013, 96, 2276–2282. [Google Scholar] [CrossRef]
- García-González, J.; Rodríguez-Robles, D.; Juan-Valdés, A.; Morán-del Pozo, J.; Guerra-Romero, M. Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture. Materials 2014, 7, 6224–6236. [Google Scholar] [CrossRef] [Green Version]
- García-González, J.; Rodríguez-Robles, D.; Wang, J.; De Belie, N.; Morán-del Pozo, J.M.; Guerra-Romero, M.I.; Juan-Valdés, A. Quality Improvement of Mixed and Ceramic Recycled Aggregates by Biodeposition of Calcium Carbonate. Constr. Build. Mater. 2017, 154, 1015–1023. [Google Scholar] [CrossRef]
- RILEM. Specifications for Concrete with Recycled Aggregates. Mater. Struct. 1994, 27, 557–559. [Google Scholar] [CrossRef]
- Luther, M.; Blvd, K. ACI CRC 18.517: Guideline Development for Use of Recycled Concrete Aggregates in New Concrete; ACI: Oakland, MI, USA, 2019; Available online: https://www.acifoundation.org/Portals/12/Files/PDFs/ACI_CRC_18-517_Final_report.pdf (accessed on 20 May 2020).
- Cerema. Graves de Valorisation. Graves de Déconstruction; Centre D’études et D’expertise sur les Risques, L’environnement, la Mobilité et L’aménagement: Bron CEDEX, France, 2014.
- Works Bureau of Hong Kong. Specifications Facilitating the Use of Recycled Aggregates. WBTC No. 12/2002; The Development Bureau of the Government of the Hong Kong Special Administrative Region: Hong Kong, China, 2002. Available online: https://www.devb.gov.hk/filemanager/technicalcirculars/en/upload/138/1/wb1202.pdf (accessed on 21 May 2020).
- EHE-08. Instrucción de Hormigón Estructural. Ministerio de Fomento. España. Available online: https://www.fomento.gob.es/organos-colegiados/mas-organos-colegiados/comision-permanente-del-hormigon/cph/instrucciones/ehe-08-version-en-castellano (accessed on 8 May 2020).
- Bonifazi, G.; Palmieri, R.; Serranti, S. Evaluation of Attached Mortar on Recycled Concrete Aggregates by Hyperspectral Imaging. Constr. Build. Mater. 2018, 169, 835–842. [Google Scholar] [CrossRef]
- Yacoub, A.; Djerbi, A.; Fen-Chong, T. Water Absorption in Recycled Sand: New Experimental Methods to Estimate the Water Saturation Degree and Kinetic Filling during Mortar Mixing. Constr. Build. Mater. 2018, 158, 464–471. [Google Scholar] [CrossRef]
- Kim, Y.; Hanif, A.; Usman, M.; Park, W. Influence of Bonded Mortar of Recycled Concrete Aggregates on Interfacial Characteristics—Porosity Assessment Based on Pore Segmentation from Backscattered Electron Image Analysis. Constr. Build. Mater. 2019, 212, 149–163. [Google Scholar] [CrossRef]
- Saiz Martínez, P.; González Cortina, M.; Fernández Martínez, F.; Rodríguez Sánchez, A. Comparative Study of Three Types of Fine Recycled Aggregates from Construction and Demolition Waste (CDW), and Their Use in Masonry Mortar Fabrication. J. Clean. Prod. 2016, 118, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.-C.; Huang, R.; Hwang, H.; Chao, S.-J. The Effects of Different Fine Recycled Concrete Aggregates on the Properties of Mortar. Materials 2015, 8, 2658–2672. [Google Scholar] [CrossRef] [Green Version]
- Santha Kumar, G. Influence of Fluidity on Mechanical and Permeation Performances of Recycled Aggregate Mortar. Constr. Build. Mater. 2019, 213, 404–412. [Google Scholar] [CrossRef]
