Water Storage in Dry Riverbeds of Arid and Semi-Arid Regions: Overview, Challenges, and Prospects of Sand Dam Technology
Abstract
:1. Introduction
2. Sandy Bed Intermittent and Ephemeral Rivers
3. Sand Dam Technology
3.1. Sand Dam Hydrology and Working Principles
3.2. Sedimentation
3.3. Sand Dam Site Selection
3.4. Design, Construction, Maintenance, and Management
3.5. Effect on Groundwater
4. Socio-Economic Impacts of a Sand Dam
5. Challenges of Sand Dam Application
5.1. Water Quality
5.2. Evaporation and Seepage Losses
5.3. Downstream Effect
5.4. Storage Capacity and Cost-Efficiency
6. Research Gaps
6.1. Field Data and Case Studies
6.2. Studies on Long Term Catchment-Scale Hydrological Processes
7. Prospects
8. Summary and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Olufayo, O.A.; Otieno, F.A.O.; Ochieng, G.M. Run-off storage in sand reservoirs as an alternative source of water supply for rural and semi-arid areas of South Africa. Int. J. Geol. Environ. Eng. 2009, 3, 250–253. [Google Scholar]
- Xu, Y.; Seward, P.; Gaye, C.; Lin, L.; Olago, D.O. Preface: Groundwater in Sub-Saharan Africa. Hydrogeol. J. 2019, 27, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Faramarzi, M.; Abbaspour, K.C.; Ashraf Vaghefi, S.; Farzaneh, M.R.; Zehnder, A.J.B.; Srinivasan, R.; Yang, H. Modeling impacts of climate change on freshwater availability in Africa. J. Hydrol. 2013, 480, 85–101. [Google Scholar] [CrossRef]
- Şen, Z.; Al Alsheikh, A.; Al-Turbak, A.S.; Al-Bassam, A.M.; Al-Dakheel, A.M. Climate change impact and runoff harvesting in arid regions. Arab. J. Geosci. 2013, 6, 287–295. [Google Scholar] [CrossRef]
- Oyebande, L. Water problems in Africa—How can the sciences help? Hydrol. Sci. J. 2001, 46, 947–962. [Google Scholar] [CrossRef] [Green Version]
- Biazin, B.; Sterk, G.; Temesgen, M.; Abdulkedir, A.; Stroosnijder, L. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa—A review. Phys. Chem. Earth Parts A/B/C 2012, 47–48, 139–151. [Google Scholar] [CrossRef]
- De Trincheria, J.; Nissen-Patterson, E.; Filho, W.L.; Otterpohl, R. Factors affecting the performance and cost-efficiency of sand storage dams in South-Eastern Kenya. In Proceedings of the 36th IAHR World Congress, Hague, The Netherlands, 28 June–3 July 2015; pp. 1–14. [Google Scholar]
- Calow, R.C.; MacDonald, A.M.; Nicol, A.L.; Robins, N.S. Ground Water Security and Drought in Africa: Linking Availability, Access, and Demand. Ground Water 2010, 48, 246–256. [Google Scholar] [CrossRef]
- Conway, D.; Schipper, E.L.F. Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Glob. Environ. Change 2011, 21, 227–237. [Google Scholar] [CrossRef]
- Kusangaya, S.; Warburton, M.L.; Archer van Garderen, E.; Jewitt, G.P.W. Impacts of climate change on water resources in southern Africa: A review. Phys. Chem. Earth Parts A/B/C 2014, 67–69, 47–54. [Google Scholar] [CrossRef]
- MacDonald, A.M.; Bonsor, H.C.; Dochartaigh, B.É.Ó.; Taylor, R.G. Quantitative maps of groundwater resources in Africa. Environ. Res. Lett. 2012, 7, 024009. [Google Scholar] [CrossRef]
