A Regional Approach for Investigation of Temporal Precipitation Changes
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Regional Homogeneity Analysis
3.1.1. The Index Precipitation Method
- : The discordancy measure for the site i
- for 2 parameter distributions
- for 3 parameter distributions
- : The mean vector of
- : The rth dimensionless L-moment of the site i
3.1.2. Frequency Distributions and Their L-Moment Estimations
- : Cumulative frequency distribution.
- α, and : The parameters of the frequency distributions.
- and : The first and second order L-moments
- : Gamma function
3.1.3. Delineation of Homogenous Regions
- : The average weighted distances
- : Index for sites
- : The number of sites
- : The number of the observations at the site ,
- : The distance between the L-moment ratios of the theoretical distributions and observations for the site ,
- : the 3th and 4th dimensionless L-moments of site observations
- : the 3th and 4th dimensionless L-moments of a considered theoretical distribution.
- : The Euclidean Distance between L-moment parameters of the sites and j
- , , : L-moment parameters of the frequency distribution of the site i
- , , : L-moment parameters of the frequency distribution of the site j
3.1.4. Test of Homogenous Regions
- : index for sites
- The number of sites
- : Sample size for the site i
- , , : The 1th, 2nd, and 3rd L-moment ratios for the site i (see Equation (4))
- , , : The means of , , in a considered homogenous region.
- : The regional mean of the parameter
- : The regional standard deviation of the parameter
- : Heterogeneity Measure
3.2. Trend Analyses on Homogenous Regions
3.2.1. Trend Indices
- m is the number of the stations in the considered homogenous region
- n is the number of the hours in the considered month
- i is the index of station
- t is the index of time (hours)
- Pi (t) is the precipitation for time t and site i (mm/hour).
- is the number of the rainy hours
- is the number of the rainy hours for which . Where is the precipitation corresponding to α significance level for the frequency distribution fitted to hourly precipitations for the considered month τ.
- pvi is the precipitation of the rainy hours for (i.e., extreme precipitations)
- is the length of the maximum wet period in the considered month τ (hours)
- I1: the mean hourly precipitation in the homogenous region considered
- I2: The regional maximum of the mean hourly precipitations.
- I3: The regional maximum of the observed hourly precipitations.
- I4: The regional mean of the observed maximum hourly precipitation in the sites.
- I5: The regional mean of the rainy hours in a month
- I6: The regional maximum of rainy hours in a month
- I7: The regional mean of the rainy hours (in a month) with extreme precipitation
- I8: The regional maximum of the rainy hours (in a month) with extreme precipitation
- I9: The regional mean of the extreme precipitations in a month
- I10: The regional maximum of the extreme precipitations in a month
- I11: The regional mean of the length of maximum wet period for a considered month τ
- I12: The regional maximum of the length of maximum wet period for a considered month τ
- RTI: The regional trend index
- TI: The number of the I1, I2, … I12 indices with a significant trend.
3.2.2. Trend Tests
- n is the sample size
- r is the coefficient of correlation
- tcr,α/2 is the critical t value for the confidence level α/2.
- tk is the number of the tied observations (a set of sample data with same value) in the k th group
- g is the number of the tied groups
- is the standard deviation of S statistic
4. Application and Results
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karl, T.R.; Knight, R.W.; Plummer, N. Trends in hight-frequency climate variability in the twentieth century. Nature 1995, 377, 217–220. [Google Scholar] [CrossRef]
- Fujibe, F.; Yamazaki, N. Long term changes of heavy precipitation and dry weather in Japan. J. Meteorol. Soc. Jpn. 2006, 84, 1033–1046. [Google Scholar] [CrossRef] [Green Version]
- Partal, T.; Kahya, E. Trend analysis in Turkish precipitation data. Hydrol. Process. 2006, 20, 2011–2026. [Google Scholar] [CrossRef]
- Serrano, A.; Mateos, V.L.; Garcia, J.A. Trend analysis of monthly precipitation over the Iberian Peninsula for the period 1921–1995. Phys. Chem. Earth B 1999, 24, 85–90. [Google Scholar] [CrossRef]
- Piccarreta, M.; Capolongo, D.; Boenzi, F. Trend analysis of precipitation and drought in Basilicata, from 1923 to 2000 within a southern Italy context. Int. J. Climatol. 2004, 24, 907–922. [Google Scholar] [CrossRef]
- Stafford, J.M.; Wendler, G.; Curti, J. Temperature and precipitation of Alaska: 50-year trend analysis. Theor. Appl. Climatol. 2000, 67, 33–44. [Google Scholar] [CrossRef]
- Feidas, H.; Noulopoulou, C.H.; Makrogiannis, T.; Bora-Senta, E. Trend analysis of precipitation time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theor. Appl. Climatol. 2007, 87, 155–177. [Google Scholar] [CrossRef]
- Gemmer, M.; Becker, S.; Jiang, T. Observed monthly precipitation trends in China 1951–2002. Theor. Appl. Climatol. 2004, 77, 39–45. [Google Scholar] [CrossRef]
- Mekis, E.; Hogg, W.D. Rehabilitation and analysis of Canadian daily precipitation time series. Atmos. Ocean 1999, 37, 53–85. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Andsager, K.; Easterling, D.R. Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Clim. 1999, 12, 2515–2527. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Xie, P.; Janowiak, J.E.; Arkin, P.A. Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 2002, 3, 249–266. [Google Scholar] [CrossRef]
- IPCC; Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; Van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. (Eds.) Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; p. 881. [Google Scholar]
- Bordi, I.; Fraedrich, K.; Suteara, A. Observed drought and wetness trends in Europe: An update. Hydrol. Earth Syst. Sci. 2009, 13, 1519–1530. [Google Scholar] [CrossRef] [Green Version]
- Katz, R.W.; Brown, B.G. Extreme events in a changing climate: Variability is more important than averages. Clim. Change 1992, 21, 289–302. [Google Scholar] [CrossRef]
- Semmler, T.; Jacob, D. Modeling extreme precipitation events: A climate change simulation for Europe. Glob. Planet. Change 2004, 44, 119–127. [Google Scholar] [CrossRef]
- Machiwal, D.; Kumar, S.; Meena, H.M.; Santra, P.; Singh, R.K.; Singh, D.V. Clustering of rainfall stations and distinguishing influential factors using PCA and HCA techniques over the western dry region of India. Meteorol. Appl. 2019, 26, 300–311. [Google Scholar] [CrossRef] [Green Version]
- Kirby, W.H.; Moss, M.E. Summary of flood-frequency analysis in the United States. J. Hydrol. 1987, 96, 5–14. [Google Scholar] [CrossRef]
- Mishra, B.K.; Takara, K.; Yamashiki, Y.; Tachikawa, Y. An assesment of predictive accuracy for two regional flood-frequency estimation methods, annual. J. Hydraul. Eng. JSCE 2010, 54, 7–12. [Google Scholar]
- Stedinger, J.R.; Tasker, G.D. Regional hydrologic analysis, 1: Ordinary weighted and generalized least squares compared. Water Resour. Res. 1985, 21, 1421. [Google Scholar] [CrossRef]
- Wallis, J.R.; Wood, E.F. Relative accuracy of log Pearson Type III procedures. J. Hydraul. Eng. ASCE 1985, 111, 1043–1056. [Google Scholar] [CrossRef]
- Burn, D.H. Evaluation of regional flood frequency analysis with a region of influence approach. Water Resour. Res. 1990, 26, 2257–2265. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis; Cambridge University Press: Cambridge, UK, 1997; p. 224. [Google Scholar]
- Stedinger, J.R.; Lu, L.H. Appraisal of regional and index flood quantile estimators. Stoch. Hydrol. Hydraul. 1995, 9, 49–75. [Google Scholar] [CrossRef]
- Cunnane, C. Methods and merits of regional flood frequency analysis. J. Hydrol. 1988, 100, 269–290. [Google Scholar] [CrossRef]
- Japan Meteorological Agency (JMA). 2005. Available online: https://www.jma.go.jp/en/g3/ (accessed on 21 June 2019).
- Kajiwara, M.; Oki, T.; Matsumoto, J. Secular change in the frequency of heavy precipitation over Japan for 100 years. In Proceedings of the 2003 Spring Meeting of MJS, Washington, DC, USA, 12–13 April 2003. [Google Scholar]
- Takahashi, H. Secular variation in the occurrence property of summertime daily rainfall amount in and around the Tokyo metropolitan area. Tenki 2003, 50, 31–41. [Google Scholar]
- Van Gelder, P.; Mai, C.V. Distribution functions of extreme sea waves and river discharges. J. Hydraul. Res. 2008, 46, 280–291. [Google Scholar] [CrossRef]
- Dalrymple, T. Flood Frequency Analysis, Manual of Hydrology; Water Supply Paper Series No. 1543; U.S. Geological Survey: Washington, DC, USA, 1960; Chapter A.