- Braga, M.; de Brito, J.; Veiga, R. Incorporation of Fine Concrete Aggregates in Mortars. Constr. Build. Mater. 2012, 36, 960–968. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Tam, C.M.; Le, K.N. Removal of Cement Mortar Remains from Recycled Aggregate Using Pre-Soaking Approaches. Resour. Conserv. Recycl. 2007, 50, 82–101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Shi, C.; Li, Y.; Pan, X.; Poon, C.S.; Xie, Z. Influence of Carbonated Recycled Concrete Aggregate on Properties of Cement Mortar. Constr. Build. Mater. 2015, 98, 1–7. [Google Scholar] [CrossRef]
- Rodrigues, F.; Carvalho, M.T.; Evangelista, L.; De Brito, J. Physical-Chemical and Mineralogical Characterization of Fine Aggregates from Construction and Demolition Waste Recycling Plants. J. Clean. Prod. 2013, 52, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Martín-Morales, M.; Zamorano, M.; Ruiz-Moyano, A.; Valverde-Espinosa, I. Characterization of Recycled Aggregates Construction and Demolition Waste for Concrete Production Following the Spanish Structural Concrete Code EHE-08. Constr. Build. Mater. 2011, 25, 742–748. [Google Scholar] [CrossRef]
- Li, J.; Xiao, H.; Zhou, Y. Influence of Coating Recycled Aggregate Surface with Pozzolanic Powder on Properties of Recycled Aggregate Concrete. Constr. Build. Mater. 2009, 23, 1287–1291. [Google Scholar] [CrossRef]
- Kou, S.C.; Poon, C.S. Properties of Concrete Prepared with Crushed Fine Stone, Furnace Bottom Ash and Fine Recycled Aggregate as Fine Aggregates. Constr. Build. Mater. 2009, 23, 2877–2886. [Google Scholar] [CrossRef]
- Evangelista, L.; de Brito, J. Mechanical Behaviour of Concrete Made with Fine Recycled Concrete Aggregates. Cem. Concr. Compos. 2007, 29, 397–401. [Google Scholar] [CrossRef]
- Neno, C.; Brito, J.D.; Veiga, R. Using Fine Recycled Concrete Aggregate for Mortar Production 2. Literature Review 3. Sequence of Testing. Mater. Res. 2014, 17, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, Y.; Guan, R. Test Research on Mechanical Properties of Recycled Fine Aggregate Mortar; Atlantis Press: Paris, France, 2016; Volume 63, pp. 733–739. [Google Scholar] [CrossRef] [Green Version]
- Ledesma, E.F.; Jiménez, J.R.; Ayuso, J.; Fernández, J.M.; De Brito, J. Maximum Feasible Use of Recycled Sand from Construction and Demolition Waste for Eco-Mortar Production—Part-I: Ceramic Masonry Waste. J. Clean. Prod. 2015, 87, 692–706. [Google Scholar] [CrossRef]
- Abadou, Y.; Mitiche-Kettab, R.; Ghrieb, A. Ceramic Waste Influence on Dune Sand Mortar Performance. Constr. Build. Mater. 2016, 125, 703–713. [Google Scholar] [CrossRef]
- UNE-EN 197-1:2011. Cemento. Parte 1: Composición, Especificaciones y Criterios de Conformidad de Los Cementos Comunes; Aenor: Madrid, Spain, 2011. [Google Scholar]
- UNE-EN 933-2:1996. Ensayos Para Determinar Las Propiedades Geométricas de Los Áridos. Parte 2: Determinación de La Granulometría de Las Partículas. Tamices de Ensayo, Tamaño Nominal de Las Aberturas; Aenor: Madrid, Spain, 1996. [Google Scholar]
- UNE-EN 13139/AC:2004. Áridos Para Morteros; Aenor: Madrid, Spain, 2004. [Google Scholar]
- UNE-EN 196-3:2017. Métodos de Ensayo de Cementos. Parte 3: Determinación Del Tiempo de Fraguado y de La Estabilidad de Volumen; Aenor: Madrid, Spain, 2017. [Google Scholar]
- UNE-EN 196-1:2018. Métodos de Ensayo de Cementos. Parte 1: Determinación de Resistencias; Aenor: Madrid, Spain, 2018. [Google Scholar]
- UNE-EN 933-1:2012. Ensayos Para Determinar Las Propiedades Geométricas de Los Áridos. Parte 3: Determinación de La Forma de Las Partículas. Índice de Lajas; Aenor: Madrid, Spain, 2012. [Google Scholar]
- Le, M.T.; Tribout, C.; Escadeillas, G. Durability of Mortars with Leftover Recycled Sand. Constr. Build. Mater. 2019, 215, 391–400. [Google Scholar] [CrossRef]
- UNE-EN 1097-6:2014. Ensayos Para Determinar Las Propiedades Mecánicas y Físicas de Los Áridos. Parte 6: Determinación de La Densidad de Partículas y La Absorción de Agua; Aenor: Madrid, Spain, 2014. [Google Scholar]
- UNE-EN 933-3:2012. Ensayos Para Determinar Las Propiedades Geométricas de Los Áridos. Parte 1: Determinación de La Granulometría de Las Partículas. Método Del Tamizado; Aenor: Madrid, Spain, 2012. [Google Scholar]
- UNE-EN 1015-3:2000/A2:2007. Métodos de Ensayo Para Morteros de Albañilería. Parte 3: Determinación de La Consistencia Del Mortero Fresco (Por La Mesa de Sacudidas); Aenor: Madrid, Spain, 2007. [Google Scholar]
- Silva, R.V.; De Brito, J.; Dhir, R.K. Performance of Cementitious Renderings and Masonry Mortars Containing Recycled Aggregates from Construction and Demolition Wastes. In Construction and Building Materials; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 400–415. [Google Scholar] [CrossRef]
- UNE-EN 1015-10:2000/A1:2007. Métodos de Ensayo de Los Morteros Para Albañilería. Parte 10: Determinación de La Densidad Aparente En Seco Del Mortero Endurecido; Aenor: Madrid, Spain, 2007. [Google Scholar]
- UNE-EN 1015-11:2020. Métodos de Ensayo de Los Morteros Para Albañilería. Parte 11: Determinación de La Resistencia a Flexión y a Compresión Del Mortero Endurecido; Aenor: Madrid, Spain, 2020. [Google Scholar]
- ASTM C311/C311M-18. Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. Available online: https://www.astm.org/Standards/C311.htm (accessed on 28 September 2020).
- Hwang, E.H.; Ko, Y.S.; Jeon, J.K. Effect of Polymer Cement Modifiers on Mechanical and Physical Properties of Polymer-Modified Mortar Using Recycled Waste Concrete Fine Aggregate. J. Ind. Eng. Chem. 2007, 13, 387–394. [Google Scholar]
- Dhir, R.K.; de Brito, J.; Silva, R.V.; Lye, C.Q. Use of Recycled Aggregates in Mortar; Elsevier: Duxford, UK, 2019; Available online: https://books.google.com.hk/books?id=TJqCDwAAQBAJ&pg=PA143&lpg=PA143&dq=Use+of+Recycled+Aggregates+in+Mortar+doi:10.1016/b978-0-08-100985-7.00006-6.&source=bl&ots=etC7o5F3ym&sig=ACfU3U0V-j6v8CJTZtC7tSVPf8-AtnaEcg&hl=zh-CN&sa=X&ved=2ahUKEwi37Nvb44HuAhWaHXAKHZLGDNoQ6AEwAHoECAEQAg#v=onepage&q=Use%20of%20Recycled%20Aggregates%20in%20Mortar%20doi%3A10.1016%2Fb978-0-08-100985-7.00006-6.&f=false (accessed on 11 May 2020). [CrossRef]
- Akono, A.; Chen, J.; Zhan, M.; Shah, S.P. Basic Creep and Fracture Response of Fine Recycled Aggregate Concrete. Constr. Build. Mater. 2020, 121107. [Google Scholar] [CrossRef]
Authors | Type of FRA | Replacement (%) | C/A | W/C (%) | WA24 (%) | Consistency (mm) | Remarks |