- Sveinsson, O.G.B.; Salas, J.D.; Boes, D.C. Regional frequency analysis of extreme precipitation in northeastern Colorado and Fort Collins flood of 1997. J. Hydrol. Eng. 2002, 7, 1–49. [Google Scholar] [CrossRef]
- Norbiato, D.; Borga, M.; Sangati, M.; Zanon, F. Regional frequency analysis of extreme precipitation in the eastern Italian Alps and the August 29, 2003 flash flood. J. Hydrol. 2007, 345, 149–166. [Google Scholar] [CrossRef]
- Guttman, N.B. The use of L-moments in the determination of regional precipitation climates. J. Clim. 1993, 6, 2309–2325. [Google Scholar] [CrossRef] [Green Version]
- Hosking, J.R.M. L-moments: Analysis and estimation of distributions using liner combinations of order statistics. J. R. Statist. Soc. B 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Parida, B.P.; Kachroo, R.K.; Shrestha, D.B. Regional flood frequency analysis of Mahi-Sabarmati basin using index flood pressure with L-moments. Water Resour. Manag. 1998, 12, 1–12. [Google Scholar] [CrossRef]
- Greenwood, J.A.; Landwehr, J.M.; Matalas, N.C.; Wallis, J.R. Probability weighted moments; Definition and relation to parameters of several distributions expressible in inverse form. Water Resour. Res. 1979, 15, 1049–1054. [Google Scholar] [CrossRef] [Green Version]
- Caroni, C.; Prescott, P. Sequential application of Wilks’s multivariate outliers test. Appl. Stat. 1992, 41, 355–364. [Google Scholar] [CrossRef]
- Vogel, R.M.; Fennessey, N.M. L-moment diagrams should reply product moment diagrams. Water Resour. Res. 1993, 29, 1745–1752. [Google Scholar] [CrossRef]
- Folland, C.K.; Frich, P.; Rayner, N.; Basnerr, T.; Parker, D.E.; Horton, B. Uncertainties in climate data set, A challenge for WHO. WMO Bull. 2000, 49, 59–68. [Google Scholar]
- Frich, P.; Alexander, L.V.; Marta, P.D.; Gleason, B.; Haylock, M.; Tank, A.M.G.K.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Folland, C.K.; Karl, T.R.; Salinger, M.J. Observed climate variability and change. Weather 2002, 57, 269–278. [Google Scholar] [CrossRef]
- Fujibe, F.; Yamazaki, N.; Katsuyama, M.; Kobayashi, K. The increasing trend of intense precipitation in Japan based on four-hourly data for a hundred years. SOLA 2005, 1, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Onoz, B.; Bayazıt, M. The power of statistical tests trend for detection. Turk. J. Eng. Environ. Sci. 2003, 27, 247–251. [Google Scholar]
- Haan, C.T. Statistical Methods in Hydrology; The Iowa State University Press: Ames, IA, USA, 1977. [Google Scholar]
Trends in Sites | ||||||
---|---|---|---|---|---|---|
Sites | 575 | 585 | 616 | 622 | 836 | 940 |
b (mm/month) | 0.011 | 0.023 | 0.020 | 0.020 | 0.040 | 0.035 |
t values | * | 2.266 | 2.090 | 2.370 | 1.961 | 2.464 |
z values | 1.989 | 2.093 | 1.537 | * | * | 1.963 |
1th Month | 2th Month | 3th Month | 4th Month | ||||||||||||
Station | dmin | Station | D | Station | dmin | Station | D | Station | dmin | Station | D | Station | dmin | Station | D |
622 | 0.167 | 784 | 5.525 | 666 | 0.182 | 413 | 7.802 | 401 | 0.184 | 401 | 9.586 | 612 | 0.149 | 684 | 4.342 |
784 | 0.166 | 512 | 4.671 | 653 | 0.171 | 636 | 6.138 | 640 | 0.143 | 740 | 7.453 | 769 | 0.127 | 675 | 4.272 |
672 | 0.154 | 585 | 4.425 | 742 | 0.150 | 776 | 5.695 | 656 | 0.119 | 430 | 6.164 | 670 | 0.123 | 651 | 4.216 |
817 | 0.153 | 898 | 4.293 | 424 | 0.118 | 587 | 4.872 | 942 | 0.118 | 626 | 5.252 | 622 | 0.116 | 605 | 3.635 |
780 | 0.134 | 762 | 4.212 | 819 | 0.116 | 653 | 4.190 | 750 | 0.104 | 741 | 4.343 | 651 | 0.104 | 893 | 3.605 |
766 | 0.131 | 440 | 4.175 | 570 | 0.111 | 895 | 3.961 | 754 | 0.103 | 899 | 4.334 | 893 | 0.095 | 662 | 3.498 |
649 | 0.105 | 672 | 3.767 | 631 | 0.110 | 666 | 3.942 | 831 | 0.096 | 784 | 4.043 | 768 | 0.091 | ||
626 | 0.104 | 815 | 3.566 | 822 | 0.110 | 837 | 3.840 | 610 | 0.094 | 656 | 3.902 | 755 | 0.085 | ||
616 | 0.101 | 421 | 0.097 | 742 | 3.146 | 597 | 0.077 | 662 | 0.068 | ||||||
674 | 0.095 | 636 | 0.077 | 612 | 0.061 | 657 | 0.062 | ||||||||
618 | 0.082 | 585 | 0.060 | 767 | 0.060 | ||||||||||
654 | 0.077 | 592 | 0.052 | 830 | 0.055 | ||||||||||
421 | 0.053 | ||||||||||||||
606 | 0.052 | ||||||||||||||
618 | 0.040 | ||||||||||||||
674 | 0.039 | ||||||||||||||
570 | 0.037 | ||||||||||||||
5th Month | 6th Month | 7th Month | 8th Month | ||||||||||||
Station | dmin | Station | D | Station | dmin | Station | D | Station | dmin | Station | D | Station | dmin | Station | D |
837 | 0.126 | 777 | 6.064 | 754 | 0.133 | 824 | 8.727 | 807 | 0.138 | 575 | 6.005 | 632 | 0.208 | 632 | 9.369 |
629 | 0.111 | 780 | 5.651 | 824 | 0.114 | 624 | 6.802 | 674 | 0.120 | 812 | 5.655 | 822 | 0.122 | 684 | 8.802 |
624 | 0.094 | 626 | 4.335 | 822 | 0.112 | 649 | 5.819 | 819 | 0.116 | 776 | 4.675 | 587 | 0.105 | 440 | 6.681 |
835 | 0.092 | 837 | 3.826 | 684 | 0.104 | 684 | 4.473 | 605 | 0.106 | 945 | 4.471 | 655 | 0.103 | 746 | 4.936 |
607 | 0.092 | 663 | 3.741 | 682 | 0.098 | 602 | 3.691 | 405 | 0.091 | 637 | 3.511 | 674 | 0.090 | 598 | 4.677 |
821 | 0.091 | 649 | 3.701 | 648 | 0.096 | 835 | 3.487 | 597 | 0.090 | 426 | 3.447 | 768 | 0.079 | 761 | 3.491 |
407 | 0.090 | 618 | 3.141 | 590 | 0.090 | 770 | 3.298 | 892 | 0.089 | 407 | 3.243 | 684 | 0.062 | 822 | 3.125 |
772 | 0.078 | 636 | 0.084 | 655 | 3.287 | 762 | 0.088 | 819 | 3.232 | 762 | 3.064 | ||||
756 | 0.076 | 778 | 0.083 | 893 | 0.079 | 807 | 3.051 | 411 | 3.047 | ||||||
893 | 0.076 | 428 | 0.082 | 581 | 0.077 | ||||||||||
570 | 0.074 | 823 | 0.081 | 616 | 0.074 | ||||||||||
777 | 0.073 | 805 | 0.080 | 668 | 0.063 | ||||||||||
411 | 0.073 | 831 | 0.080 | 595 | 0.062 | ||||||||||
672 | 0.071 | 423 | 0.076 | 404 | 0.054 | ||||||||||
512 | 0.070 | 654 | 0.070 | 656 | 0.053 | ||||||||||
831 | 0.070 | 581 | 0.070 | ||||||||||||
598 | 0.068 | 582 | 0.066 | ||||||||||||
648 | 0.063 | ||||||||||||||
663 | 0.060 | ||||||||||||||
940 | 0.058 | ||||||||||||||
636 | 0.040 | ||||||||||||||
9th Month | 10th Month | 11th Month | 12th Month | ||||||||||||
Station | dmin | Station | D | Station | dmin | Station | D | Station | dmin | Station | D | Station | dmin | Station | D |
574 | 0.257 | 574 | 6.647 | 632 | 0.187 | 620 | 6.130 | 592 | 0.159 | 675 | 5.012 | 570 | 0.326 | 404 | 9.117 |
830 | 0.211 | 584 | 4.482 | 620 | 0.165 | 604 | 5.897 | 624 | 0.154 | 626 | 4.679 | 588 | 0.212 | 750 | 7.069 |
822 | 0.167 | 830 | 4.453 | 784 | 0.162 | 435 | 4.899 | 807 | 0.153 | 807 | 4.344 | 584 | 0.185 | 570 | 6.661 |
584 | 0.148 | 822 | 4.163 | 759 | 0.148 | 800 | 4.584 | 836 | 0.149 | 575 | 4.031 | 587 | 0.167 | 770 | 5.135 |
610 | 0.115 | 632 | 3.937 | 815 | 0.132 | 767 | 3.817 | 424 | 0.145 | 592 | 4.009 | 428 | 0.163 | 421 | 4.678 |
423 | 0.114 | 654 | 3.583 | 420 | 0.116 | 617 | 3.649 | 616 | 0.130 | 424 | 3.982 | 843 | 0.134 | 892 | 4.468 |
766 | 0.112 | 440 | 3.363 | 624 | 0.111 | 815 | 3.418 | 626 | 0.126 | 651 | 3.837 | 402 | 0.132 | 590 | 4.295 |
626 | 0.110 | 653 | 3.150 | 607 | 0.106 | 632 | 3.342 | 822 | 0.100 | 836 | 3.825 | 756 | 0.130 | 585 | 4.172 |
817 | 0.105 | 598 | 0.094 | 612 | 3.293 | 823 | 0.088 | 588 | 3.208 | 404 | 0.128 | 581 | 4.048 | ||
426 | 0.105 | 433 | 0.085 | 759 | 3.277 | 769 | 0.080 | 838 | 0.109 | 741 | 3.914 | ||||
648 | 0.105 | 829 | 0.081 | 420 | 3.201 | 675 | 0.075 | 835 | 0.083 | 588 | 3.096 | ||||
512 | 0.093 | 604 | 0.068 | 898 | 0.056 | 417 | 3.049 | ||||||||
741 | 0.093 | 893 | 0.057 | 590 | 0.045 | ||||||||||
827 | 0.076 | ||||||||||||||
682 | 0.070 |
Month | Class | Generalized Pareto | Generalized Logistic | Pearson Type III | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean | Std Dev | n | Mean | Std Dev | n | Mean | Std Dev | ||||||||||||||
α | k | β | α | k | β | α | k | β | α | k | β | α | k | β | α | k | β | |||||
1 | 1 | 12 | 0 | 1.565 | 2.565 | 0 | 0.242 | 0.242 | 23 | 0.932 | −0.170 | 0.221 | 0.040 | 0.075 | 0.073 | 8 | 0.241 | 2.156 | 0.365 | 0.155 | 0.412 | 0.105 |
2 | 14 | 0 | 2.387 | 3.387 | 0 | 0.198 | 0.198 | 19 | 0.835 | −0.362 | 0.240 | 0.041 | 0.041 | 0.066 | 8 | 0.406 | 1.005 | 0.628 | 0.189 | 0.293 | 0.246 | |
3 | 11 | 0 | 0.939 | 1.939 | 0 | 0.122 | 0.122 | 3 | 0.595 | −0.615 | 0.233 | 0.081 | 0.056 | 0.045 | 3 | −0.324 | 10.861 | 0.122 | 0.347 | 0.338 | 0.030 | |
4 | 13 | 0 | 0.363 | 1.363 | 0 | 0.218 | 0.218 | 4 | 0.161 | 4.090 | 0.206 | 0.262 | 0.660 | 0.062 | ||||||||
5 | 2 | 0 | 5.412 | 6.412 | 0 | 0.055 | 0.055 | 2 | 0.122 | 8.054 | 0.109 | 0.103 | 0.484 | 0.006 | ||||||||
6 | 2 | 0.055 | 5.668 | 0.169 | 0.476 | 0.287 | 0.093 | |||||||||||||||
2 | 1 | 14 | 0 | 1.443 | 2.443 | 0 | 0.176 | 0.176 | 22 | 0.909 | −0.230 | 0.226 | 0.029 | 0.049 | 0.051 | 23 | 0.172 | 1.949 | 0.620 | 0.197 | 1.128 | 0.428 |
2 | 19 | 0 | 0.713 | 1.713 | 0 | 0.259 | 0.259 | 24 | 0.816 | −0.383 | 0.243 | 0.042 | 0.024 | 0.050 | 3 | −0.036 | 7.843 | 0.131 | 0.299 | 1.430 | 0.029 | |
3 | 7 | 0 | 2.182 | 3.182 | 0 | 0.221 | 0.221 | 3 | 0.976 | −0.124 | 0.116 | 0.008 | 0.031 | 0.021 | ||||||||
4 | 2 | 0 | 4.689 | 5.689 | 0 | 0.026 | 0.026 | 3 | 0.979 | −0.052 | 0.234 | 0.014 | 0.021 | 0.062 | ||||||||
5 | 4 | 0 | 2.830 | 3.830 | 0 | 0.104 | 0.104 | 2 | 0.812 | −0.526 | 0.150 | 0.028 | 0.069 | 0.014 | ||||||||
6 | 4 | 0 | 3.774 | 4.774 | 0 | 0.249 | 0.249 | |||||||||||||||
7 | 2 | 0 | 5.688 | 6.688 | 0 | 0.354 | 0.354 | |||||||||||||||
3 | 1 | 21 | 0 | 2.442 | 3.442 | 0 | 0.340 | 0.340 | 20 | 0.837 | −0.370 | 0.225 | 0.030 | 0.058 | 0.027 | 16 | 0.435 | 1.309 | 0.490 | 0.156 | 0.626 | 0.177 |
2 | 17 | 0 | 1.314 | 2.314 | 0 | 0.320 | 0.320 | 31 | 0.941 | −0.180 | 0.199 | 0.020 | 0.064 | 0.047 | 4 | 0.121 | 3.650 | 0.240 | 0.135 | 0.200 | 0.031 | |
3 | 11 | 0 | 3.849 | 4.849 | 0 | 0.469 | 0.469 | 7 | 1.003 | 0.009 | 0.171 | 0.015 | 0.049 | 0.027 | 2 | −0.759 | 26.178 | 0.067 | 0.639 | 0.412 | 0.023 | |
4 | 2 | −0.593 | 14.802 | 0.108 | 0.000 | 1.632 | 0.012 | |||||||||||||||
4 | 1 | 17 | 0 | 1.751 | 2.751 | 0 | 0.138 | 0.138 | 27 | 0.879 | −0.263 | 0.251 | 0.039 | 0.053 | 0.035 | 5 | −0.124 | 7.009 | 0.161 | 0.351 | 0.297 | 0.052 |
2 | 13 | 0 | 1.037 | 2.037 | 0 | 0.159 | 0.159 | 3 | 0.828 | −0.467 | 0.169 | 0.020 | 0.039 | 0.003 | 25 | 0.251 | 2.368 | 0.382 | 0.141 | 1.005 | 0.188 | |
3 | 5 | 0 | 2.130 | 3.130 | 0 | 0.066 | 0.066 | 16 | 0.961 | −0.099 | 0.232 | 0.022 | 0.049 | 0.033 | 2 | −0.798 | 14.358 | 0.127 | 0.541 | 0.845 | 0.045 | |
4 | 4 | 0 | 3.083 | 4.083 | 0 | 0.037 | 0.037 | 6 | 0.713 | −0.486 | 0.262 | 0.045 | 0.055 | 0.023 | ||||||||
5 | 2 | 0 | 0.633 | 1.633 | 0 | 0.097 | 0.097 | |||||||||||||||
6 | 2 | 0 | 2.713 | 3.713 | 0 | 0.098 | 0.098 | |||||||||||||||
5 | 1 | 7 | 0 | 2.863 | 3.863 | 0 | 0.031 | 0.031 | 6 | 0.911 | −0.290 | 0.168 | 0.011 | 0.018 | 0.010 | 10 | 0.290 | 1.755 | 0.412 | 0.162 | 0.404 | 0.081 |
2 | 6 | 0 | 2.473 | 3.473 | 0 | 0.076 | 0.076 | 22 | 0.898 | −0.234 | 0.246 | 0.025 | 0.040 | 0.034 | 5 | 0.307 | 2.831 | 0.245 | 0.102 | 0.230 | 0.029 | |
3 | 15 | 0 | 1.216 | 2.216 | 0 | 0.145 | 0.145 | 7 | 0.958 | −0.126 | 0.203 | 0.010 | 0.032 | 0.029 | 8 | 0.440 | 0.578 | 1.037 | 0.118 | 0.172 | 0.345 | |
4 | 10 | 0 | 1.823 | 2.823 | 0 | 0.205 | 0.205 | 13 | 0.820 | −0.414 | 0.214 | 0.025 | 0.039 | 0.030 | 4 | 0.215 | 3.724 | 0.212 | 0.079 | 0.199 | 0.029 | |
5 | 2 | 0.992 | −0.025 | 0.200 | 0.001 | 0.005 | 0.013 | 2 | −0.057 | 11.899 | 0.089 | 0.109 | 0.108 | 0.010 | ||||||||
6 | 2 | 0.818 | −0.323 | 0.301 | 0.014 | 0.008 | 0.014 | 2 | −0.147 | 9.931 | 0.115 | 0.116 | 0.124 | 0.010 | ||||||||
7 | 2 | 0.732 | −0.558 | 0.192 | 0.012 | 0.014 | 0.018 | 2 | 0.026 | 5.204 | 0.188 | 0.261 | 0.120 | 0.055 | ||||||||
8 | 2 | −0.124 | 6.974 | 0.162 | 0.275 | 0.361 | 0.048 | |||||||||||||||
6 | 1 | 16 | 0 | 1.576 | 2.576 | 0 | 0.125 | 0.125 | 17 | 0.908 | −0.205 | 0.258 | 0.019 | 0.033 | 0.028 | 7 | 0.269 | 1.596 | 0.496 | 0.112 | 0.526 | 0.145 |
2 | 5 | 0 | 1.996 | 2.996 | 0 | 0.061 | 0.061 | 19 | 0.843 | −0.323 | 0.258 | 0.032 | 0.039 | 0.030 | 6 | −0.269 | 6.235 | 0.206 | 0.138 | 0.760 | 0.030 | |