---|---|---|---|---|---|---|---|
P. Saiz Martínez et al., 2015 [56] | Concrete sand recycling, mixed sand recycling, ceramic sand recycling | 50, 75, 100 | 1:3 1:4 | 0.57–0.89 | NA = 0.92 RA1 = 7.48 RA2 = 6.88 RA3 = 6.12 | 175 ± 10 | Mechanical strength is poorer, but values comply with established standards. |
Fan et al., 2015 [57] | Two types of FRCA obtained through different crushing processes | 0, 25, 50, 100 | 1:2 | 0.35, 0.5 | FNA = 2.9 RA1 = 3.3 RA2 = 3.1 | 80–125 | FRCA increase decrease in flow, density, compressive strength, and UPV. |
Zhao et al., 2015 [15] | FRCA for the cement mortar | 0, 10, 20, 30, 50, 100 | 1:3 | 0.5, 0.6 | FNA = 1.05 RA = 7.54 | 82–103 | Strength decreases with increase in FRCA. |
Gonçalves et al., 2020 [16] | The fine RCA were sourced from a C30/37 concrete in the laboratory. | 50, 100 | 1:3 | 0.5–1.28 | FNA = 0.23 RA1 = 7.2 | 200 ± 15 | Fine RCA gives more porous and less resistant microstructure. Strength decrease with increasing replacement level. |
Li et al., 2019 [20] | Obtained by crushing a batch of old concrete at the age of 42 months which was specially produced by a local commercial concrete supplier | 100 | 1:3 | 0.6–0.89 | FRCA = 6.2–11.3 | 175 ± 10 | The lower the FRCA particle, the higher the water demandFlexural and compressive strengths decrease as FRCA increases. |
Santha Kumar G., 2019 [58] | FRCA from the demolition of structural pillars | 0, 25, 50, 100 | 1:3 | 0.4–1 | FNA = 0.58 RA = 10.88 | 110 ± 2.5 135 ± 2.5 160 2.5 | The higher the RFAM content, the higher the water content. Increased fluidity decrease in mechanical performance. |
Evangelista et al., 2019 [12] | Plant ceramic waste | 0, 20, 30, 50, 100 | 1:3 | 0.55 | NS = 0.70 RFA = 8.90 | 270 ± 10 | RFA replacement of up to 30% show consistent results that conform to standards. Substitution of 100% RFA is not feasible. Higher compressive strength. |
Braga et al., 2012 [59] | FRCA produced in laboratory | 0, 5, 10, 15 | 1:4 | 1.12–1.41 | - | 175 ± 10 | Incorporation up to 15% improves in most properties. |
Chemical Composition | Value (wt%) | Limit (wt%) [71] |
---|---|---|
Clinker (SiO2, Fe2O3, Al2O3, CaO, MgO and SO3) | 54 | 35–64 |
Blast-furnace slag | 41 | 36–65 |
Minor components | 5 | ≤5 |
LOI (Loss on ignition) | 1.97 | ≤5 |
Physical characteristics | [72] | |
Le Chatelier (mm) | 1.5 | ≤5 |
Initial setting time (min) | 195 | ≥60 |
Final setting time (min) | 295 | ≥60 |
Mechanical characteristics | [73] | |
Compressive strength (MPa) 2 days | 20.1 | ≥13.5 |
Compressive strength (MPa) 28 days | 56.6 | ≤42.5 and ≤62.5 |
Parameter | Standard | Value | Limit EHE-08 [52] |
---|---|---|---|
Composition (%) | EN 933-1:2012 [78] | ||
Floating particles (%) | 0 | ≤1 | |
Gypsum and impurities (%) | 0.04 | ≤1 | |
Concrete (%) | 70.7 | - | |
Natural stone (%) | 27 | - | |
Bricks and tiles (%) | 2.3 | ≤5 | |
Bituminous mat (%) | 0 | ≤1 | |
Glass (%) | 0 | ≤1 |
Parameter | Standard | Value | Limit EHE-08 [52] |
---|---|---|---|
Flakiness index (%) | EN 933-3:2012 [79] | 5.7 | ≤35 |
Density and absorption | EN 1097-6:2014 [78] | ||
Pa (apparent density) (Mg/m3) | 2.52 | - | |
Pod (oven dry density) (Mg/m3) | 1.94 | - | |
Pssd (saturated surface dry density) (Mg/m3) | 2.17 | - | |