3 | 17 | 0 | 1.083 | 2.083 | 0 | 0.164 | 0.164 | 5 | 0.917 | −0.262 | 0.178 | 0.007 | 0.018 | 0.010 | 4 | −0.302 | 9.193 | 0.143 | 0.153 | 0.762 | 0.024 | |
4 | 6 | 0 | 2.918 | 3.918 | 0 | 0.112 | 0.112 | 5 | 0.971 | −0.080 | 0.229 | 0.009 | 0.035 | 0.044 | 7 | 0.173 | 3.678 | 0.224 | 0.209 | 0.651 | 0.044 | |
5 | 5 | 0 | 2.407 | 3.407 | 0 | 0.138 | 0.138 | 4 | 0.762 | −0.460 | 0.242 | 0.015 | 0.037 | 0.037 | 3 | −0.605 | 12.560 | 0.130 | 0.269 | 1.032 | 0.033 | |
6 | 2 | 0 | 3.331 | 4.331 | 0 | 0.044 | 0.044 | 2 | 0.846 | −0.501 | 0.133 | 0.030 | 0.053 | 0.001 | ||||||||
7 | 2 | 0 | 0.687 | 1.687 | 0 | 0.053 | 0.053 | |||||||||||||||
7 | 1 | 19 | 0 | 1.644 | 2.644 | 0 | 0.157 | 0.157 | 15 | 0.931 | −0.155 | 0.264 | 0.024 | 0.054 | 0.039 | 15 | 0.188 | 2.114 | 0.442 | 0.296 | 1.053 | 0.184 |
2 | 10 | 0 | 0.615 | 1.615 | 0 | 0.128 | 0.128 | 15 | 0.854 | −0.288 | 0.282 | 0.020 | 0.031 | 0.043 | 5 | −0.722 | 9.731 | 0.178 | 0.132 | 0.794 | 0.024 | |
3 | 15 | 0 | 1.107 | 2.107 | 0 | 0.147 | 0.147 | 4 | 0.748 | −0.427 | 0.283 | 0.039 | 0.037 | 0.027 | 9 | −0.107 | 5.722 | 0.194 | 0.206 | 0.562 | 0.038 | |
4 | 4 | 0 | 2.130 | 3.130 | 0 | 0.053 | 0.053 | 3 | 0.868 | −0.395 | 0.165 | 0.024 | 0.051 | 0.001 | 2 | −0.337 | 14.275 | 0.093 | 0.391 | 0.694 | 0.023 | |
5 | 2 | 0 | 3.410 | 4.410 | 0 | 0.097 | 0.097 | |||||||||||||||
6 | 3 | 0 | 2.736 | 3.736 | 0 | 0.207 | 0.207 | |||||||||||||||
8 | 1 | 18 | 0 | 1.794 | 2.794 | 0 | 0.170 | 0.170 | 15 | 0.829 | −0.325 | 0.278 | 0.039 | 0.033 | 0.042 | 18 | 0.015 | 3.390 | 0.381 | 0.180 | 2.027 | 0.178 |
2 | 10 | 0 | 1.267 | 2.267 | 0 | 0.089 | 0.089 | 25 | 0.897 | −0.215 | 0.278 | 0.021 | 0.026 | 0.048 | 7 | −0.912 | 13.642 | 0.142 | 0.442 | 2.953 | 0.028 | |
3 | 10 | 0 | 0.837 | 1.837 | 0 | 0.130 | 0.130 | 8 | 0.943 | −0.121 | 0.280 | 0.013 | 0.017 | 0.034 | 2 | −2.109 | 51.334 | 0.061 | 1.151 | 1.310 | 0.024 | |
4 | 7 | 0 | 0.391 | 1.391 | 0 | 0.079 | 0.079 | 5 | 0.998 | −0.006 | 0.255 | 0.016 | 0.041 | 0.049 | ||||||||
5 | 5 | 0 | 2.373 | 3.373 | 0 | 0.165 | 0.165 | |||||||||||||||
9 | 1 | 16 | 0 | 1.366 | 2.366 | 0 | 0.074 | 0.074 | 33 | 0.855 | −0.299 | 0.265 | 0.028 | 0.049 | 0.032 | 13 | 0.349 | 1.132 | 0.620 | 0.117 | 0.334 | 0.214 |
2 | 2 | 0 | 2.618 | 3.618 | 0 | 0.001 | 0.001 | 4 | 0.772 | −0.462 | 0.226 | 0.040 | 0.044 | 0.010 | 7 | −0.101 | 4.600 | 0.239 | 0.199 | 0.335 | 0.039 | |
3 | 12 | 0 | 1.707 | 2.707 | 0 | 0.124 | 0.124 | 8 | 0.939 | −0.144 | 0.257 | 0.014 | 0.041 | 0.041 | 4 | −0.861 | 16.101 | 0.116 | 0.154 | 0.378 | 0.008 | |
4 | 5 | 0 | 0.522 | 1.522 | 0 | 0.132 | 0.132 | 6 | 0.194 | 2.355 | 0.346 | 0.147 | 0.461 | 0.049 | ||||||||
5 | 8 | 0 | 1.003 | 2.003 | 0 | 0.103 | 0.103 | |||||||||||||||
6 | 5 | 0 | 2.192 | 3.192 | 0 | 0.116 | 0.116 | |||||||||||||||
7 | 4 | 0 | 3.049 | 4.049 | 0 | 0.072 | 0.072 | |||||||||||||||
10 | 1 | 18 | 0 | 1.180 | 2.180 | 0 | 0.258 | 0.258 | 24 | 0.862 | −0.261 | 0.297 | 0.020 | 0.041 | 0.031 | 11 | 0.243 | 1.597 | 0.480 | 0.146 | 0.258 | 0.095 |
2 | 13 | 0 | 0.430 | 1.430 | 0 | 0.214 | 0.214 | 20 | 0.782 | −0.395 | 0.274 | 0.039 | 0.034 | 0.032 | 5 | −0.160 | 4.913 | 0.237 | 0.088 | 0.304 | 0.027 | |
3 | 5 | 0 | 2.197 | 3.197 | 0 | 0.302 | 0.302 | 3 | 1.009 | 0.033 | 0.208 | 0.011 | 0.045 | 0.046 | 3 | −0.110 | 3.442 | 0.324 | 0.039 | 0.363 | 0.027 | |
4 | 12 | 0.943 | −0.125 | 0.270 | 0.015 | 0.029 | 0.035 | 4 | 0.310 | 0.706 | 1.039 | 0.114 | 0.174 | 0.354 | ||||||||
5 | 4 | 0.628 | −0.628 | 0.206 | 0.047 | 0.029 | 0.048 | 2 | −0.001 | 2.376 | 0.431 | 0.122 | 0.374 | 0.119 | ||||||||
6 | 2 | 0.710 | −0.543 | 0.218 | 0.024 | 0.043 | 0.016 | |||||||||||||||
11 | 1 | 6 | 0 | 1.915 | 2.915 | 0 | 0.137 | 0.137 | 23 | 0.864 | −0.268 | 0.282 | 0.024 | 0.036 | 0.029 | 19 | 0.272 | 1.311 | 0.673 | 0.158 | 0.533 | 0.333 |
2 | 16 | 0 | 1.129 | 2.129 | 0 | 0.172 | 0.172 | 12 | 0.802 | −0.380 | 0.265 | 0.036 | 0.022 | 0.048 | 5 | 0.170 | 3.797 | 0.223 | 0.253 | 0.628 | 0.084 | |
3 | 13 | 0 | 0.528 | 1.528 | 0 | 0.198 | 0.198 | 5 | 0.695 | −0.467 | 0.300 | 0.039 | 0.035 | 0.038 | ||||||||
4 | 6 | 0 | 3.146 | 4.146 | 0 | 0.255 | 0.255 | 5 | 0.932 | −0.255 | 0.152 | 0.019 | 0.067 | 0.029 | ||||||||
5 | 5 | 0 | 2.548 | 3.548 | 0 | 0.108 | 0.108 | 4 | 0.947 | −0.114 | 0.270 | 0.024 | 0.038 | 0.041 | ||||||||
6 | 4 | 0.776 | −0.549 | 0.163 | 0.048 | 0.042 | 0.027 | |||||||||||||||
7 | 2 | 0.613 | −0.654 | 0.194 | 0.073 | 0.030 | 0.060 | |||||||||||||||
12 | 1 | 22 | 0 | 0.249 | 1.249 | 0 | 0.186 | 0.186 | 34 | 0.804 | −0.345 | 0.302 | 0.051 | 0.058 | 0.073 | 15 | 0.243 | 1.326 | 0.598 | 0.243 | 0.368 | 0.222 |
2 | 5 | 0 | 4.017 | 5.017 | 0 | 0.189 | 0.189 | 14 | 0.931 | −0.203 | 0.208 | 0.016 | 0.051 | 0.064 | 7 | −0.097 | 2.766 | 0.400 | 0.212 | 0.358 | 0.080 | |
3 | 5 | 0 | 1.695 | 2.695 | 0 | 0.282 | 0.282 | 5 | 0.649 | −0.504 | 0.303 | 0.045 | 0.039 | 0.033 | 4 | 0.304 | 0.488 | 1.430 | 0.172 | 0.119 | 0.117 | |
4 | 8 | 0 | 0.893 | 1.893 | 0 | 0.209 | 0.209 | 5 | 0.993 | −0.033 | 0.154 | 0.022 | 0.093 | 0.025 | ||||||||
5 | 4 | 0 | 2.941 | 3.941 | 0 | 0.222 | 0.222 | 2 | 0.623 | −0.665 | 0.179 | 0.017 | 0.015 | 0.020 | ||||||||
6 | 2 | 0 | 4.689 | 5.689 | 0 | 0.157 | 0.157 |
Month | Class | Generalized Pareto | Generalized Logistic | Pearson Type III | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean | Std Dev | n | Mean | Std Dev | n | Mean | Std Dev | |||||||||||||||
α | k | β | α | k | β | α | k | β | α | k | β | α | k | β | α | k | β | ||||||
1 | 1 | 7 | 0 | 2.399 | 3.399 | 0 | 0.195 | 0.195 | 3 | 0.964 | −0.173 | 0.123 | 0.018 | 0.090 | 0.017 | 3 | 0.222 | 2.346 | 0.336 | 0.069 | 0.446 | 0.040 | |
2 | 3 | 0 | 1.032 | 2.032 | 0 | 0.026 | 0.026 | 5 | 0.956 | −0.128 | 0.192 | 0.034 | 0.083 | 0.083 | |||||||||
3 | 3 | 0 | 0.280 | 1.280 | 0 | 0.136 | 0.136 | 4 | 0.894 | −0.240 | 0.250 | 0.032 | 0.010 | 0.068 | |||||||||
4 | 3 | 0 | 0.401 | 1.401 | 0 | 0.206 | 0.206 | 3 | 0.816 | −0.363 | 0.263 | 0.018 | 0.040 | 0.028 | |||||||||
5 | 4 | 0 | 0.295 | 1.295 | 0 | 0.321 | 0.321 | 3 | 0.869 | −0.342 | 0.203 | 0.024 | 0.019 | 0.042 | |||||||||
2 | 1 | 3 | 0 | 1.320 | 2.320 | 0 | 0.132 | 0.132 | 7 | 0.918 | −0.211 | 0.221 | 0.028 | 0.053 | 0.032 | 5 | 0.146 | 2.639 | 0.395 | 0.203 | 1.054 | 0.246 | |
2 | 3 | 0 | 0.786 | 1.786 | 0 | 0.284 | 0.284 | 4 | 0.805 | −0.387 | 0.254 | 0.031 | 0.035 | 0.025 | 5 | 0.112 | 1.585 | 0.685 | 0.181 | 0.840 | 0.306 | ||
3 | 6 | 0 | 0.637 | 1.637 | 0 | 0.296 | 0.296 | ||||||||||||||||
3 | 1 | 4 | 0 | 2.302 | 3.302 | 0 | 0.203 | 0.203 | 3 | 0.806 | −0.424 | 0.221 | 0.020 | 0.045 | 0.016 | 3 | 0.384 | 1.301 | 0.614 | 0.091 | 0.729 | 0.379 | |
2 | 5 | 0 | 2.508 | 3.508 | 0 | 0.398 | 0.398 | 3 | 0.827 | −0.371 | 0.237 | 0.026 | 0.029 | 0.013 | |||||||||
3 | 5 | 0 | 1.214 | 2.214 | 0 | 0.134 | 0.134 | 3 | 0.940 | −0.141 | 0.253 | 0.032 | 0.079 | 0.029 | |||||||||
4 | 4 | 0 | 4.115 | 5.115 | 0 | 0.301 | 0.301 | 6 | 0.946 | −0.194 | 0.164 | 0.020 | 0.079 | 0.027 | |||||||||
5 | 6 | 0.933 | −0.196 | 0.198 | 0.021 | 0.049 | 0.048 | ||||||||||||||||
6 | 5 | 0.946 | −0.154 | 0.212 | 0.014 | 0.055 | 0.033 | ||||||||||||||||
4 | 1 | 5 | 0 | 1.701 | 2.701 | 0 | 0.190 | 0.190 | 15 | 0.871 | −0.274 | 0.256 | 0.037 | 0.047 | 0.042 | 4 | 0.205 | 1.703 | 0.519 | 0.205 | 0.792 | 0.154 | |
2 | 3 | 0 | 1.808 | 2.808 | 0 | 0.064 | 0.064 | 3 | 0.828 | −0.467 | 0.169 | 0.020 | 0.039 | 0.003 | 7 | 0.306 | 1.831 | 0.500 | 0.090 | 1.243 | 0.251 | ||
3 | 5 | 0 | 1.033 | 2.033 | 0 | 0.168 | 0.168 | 4 | 0.956 | −0.091 | 0.258 | 0.040 | 0.077 | 0.049 | |||||||||
4 | 3 | 0.956 | −0.109 | 0.238 | 0.017 | 0.028 | 0.037 | ||||||||||||||||
5 | 1 | 4 | 0 | 1.254 | 2.254 | 0 | 0.197 | 0.197 | 3 | 0.914 | −0.287 | 0.164 | 0.015 | 0.027 | 0.010 | ||||||||
2 | 3 | 0 | 1.212 | 2.212 | 0 | 0.082 | 0.082 | 3 | 0.965 | −0.100 | 0.211 | 0.010 | 0.028 | 0.009 | |||||||||
3 | 3 | 0.835 | −0.402 | 0.204 | 0.021 | 0.017 | 0.028 | ||||||||||||||||
6 | 1 | 3 | 0.084 | 0.802 | 1.834 | 0.146 | 0.872 | 0.817 | 4 | 1.564 | 1.447 | 0.149 | 1.646 | 1.964 | 0.101 | ||||||||
2 | 3 | 0.086 | 0.527 | 1.575 | 0.105 | 0.760 | 1.272 | 3 | 1.252 | 0.223 | 0.178 | 0.493 | 0.518 | 0.156 | |||||||||
3 | 3 | 0.916 | −0.184 | 0.249 | 0.063 | 0.129 | 0.018 | ||||||||||||||||
7 | 1 | 8 | 0 | 1.682 | 2.682 | 0 | 0.149 | 0.149 | 4 | 0.151 | 2.318 | 0.406 | 0.339 | 1.275 | 0.138 | ||||||||
2 | 3 | 0 | 1.170 | 2.170 | 0 | 0.097 | 0.097 | 3 | 0.289 | 1.308 | 0.653 | 0.140 | 0.793 | 0.284 | |||||||||
8 | 1 | 4 | 0 | 1.912 | 2.912 | 0 | 0.032 | 0.032 | 4 | 0.830 | −0.341 | 0.263 | 0.021 | 0.011 | 0.036 | 3 | −0.039 | 3.589 | 0.409 | 0.236 | 2.192 | 0.293 | |
2 | 3 | 0.898 | −0.200 | 0.297 | 0.017 | 0.025 | 0.032 | 3 | 0.080 | 3.055 | 0.413 | 0.231 | 2.580 | 0.223 | |||||||||
3 | 3 | 0.885 | −0.234 | 0.280 | 0.015 | 0.016 | 0.037 | ||||||||||||||||
9 | 1 | 5 | 0 | 1.382 | 2.382 | 0 | 0.080 | 0.080 | 4 | 0.848 | −0.305 | 0.272 | 0.016 | 0.038 | 0.030 | ||||||||
2 | 14 | 0.848 | −0.312 | 0.263 | 0.030 | 0.044 | 0.037 | ||||||||||||||||
3 | 3 | 0.835 | −0.345 | 0.249 | 0.029 | 0.044 | 0.004 | ||||||||||||||||
10 | 1 | 4 | 0 | 0.973 | 1.973 | 0 | 0.166 | 0.166 | 6 | 0.865 | −0.254 | 0.298 | 0.025 | 0.044 | 0.028 | ||||||||
2 | 3 | 0 | 1.582 | 2.582 | 0 | 0.146 | 0.146 | 4 | 0.853 | −0.280 | 0.290 | 0.008 | 0.012 | 0.019 | |||||||||
3 | 5 | 0 | 0.452 | 1.452 | 0 | 0.167 | 0.167 | 3 | 0.870 | −0.268 | 0.271 | 0.030 | 0.060 | 0.027 | |||||||||
4 | 4 | 0.862 | −0.241 | 0.327 | 0.021 | 0.051 | 0.035 | ||||||||||||||||
5 | 4 | 0.797 | −0.405 | 0.247 | 0.043 | 0.019 | 0.044 | ||||||||||||||||
6 | 3 | 0.947 | −0.114 | 0.273 | 0.017 | 0.026 | 0.022 | ||||||||||||||||
11 | 1 | 3 | 0 | 0.486 | 1.486 | 0 | 0.190 | 0.190 | 6 | 0.861 | −0.262 | 0.295 | 0.029 | 0.042 | 0.029 | 5 | 0.186 | 1.020 | 0.848 | 0.081 | 0.290 | 0.231 | |
2 | 7 | 0.866 | −0.262 | 0.286 | 0.023 | 0.033 | 0.036 | ||||||||||||||||
12 | 1 | 3 | 0 | 0.301 | 1.301 | 0 | 0.214 | 0.214 | 11 | 0.802 | −0.340 | 0.302 | 0.053 | 0.052 | 0.050 | 4 | 0.172 | 1.148 | 0.806 | 0.082 | 0.518 | 0.252 | |
2 | 8 | 0 | 0.315 | 1.315 | 0 | 0.142 | 0.142 | 6 | 0.835 | −0.290 | 0.314 | 0.014 | 0.023 | 0.021 | |||||||||
3 | 4 | 0.770 | −0.357 | 0.332 | 0.054 | 0.064 | 0.023 | ||||||||||||||||
4 | 4 | 0.761 | −0.314 | 0.413 | 0.013 | 0.034 | 0.035 | ||||||||||||||||
5 | 3 | 0.921 | −0.153 | 0.305 | 0.023 | 0.032 | 0.039 | ||||||||||||||||
6 | 4 | 0.929 | −0.228 | 0.182 | 0.007 | 0.045 | 0.032 |
Months | Polygon | I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | I9 | I10 | I11 | I12 | Regional Trend Index | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t | z | t | z | t | z | t | z | t | z | t | z | t | z | t | z | t | z | t | z | t | z | t | z | |||
1 | 41 | −0.357 | −0.455 | −0.604 | −0.455 | −0.607 | −0.190 | −0.523 | −0.342 | −0.127 | 0.000 | −0.732 | −0.720 | −2.446 | −1.756 | −2.446 | −1.756 | −2.383 | −1.682 | −2.383 | −1.682 | 0.702 | 0.608 | 1.024 | 0.954 | −0.333 |
33 | −0.918 | −0.833 | −1.111 | −1.023 | −1.768 | −1.988 | −1.949 | −1.823 | −0.673 | −0.455 | −0.771 | −0.341 | −0.903 | −0.708 | −1.182 | −0.829 | −0.829 | −0.765 | −1.003 | −0.765 | 0.513 | 1.142 | 0.325 | 1.067 | −0.083 | |
12 | 0.057 | 0.076 | −0.086 | 0.038 | −1.857 | −0.726 | −1.258 | −0.303 | 0.036 | 0.038 | −0.227 | 0.342 | −1.473 | −0.861 | −0.991 | −0.418 | −1.487 | −0.773 | −1.190 | −0.773 | 1.104 | 1.742 | 0.875 | 2.055 | 0.083 | |
45 | −0.437 | 0.000 | −0.593 | 0.114 | −1.434 | −0.190 | −1.821 | −0.912 | 0.844 | 1.136 | 0.889 | 1.327 | −1.684 | −1.000 | −1.181 | −0.796 | −1.840 | −1.102 | −1.588 | −0.997 | 1.869 | 2.064 | 1.713 | 1.982 | 0.167 | |
67 | 1.045 | 0.872 | 1.048 | 0.530 | 1.668 | 1.602 | 1.535 | 1.258 | 0.314 | 0.493 | 0.582 | 0.720 | 1.922 | 1.769 | 1.922 | 1.769 | 1.884 | 1.707 | 1.884 | 1.707 | 1.696 | 2.048 | 1.832 | 2.167 | 0.167 | |
52 | 1.743 | 1.894 | 2.068 | 1.970 | 2.003 | 1.155 | 1.902 | 1.240 | 0.997 | 0.833 | 1.544 | 1.061 | 1.472 | 1.121 | 1.328 | 1.121 | 1.497 | 1.121 | 1.384 | 1.121 | 2.785 | 2.771 | 2.773 | 2.929 | 0.333 | |