WA24 (water absorption) (%) | 4.8 | ≤5 |
Mortars | Fine Natural Aggregate (%) | Fine Recycled Aggregate (%) |
---|---|---|
OPC 1 | 100% | 0% |
CM 25 2 | 75% | 25% |
CM 50 3 | 50% | 50% |
CM 100 4 | 0% | 100% |
Content (m3) | OPC | CM 25 | CM 50 | CM 100 |
---|---|---|---|---|
Cement (kg) | 450 | 450 | 450 | 450 |
Water (kg) | 189 | 225 | 243 | 279 |
Natural sand (kg) | 1350 | 1012.5 | 675 | 0 |
Fine recycled aggregate (kg) | 0 | 337.5 | 675 | 1350 |
W/C ratio | 0.42 | 0.5 | 0.54 | 0.62 |
Consistency | 134 | 134 | 134 | 134.5 |
Theoretical density (kg/m3) | 1989 | 2024.5 | 2043 | 2213.5 |
Size (mm) | CaO | Fe2O3 | K2O | MgO | Na2O | SiO2 | P2O5 | TiO2 | Al2O3 | SO3 |
PC 2 | 51.8 | 2.03 | 0.84 | 4.68 | 0.26 | 25.0 | 0.042 | 0.60 | 7.20 | 2.70 |
<0.075 | 18 | 2.94 | 0.84 | 0.43 | 0.17 | 62.2 | 0.15 | 0.61 | 4.61 | 0.62 |
0.075 | 9.30 | 1.48 | 0.66 | 0.31 | 0.10 | 79.7 | 0.097 | 0.23 | 3.32 | 0.40 |
0.125 | 5.70 | 1.18 | 0.56 | 0.23 | 0.11 | 85.8 | 0.085 | 0.14 | 2.48 | 0.22 |
0.50 | 6.66 | 1.30 | 0.78 | 0.28 | 0.12 | 84.0 | 0.086 | 0.12 | 2.85 | 0.27 |
1 | 7.56 | 1.58 | 0.82 | 0.32 | 0.13 | 81.3 | 0.082 | 0.14 | 3.14 | 0.33 |
1.6 | 7.64 | 1.72 | 0.72 | 0.34 | 0.12 | 80.3 | 0.13 | 0.16 | 3.18 | 0.95 |
2 | 7.80 | 2.05 | 0.71 | 0.37 | 0.12 | 80.0 | 0.10 | 0.16 | 3.35 | 0.48 |
4 | 6.89 | 1.78 | 0.56 | 0.35 | 0.082 | 81.8 | 0.094 | 0.19 | 3.03 | 0.52 |
size (mm) | Cr2O3 | MnO | ZrO2 | CI | ZnO | SrO | PbO | LOI 1 | ||
PC 2 | nd | 0.13 | 0.022 | 0.029 | 0.036 | 0.094 | 0.014 | 4.53 | ||
<0.075 | 0.050 | 0.050 | 0.24 | nd | 0.020 | 0.14 | 0.005 | 9.10 | ||
0.075 | 0.015 | 0.032 | 0.060 | nd | 0.010 | 0.051 | nd | 4.18 | ||
0.125 | 0.015 | 0.018 | 0.014 | nd | nd | 0.036 | nd | 3.40 | ||
0.50 | 0.012 | 0.023 | 0.014 | nd | nd | 0.035 | 0.004 | 3.5 | ||
1 | nd | 0.028 | 0.017 | nd | nd | 0.038 | 0.003 | 4.49 | ||
1.6 | 0.012 | 0.033 | 0.017 | nd | nd | 0.036 | nd | 4.62 | ||
2 | 0.014 | 0.035 | 0.015 | nd | nd | 0.033 | 0.004 | 4.68 | ||
4 | 0.012 | 0.041 | 0.019 | 0.010 | nd | 0.030 | 0.006 | 4.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-García, R.; Rojas, M.I.S.d.; Pozo, J.M.M.-d.; Fraile-Fernández, F.J.; Juan-Valdés, A. Evaluation of Mechanical Characteristics of Cement Mortar with Fine Recycled Concrete Aggregates (FRCA). Sustainability 2021, 13, 414. https://doi.org/10.3390/su13010414
Martínez-García R, Rojas MISd, Pozo JMM-d, Fraile-Fernández FJ, Juan-Valdés A. Evaluation of Mechanical Characteristics of Cement Mortar with Fine Recycled Concrete Aggregates (FRCA). Sustainability. 2021; 13(1):414. https://doi.org/10.3390/su13010414
Chicago/Turabian StyleMartínez-García, Rebeca, María Isabel Sánchez de Rojas, Julia Mª. Morán-del Pozo, Fernando J. Fraile-Fernández, and Andrés Juan-Valdés. 2021. "Evaluation of Mechanical Characteristics of Cement Mortar with Fine Recycled Concrete Aggregates (FRCA)" Sustainability 13, no. 1: 414. https://doi.org/10.3390/su13010414
APA StyleMartínez-García, R., Rojas, M. I. S. d., Pozo, J. M. M.-d., Fraile-Fernández, F. J., & Juan-Valdés, A. (2021). Evaluation of Mechanical Characteristics of Cement Mortar with Fine Recycled Concrete Aggregates (FRCA). Sustainability, 13(1), 414. https://doi.org/10.3390/su13010414