29 | 0.756 | 1.061 | 1.089 | 0.985 | 2.768 | 2.352 | 2.622 | 2.312 | −0.983 | 0.000 | −0.753 | 0.265 | 2.383 | 2.131 | 2.443 | 2.138 | 2.440 | 2.126 | 2.371 | 2.223 | 0.231 | 0.379 | 0.457 | 0.152 | 0.500 | |
2 | 80 | 0.497 | 0.000 | 0.852 | 0.152 | −0.593 | −0.381 | −0.823 | −1.027 | 1.204 | 1.212 | 1.743 | 1.709 | −1.530 | −2.102 | −1.530 | −2.037 | −1.530 | −1.962 | −1.530 | −1.962 | 0.483 | −0.266 | 0.511 | 0.000 | −0.333 |
85 | −0.557 | −0.455 | −1.322 | −0.682 | −0.950 | −1.645 | −0.383 | −0.684 | −0.032 | −0.227 | −0.458 | −0.379 | −1.287 | −1.962 | −1.287 | −1.822 | −1.287 | −1.962 | −1.287 | −1.962 | 0.557 | −0.190 | −0.376 | −0.950 | −0.250 | |
12 | −0.935 | −0.909 | −1.001 | −0.833 | −2.158 | −1.818 | −2.139 | −1.970 | −0.922 | −0.152 | −0.864 | 0.000 | −0.807 | −1.121 | −1.150 | −1.121 | −0.945 | −1.121 | −1.388 | −1.121 | 0.525 | 0.645 | 0.594 | 0.836 | −0.167 | |
43 | 0.641 | −0.379 | 0.557 | −0.227 | 0.986 | 0.343 | 0.959 | 0.038 | 0.399 | −0.303 | −1.229 | −1.972 | 1.134 | 0.462 | 1.358 | 0.548 | 1.185 | 0.544 | 1.455 | 0.670 | 0.656 | 0.341 | 0.217 | −0.228 | −0.083 | |
82 | 0.304 | 0.341 | 0.302 | 0.606 | 0.756 | −0.343 | 0.769 | −0.190 | 1.681 | 1.554 | 2.031 | 1.439 | 0.834 | 0.771 | 0.834 | 0.771 | 0.834 | 0.771 | 0.834 | 0.771 | 0.185 | −0.494 | 0.697 | −0.153 | 0.083 | |
3 | 14 | −2.443 | −2.085 | −2.458 | −2.121 | −1.992 | −1.593 | −2.536 | −1.937 | −2.321 | −1.742 | −2.452 | −1.972 | −0.748 | −0.781 | −0.748 | −0.781 | −0.660 | −0.773 | −0.660 | −0.773 | 0.047 | −0.607 | −0.427 | −0.959 | −0.500 |
12 | −0.763 | −0.758 | −0.719 | −0.682 | −0.936 | −1.061 | −0.740 | −0.909 | −2.089 | −1.894 | −2.777 | −2.088 | −1.795 | −2.071 | −1.795 | −2.071 | −1.603 | −1.731 | −1.603 | −1.731 | −1.445 | −1.296 | −1.442 | −1.449 | −0.333 | |
1 | −2.024 | −2.500 | −1.868 | −2.121 | −0.602 | −1.140 | −1.148 | −1.253 | −2.107 | −2.204 | −1.753 | −1.554 | −0.423 | −0.879 | −0.423 | −0.879 | −0.445 | −0.870 | −0.445 | −0.870 | −1.341 | −1.070 | −0.805 | −0.535 | −0.250 | |
22 | −0.833 | −0.948 | −0.519 | −0.455 | −0.152 | −0.228 | −0.314 | −0.229 | −1.165 | −0.720 | −1.056 | −0.759 | −2.259 | −1.096 | −1.953 | −1.009 | −2.355 | −1.091 | −2.115 | −1.091 | −1.064 | −1.366 | −0.056 | −0.800 | −0.250 | |
28 | −1.097 | −0.379 | −0.560 | 0.000 | 0.924 | 0.873 | 0.380 | 1.138 | −2.076 | −2.045 | −2.124 | −1.972 | 0.915 | 1.356 | 1.448 | 1.458 | 0.844 | 1.353 | 1.361 | 1.450 | −0.132 | −0.266 | −0.121 | −0.343 | −0.167 | |
33 | −1.298 | −1.175 | −1.093 | −0.606 | 1.623 | 1.480 | 2.547 | 2.428 | −2.445 | −2.312 | −2.457 | −1.669 | 1.476 | 1.376 | 1.221 | 1.376 | 1.695 | 1.454 | 1.599 | 1.363 | −1.327 | −1.596 | −0.893 | −1.485 | −0.083 | |
5 | 0.018 | −0.303 | 0.444 | −0.076 | 1.260 | 1.062 | 1.427 | 1.101 | −0.453 | −0.872 | 0.832 | 0.000 | 1.603 | 1.944 | 1.432 | 1.654 | 1.486 | 2.049 | 1.543 | 1.882 | 0.388 | −0.569 | 0.826 | −0.383 | 0.083 | |
15 | 0.564 | 0.530 | 0.885 | 0.455 | 0.623 | 0.228 | 0.707 | 0.114 | −1.005 | −0.456 | −1.251 | −1.023 | 0.630 | 0.000 | 0.596 | 0.000 | 0.682 | 0.097 | 0.599 | 0.000 | 2.284 | 1.026 | 1.289 | 0.195 | 0.083 | |
50 | −0.264 | −0.379 | −0.097 | −0.341 | 1.856 | 1.833 | 1.123 | 1.329 | −0.673 | −0.606 | 0.136 | 0.530 | 1.187 | 1.691 | 2.125 | 2.103 | 1.325 | 1.674 | 2.113 | 1.717 | −0.114 | −0.910 | 0.498 | −0.153 | 0.167 | |
27 | 1.169 | 0.758 | 1.946 | 1.515 | 2.004 | 1.889 | 2.003 | 2.128 | 0.588 | 0.303 | 0.913 | 0.303 | 0.862 | 1.202 | 0.227 | 0.789 | 1.329 | 2.007 | 0.794 | 1.893 | 1.088 | 0.341 | 0.420 | 0.000 | 0.250 | |
4 | 10 | −2.012 | −1.894 | −2.018 | −1.667 | −1.839 | −1.061 | −0.653 | −0.948 | −2.178 | −1.515 | −1.816 | −1.214 | −0.963 | −1.372 | −1.432 | −1.567 | −1.062 | −1.380 | −1.663 | −1.463 | −1.542 | −0.418 | −1.230 | −0.769 | −0.250 |
50 | −0.233 | −0.379 | −0.043 | −0.190 | −2.088 | −2.015 | −1.199 | −0.991 | −0.521 | −0.379 | −0.312 | 0.000 | 0.227 | 0.372 | 0.227 | 0.372 | −0.611 | 0.157 | −0.611 | 0.157 | 0.123 | −0.038 | 0.129 | −0.114 | −0.083 | |
69 | −0.439 | −0.455 | −0.373 | 0.000 | −1.275 | −1.719 | −1.243 | −1.979 | −0.197 | −0.152 | −0.149 | −0.341 | 0.000 | 0.118 | 0.000 | 0.118 | −0.042 | 0.059 | −0.055 | 0.000 | 0.165 | 0.152 | 0.229 | 0.304 | −0.083 | |
5 | 38 | −0.487 | 0.152 | −0.384 | −0.379 | −2.027 | −1.290 | −1.596 | −0.645 | 0.918 | 1.138 | 1.587 | 1.556 | −1.961 | −1.297 | −1.633 | −1.185 | −2.000 | −1.354 | −1.849 | −1.354 | −1.374 | −0.533 | −0.560 | −0.153 | −0.250 |
27 | −1.454 | −1.515 | −1.076 | −1.591 | 0.510 | 1.714 | −0.787 | 0.797 | −1.622 | −1.364 | −1.637 | −1.251 | 0.253 | 1.160 | 1.311 | 1.327 | 0.093 | 1.102 | 0.900 | 1.156 | −2.717 | −1.671 | −2.659 | −1.982 | −0.167 | |
10 | −1.084 | 0.038 | −1.176 | 0.000 | −0.712 | −0.229 | −0.924 | −0.190 | −0.442 | 0.493 | −0.478 | 0.342 | −0.808 | −0.590 | −0.784 | −0.590 | −0.806 | −0.530 | −0.776 | −0.647 | −2.453 | −1.138 | −1.704 | −0.879 | −0.083 | |
30 | −1.162 | −0.530 | −1.302 | −0.455 | −0.807 | −0.190 | −1.118 | −0.303 | −0.417 | 0.190 | −0.571 | 0.000 | −0.227 | 0.000 | −0.227 | 0.000 | −0.419 | −0.262 | −0.419 | −0.262 | −1.928 | −1.101 | −1.972 | −1.609 | −0.083 | |
49 | −0.490 | 0.152 | −1.103 | −0.227 | −2.125 | −1.371 | −1.707 | −0.569 | 0.200 | 0.758 | −0.299 | 0.152 | −1.004 | −0.735 | −0.873 | −0.735 | −0.956 | −0.682 | −0.843 | −0.787 | −0.396 | 0.000 | 0.680 | 0.191 | −0.083 | |
15 | 1.071 | 1.742 | 0.663 | 1.439 | 0.560 | 1.366 | 0.717 | 1.327 | 2.166 | 1.894 | 1.875 | 1.897 | 0.494 | 0.586 | 0.494 | 0.586 | 0.292 | 0.483 | 0.292 | 0.483 | 1.502 | 1.441 | 1.314 | 1.446 | 0.083 | |
19 | 2.077 | 0.872 | 1.771 | 1.061 | −1.664 | −0.493 | −1.070 | −0.227 | 1.973 | 1.136 | 1.946 | 1.175 | −1.003 | −0.875 | −1.003 | −0.875 | −1.164 | −0.870 | −1.164 | −0.870 | 0.961 | 0.267 | 0.882 | 0.114 | 0.167 | |
12 | 2.009 | 0.909 | 1.153 | 0.833 | −0.575 | −0.721 | 0.157 | 0.076 | 1.357 | 0.531 | 1.139 | 0.455 | −0.817 | −0.740 | −1.503 | −0.983 | −0.940 | −0.727 | −1.560 | −1.000 | 3.292 | 2.244 | 2.971 | 1.646 | 0.250 | |
6 | 81 | −1.147 | −1.591 | −1.079 | −1.439 | −0.481 | −0.797 | −0.438 | −0.228 | −0.967 | −1.212 | −0.725 | −0.833 | 0.502 | 0.633 | 0.643 | 0.789 | 0.572 | 0.682 | 0.644 | 0.682 | −2.393 | −2.352 | −2.647 | −2.436 | −0.167 |
2 | −0.362 | −0.493 | −0.389 | −0.985 | 0.693 | −0.266 | 0.884 | −0.038 | −0.692 | −0.909 | −0.342 | −0.796 | 0.903 | 0.089 | 0.610 | 0.000 | 1.052 | 0.000 | 0.854 | 0.000 | −1.686 | −0.949 | −2.443 | −1.485 | −0.083 | |
10 | −1.176 | −0.455 | −1.065 | −0.227 | 0.242 | 0.190 | 0.149 | 0.265 | −1.309 | −0.227 | −1.075 | −0.228 | 0.169 | 0.422 | 0.456 | 0.584 | 0.198 | 0.367 | 0.438 | 0.472 | −2.107 | −1.253 | −1.415 | −0.570 | −0.083 | |
12 | −0.667 | −1.212 | −0.691 | −1.212 | 0.845 | 0.076 | 0.491 | −0.152 | −1.342 | −1.818 | −1.400 | −1.970 | 0.349 | 0.000 | 0.349 | 0.000 | 0.548 | 0.091 | 0.548 | 0.091 | −1.246 | −1.329 | −1.094 | −1.520 | −0.083 | |
16 | −1.338 | −1.439 | −1.345 | −1.591 | −0.388 | −0.531 | −0.621 | −0.835 | −1.825 | −1.742 | −2.331 | −2.165 | 0.285 | 0.315 | 0.000 | 0.211 | 0.249 | 0.367 | 0.002 | 0.262 | 0.278 | 0.000 | −0.119 | 0.000 | −0.083 | |
19 | −1.360 | −1.061 | −1.222 | −1.591 | −0.787 | −0.948 | −1.127 | −1.212 | −0.915 | −1.253 | −0.958 | −1.402 | −0.499 | −0.389 | −0.499 | −0.389 | −0.333 | −0.387 | −0.333 | −0.387 | −2.150 | −1.444 | −1.608 | −0.921 | −0.083 | |
27 | −0.434 | −0.909 | −0.214 | −0.872 | 0.381 | 0.000 | 0.671 | −0.076 | −1.514 | −1.970 | −1.304 | −1.517 | −0.759 | −0.492 | −0.759 | −0.492 | −0.750 | −0.420 | −0.750 | −0.420 | 0.265 | 0.645 | 0.212 | 0.538 | −0.083 | |
44 | 1.142 | 1.175 | 1.004 | 0.417 | 3.378 | 2.161 | 3.469 | 1.972 | 0.308 | 0.683 | 0.104 | 0.455 | 1.431 | 0.292 | 1.311 | 0.394 | 1.590 | 0.435 | 1.543 | 0.676 | −0.352 | −0.038 | −0.494 | −0.270 | 0.167 | |
49 | −0.818 | −0.227 | −1.094 | −0.493 | 2.119 | 1.604 | 1.443 | 1.979 | −1.176 | −0.455 | −1.298 | −0.569 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | −1.127 | −0.265 | −1.013 | −0.305 | 0.167 | |
78 | −0.709 | −1.136 | −0.215 | −0.114 | 2.823 | 1.821 | 2.603 | 1.782 | −1.391 | −1.288 | −1.143 | −0.985 | 1.718 | 1.132 | 1.840 | 1.132 | 1.962 | 1.547 | 2.122 | 1.547 | 0.383 | 0.461 | 0.174 | 0.308 | 0.333 | |
30 | 1.825 | 2.121 | 1.796 | 2.273 | 3.039 | 3.222 | 2.331 | 2.500 | 1.553 | 1.591 | 1.585 | 1.327 | 2.021 | 2.214 | 2.010 | 2.154 | 2.299 | 2.504 | 2.288 | 2.388 | 1.204 | 1.554 | 1.267 | 1.556 | 0.667 | |
7 | 40 | −0.169 | −0.379 | −0.272 | −0.682 | −0.218 | −0.417 | 0.327 | −0.266 | −0.333 | −0.114 | −0.378 | 0.000 | −0.683 | −0.422 | −0.809 | −0.478 | −0.758 | −0.577 | −0.897 | −0.577 | −1.640 | −2.236 | −1.592 | −2.012 | −0.167 |
5 | −0.017 | −0.530 | −0.239 | −0.303 | 0.258 | −0.190 | 0.353 | 0.114 | 0.008 | −0.190 | 0.015 | −0.379 | 0.810 | −0.158 | 0.810 | −0.158 | 0.732 | −0.157 | 0.732 | −0.157 | −1.903 | −1.711 | −1.986 | −1.907 | −0.083 | |
76 | −0.855 | −0.985 | −1.003 | −0.833 | −0.071 | 0.341 | 0.004 | 0.379 | −1.839 | −1.742 | −1.730 | −1.517 | 0.643 | 0.368 | 0.643 | 0.368 | 0.693 | 0.367 | 0.693 | 0.367 | −1.773 | −1.857 | −1.853 | −2.088 | −0.083 | |
8 | 56 | −1.019 | −0.455 | −1.016 | −0.303 | −0.674 | −0.910 | −0.557 | −0.797 | −0.928 | −0.493 | −0.870 | −0.456 | −1.606 | −2.014 | −1.606 | −2.014 | −1.661 | −2.178 | −1.661 | −2.178 | 0.092 | −0.265 | 0.211 | −0.115 | −0.333 |
4 | 0.982 | 0.833 | 0.935 | 1.515 | 0.910 | 1.405 | 1.558 | 1.972 | 0.239 | 0.000 | 0.086 | 0.000 | 1.193 | 1.172 | 0.977 | 1.084 | 1.018 | 1.160 | 0.818 | 1.063 | 0.412 | 0.076 | 0.675 | 0.495 | 0.083 | |
86 | 0.634 | 0.455 | 0.483 | 0.530 | 2.736 | 2.197 | 2.171 | 1.630 | −0.308 | −0.114 | −0.368 | −0.493 | −0.149 | 0.000 | −0.149 | 0.000 | −0.181 | 0.000 | −0.181 | 0.000 | −0.353 | 0.000 | −0.704 | −0.304 | 0.167 | |
9 | 48 | −1.270 | −1.212 | −1.109 | −1.439 | −0.327 | −1.175 | −0.838 | −1.517 | −1.671 | −1.970 | −1.911 | −2.312 | −1.898 | −2.065 | −1.898 | −1.850 | −1.430 | −1.999 | −1.430 | −1.908 | −1.053 | −1.251 | −0.855 | −1.181 | −0.333 |
49 | −2.222 | −1.706 | −2.511 | −1.782 | −1.836 | −0.948 | −1.932 | −1.439 | −1.595 | −1.288 | −1.526 | −1.023 | −1.399 | −1.179 | −1.399 | −1.179 | −1.398 | −1.118 | −1.398 | −1.118 | −1.391 | −0.455 | −1.612 | −0.533 | −0.167 | |
9 | −1.003 | −1.136 | −1.099 | −1.023 | −0.085 | −0.493 | 0.158 | −0.493 | −1.763 | −1.818 | −1.825 | −2.048 | 0.963 | 0.118 | 1.424 | 0.118 | 0.986 | 0.177 | 1.273 | 0.177 | −0.394 | −0.266 | −0.214 | −0.685 | −0.083 | |
47 | −0.648 | 0.379 | −0.658 | 0.114 | −1.257 | −1.101 | −1.515 | −1.099 | −2.063 | −0.909 | −1.881 | −0.720 | −0.965 | −0.590 | −0.716 | −0.472 | −0.849 | −0.530 | −0.613 | −0.412 | 0.916 | 1.368 | 0.901 | 1.066 | −0.083 | |
66 | −0.956 | −0.833 | −1.121 | −0.909 | 0.943 | 0.723 | 0.926 | 0.948 | −0.982 | −0.682 | −1.049 | −0.910 | 1.961 | 1.651 | 1.961 | 1.651 | 1.948 | 1.707 | 1.948 | 1.707 | −2.217 | −1.366 | −2.067 | −1.720 | 0.000 | |
16 | −0.228 | 0.227 | −0.175 | 0.000 | 3.124 | 2.540 | 2.424 | 2.352 | −0.502 | −0.114 | −0.382 | −0.076 | 1.508 | 1.315 | 1.508 | 1.315 | 1.660 | 1.312 | 1.660 | 1.312 | 0.338 | 0.531 | 0.674 | 0.267 | 0.167 | |
10 | 25 | 0.259 | 0.000 | −0.228 | −0.758 | −1.701 | −1.061 | −0.382 | −0.606 | −0.139 | −0.682 | −0.108 | −0.455 | −1.547 | −0.958 | −1.639 | −1.056 | −1.743 | −0.813 | −1.843 | −0.894 | −2.167 | −2.276 | −1.699 | −1.714 | −0.083 |
60 | 0.111 | −0.076 | 0.336 | 0.000 | 2.211 | 1.824 | 2.231 | 2.168 | −0.030 | −0.417 | 0.212 | −0.303 | 1.445 | 1.434 | 1.445 | 1.434 | 1.311 | 1.102 | 1.311 | 1.102 | 0.684 | 0.304 | 1.031 | 0.306 | 0.167 | |
63 | 1.123 | −0.455 | 0.624 | −0.417 | 1.162 | 0.038 | 1.217 | 0.038 | 0.139 | −1.212 | −0.607 | −1.288 | 0.603 | 0.000 | 0.603 | 0.000 | 1.031 | 0.052 | 1.031 | 0.052 | 2.012 | 0.986 | 2.007 | 1.072 | 0.167 | |
8 | 2.603 | 1.288 | 2.797 | 1.515 | 1.681 | 0.988 | 1.692 | 1.253 | 1.427 | 0.379 | 1.345 | 0.152 | 0.282 | 0.280 | 0.330 | 0.280 | 0.294 | 0.280 | 0.317 | 0.280 | 2.532 | 1.515 | 2.416 | 1.214 | 0.333 | |
11 | 40 | −0.688 | −1.364 | −0.695 | −1.212 | −0.848 | −0.988 | −0.808 | −0.797 | −0.412 | −0.530 | −0.295 | −0.458 | −1.731 | −2.005 | −1.691 | −2.060 | −1.720 | −2.060 | −1.672 | −2.060 | 0.082 | −0.379 | 0.148 | −0.534 | −0.333 |
90 | 0.712 | 0.758 | 0.723 | 0.909 | −1.788 | −0.722 | −1.977 | −1.364 | 1.629 | 1.630 | 2.346 | 2.236 | 0.322 | 0.000 | 0.322 | 0.000 | 0.164 | 0.000 | 0.164 | 0.000 | 0.932 | 1.062 | 0.359 | 0.381 | 0.000 | |
7 | 0.754 | 1.364 | −0.058 | 0.644 | 1.381 | 0.910 | 1.540 | 0.569 | 1.438 | 1.591 | 1.091 | 1.214 | 1.824 | 1.769 | 1.824 | 1.769 | 1.864 | 1.825 | 1.864 | 1.825 | 1.732 | 2.164 | 1.401 | 1.714 | 0.083 | |
87 | 1.248 | 1.439 | 1.295 | 1.366 | 0.842 | 1.677 | 1.682 | 2.051 | 0.978 | 0.985 | 0.607 | 0.228 | 1.011 | 1.074 | 1.011 | 1.074 | 0.767 | 1.016 | 0.767 | 1.016 | 0.795 | 0.644 | 0.098 | 0.304 | 0.083 | |
86 | 0.360 | 0.114 | 0.361 | −0.038 | −1.307 | −1.075 | −1.179 | −1.298 | 0.667 | 1.099 | 0.453 | 0.494 | −0.903 | −0.590 | −0.904 | −0.592 | −0.996 | −0.647 | −1.088 | −0.647 | 2.423 | 1.820 | 2.331 | 1.896 | 0.167 | |
43 | 1.873 | 1.970 | 2.488 | 2.200 | 1.446 | 1.525 | 2.212 | 1.669 | 1.156 | 1.439 | 1.314 | 1.591 | −0.265 | 0.000 | −0.265 | 0.000 | −0.103 | 0.000 | −0.103 | 0.000 | 1.026 | 1.138 | 0.862 | 0.797 | 0.250 | |
12 | 43 | 1.277 | 0.530 | 1.348 | 0.227 | 2.094 | 1.758 | 1.655 | 1.327 | 0.669 | −0.379 | 0.763 | −0.455 | 1.056 | 1.682 | 1.183 | 1.682 | 1.024 | 1.682 | 1.144 | 1.682 | 1.718 | 1.821 | 1.581 | 1.603 | 0.083 |
60 | 1.391 | 1.364 | 1.163 | 1.667 | 1.933 | 1.517 | 2.003 | 1.824 | 0.661 | 0.758 | 0.436 | 0.796 | 0.649 | 1.017 | 0.929 | 1.077 | 1.040 | 1.181 | 1.368 | 1.272 | 0.848 | 1.177 | 0.726 | 1.677 | 0.083 | |
36 | 2.345 | 1.818 | 2.299 | 1.818 | −0.040 | −0.531 | 0.809 | 0.683 | 1.560 | 1.364 | 1.856 | 1.402 | 1.375 | 1.366 | 1.511 | 1.471 | 1.262 | 1.416 | 1.277 | 1.416 | 1.911 | 1.672 | 1.119 | 0.880 | 0.167 | |
45 | 0.977 | 0.606 | 0.913 | 0.758 | 2.286 | 1.575 | 1.970 | 0.913 | 0.693 | 0.682 | 0.675 | 0.190 | 1.606 | 0.354 | 1.606 | 0.354 | 1.631 | 0.412 | 1.631 | 0.412 | 1.629 | 1.027 | 1.498 | 0.496 | 0.167 | |
47 | 2.358 | 1.667 | 2.196 | 1.970 | −0.115 | 0.000 | 1.550 | 0.797 | 1.062 | 1.327 | 1.170 | 1.441 | 1.256 | 1.016 | 1.390 | 1.069 | 1.095 | 0.966 | 1.103 | 1.063 | 1.743 | 1.368 | 0.788 | 0.153 | 0.167 | |
58 | 2.177 | 1.630 | 2.197 | 1.742 | 1.387 | 1.493 | 1.384 | 1.294 | 2.229 | 1.251 | 1.982 | 1.478 | 1.287 | 1.156 | 1.287 | 1.156 | 1.287 | 1.156 | 1.287 | 1.156 | 1.726 | 0.839 | 1.321 | 0.533 | 0.333 | |
77 | 2.127 | 1.439 | 2.269 | 1.894 | 0.511 | 1.103 | 0.615 | 1.142 | 2.396 | 1.708 | 2.561 | 1.745 | 1.249 | 0.825 | 1.095 | 0.825 | 1.003 | 0.765 | 0.750 | 0.765 | 1.726 | 0.721 | 1.420 | 0.457 | 0.333 | |
10 | 2.248 | 1.251 | 2.095 | 1.515 | 1.694 | 1.410 | 1.673 | 1.292 | 2.091 | 1.517 | 2.018 | 1.441 | 1.634 | 1.542 | 1.616 | 1.542 | 1.582 | 1.542 | 1.556 | 1.542 | 1.980 | 0.836 | 2.045 | 0.651 | 0.500 |
Month | Polygon | Stations | Month | Polygon | Stations | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||||
1 | 41 | 800 | 754 | 7 | 40 | 843 | 817 | ||||||||||
33 | 805 | 807 | 5 | 784 | 754 | ||||||||||||
12 | 819 | 892 | 815 | 813 | 814 | 809 | 887 | 76 | 836 | 837 | |||||||
45 | 831 | 827 | 838 | 8 | 56 | 812 | 805 | ||||||||||
67 | 584 | 581 | 4 | 656 | 637 | ||||||||||||
52 | 575 | 576 | 86 | 663 | 653 | 649 | |||||||||||
29 | 670 | 648 | 592 | 512 | 9 | 48 | 411 | 413 | 406 | ||||||||
2 | 80 | 657 | 641 | 49 | 600 | 428 | |||||||||||
85 | 512 | 585 | 417 | 418 | 420 | 9 | 407 | 404 | |||||||||
12 | 936 | 929 | 940 | 47 | 581 | 576 | |||||||||||
43 | 815 | 762 | 784 | 766 | 890 | 768 | 755 | 66 | 755 | 744 | |||||||
82 | 598 | 597 | 16 | 632 | 616 | ||||||||||||
3 | 14 | 822 | 897 | 10 | 25 | 945 | 909 | 836 | 837 | 830 | 778 | ||||||
12 | 927 | 929 | 60 | 423 | 424 | ||||||||||||
1 | 830 | 821 | 63 | 612 | 570 | ||||||||||||
22 | 784 | 766 | 8 | 588 | 590 | ||||||||||||
28 | 936 | 940 | 11 | 40 | 684 | 636 | |||||||||||
33 | 678 | 672 | 670 | 90 | 678 | 672 | |||||||||||
5 | 653 | 684 | 636 | 761 | 7 | 837 | 827 | ||||||||||
15 | 812 | 805 | 87 | 590 | 584 | ||||||||||||
50 | 620 | 618 | 622 | 602 | 587 | 582 | 86 | 622 | 610 | ||||||||
27 | 747 | 617 | 606 | 600 | 43 | 585 | 418 | ||||||||||
4 | 10 | 945 | 936 | 909 | 837 | 831 | 12 | 43 | 891 | 767 | 768 | ||||||
50 | 600 | 433 | 60 | 940 | 942 | 817 | 812 | ||||||||||
69 | 616 | 607 | 36 | 971 | 682 | 648 | 629 | ||||||||||
5 | 38 | 971 | 648 | 45 | 761 | 631 | |||||||||||
27 | 520 | 587 | 582 | 47 | 582 | 575 | 576 | 423 | |||||||||
10 | 576 | 430 | 58 | 585 | 581 | ||||||||||||
30 | 936 | 940 | 77 | 615 | 597 | ||||||||||||
49 | 423 | 424 | 421 | 10 | 592 | 512 | |||||||||||
15 | 674 | 670 | |||||||||||||||
19 | 897 | 892 | |||||||||||||||
12 | 838 | 819 | 813 | ||||||||||||||
6 | 81 | 663 | 780 | ||||||||||||||
2 | 637 | 638 | |||||||||||||||
10 | 576 | 430 | |||||||||||||||
12 | 838 | 819 | 813 | ||||||||||||||
16 | 598 | 597 | |||||||||||||||
19 | 897 | 892 | |||||||||||||||
27 | 520 | 587 | 582 | ||||||||||||||
44 | 412 | 413 | |||||||||||||||
49 | 423 | 424 | 421 | ||||||||||||||
78 | 602 | 574 | |||||||||||||||
30 | 936 | 940 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozcelik, C. A Regional Approach for Investigation of Temporal Precipitation Changes. Sustainability 2021, 13, 5733. https://doi.org/10.3390/su13105733
Ozcelik C. A Regional Approach for Investigation of Temporal Precipitation Changes. Sustainability. 2021; 13(10):5733. https://doi.org/10.3390/su13105733
Chicago/Turabian StyleOzcelik, Ceyhun. 2021. "A Regional Approach for Investigation of Temporal Precipitation Changes" Sustainability 13, no. 10: 5733. https://doi.org/10.3390/su13105733
APA StyleOzcelik, C. (2021). A Regional Approach for Investigation of Temporal Precipitation Changes. Sustainability, 13(10), 5733. https://doi.org/10.3390/su13105733