- Gaye, C.B.; Tindimugaya, C. Review: Challenges and opportunities for sustainable groundwater management in Africa. Hydrogeol. J. 2019, 27, 1099–1110. [Google Scholar] [CrossRef]
- Herbert, R. Water from sand rivers in Botswana. Q. J. Eng. Geol. Hydrogeol. 1998, 31, 81–83. [Google Scholar] [CrossRef]
- MacDonald, A.M.; Davies, J.; Calow, R.C. African hydrogeology and rural water supply. In Applied Groundwater Studies in Africa; CRC Press: Boca Raton, FL, USA, 2008; pp. 137–158. [Google Scholar]
- Duker, A.; Cambaza, C.; Saveca, P.; Ponguane, S.; Mawoyo, T.A.; Hulshof, M.; Nkomo, L.; Hussey, S.; Van den Pol, B.; Vuik, R.; et al. Using nature-based water storage for smallholder irrigated agriculture in African drylands: Lessons from frugal innovation pilots in Mozambique and Zimbabwe. Environ. Sci. Policy 2020, 107, 1–6. [Google Scholar] [CrossRef]
- Baurne, G. “Trap-dams”: Artificial Subsurface Storage of Water. Water Int. 1984, 9, 2–9. [Google Scholar] [CrossRef]
- Lasage, R.; Verburg, P.H. Evaluation of small scale water harvesting techniques for semi-arid environments. J. Arid Environ. 2015, 118, 48–57. [Google Scholar] [CrossRef]
- Ertsen, M.; Hut, R. Two waterfalls do not hear each other. Sand-storage dams, science and sustainable development in Kenya. Phys. Chem. Earth Parts A/B/C 2009, 34, 14–22. [Google Scholar] [CrossRef]
- Quilis, R.O.; Hoogmoed, M.; Ertsen, M.; Foppen, J.W.; Hut, R.; de Vries, A. Measuring and modeling hydrological processes of sand-storage dams on different spatial scales. Phys. Chem. Earth Parts A/B/C 2009, 34, 289–298. [Google Scholar] [CrossRef]
- Lasage, R.; Aerts, J.C.J.H.; Verburg, P.H.; Sileshi, A.S. The role of small scale sand dams in securing water supply under climate change in Ethiopia. Mitig. Adapt. Strateg. Glob. Change 2015, 20, 317–339. [Google Scholar] [CrossRef]
- Eisma, J.A.; Merwade, V.M. Investigating the environmental response to water harvesting structures: A field study in Tanzania. Hydrol. Earth Syst. Sci. 2020, 24, 1891–1906. [Google Scholar] [CrossRef] [Green Version]
- Nissen-Petersen, E. Water from Sand Rivers: A Manual on Site Survey, Design, Construction and Maintenance of Seven Types of Water Structures in Riverbeds; Regional Land Management Unit, RELMA/Sida, ICRAF House, Gigir: Nairobi, Kenya, 2000; ISBN 9966-896-53-8. [Google Scholar]
- Sivils, B.E.; Brock, J.H. Sand Dams as a Feasible Water Development for Arid Regions. J. Range Manag. 1981, 34, 238. [Google Scholar] [CrossRef]
- Karthe, D.; Chalov, S.; Borchardt, D. Water resources and their management in central Asia in the early twenty first century: Status, challenges and future prospects. Environ. Earth Sci. 2015, 73, 487–499. [Google Scholar] [CrossRef]
- Villani, L.; Castelli, G.; Hagos, E.Y.; Bresci, E. Water productivity analysis of sand dams irrigation farming in northern Ethiopia. J. Agric. Environ. Int. Dev. 2018, 112, 139–160. [Google Scholar] [CrossRef]
- Conway, D.; Persechino, A.; Ardoin-Bardin, S.; Hamandawana, H.; Dieulin, C.; Mahé, G. Rainfall and Water Resources Variability in Sub-Saharan Africa during the Twentieth Century. J. Hydrometeorol. 2009, 10, 41–59. [Google Scholar] [CrossRef]
- WHO/UNICEF Joint Water Supply and Sanitation Monitoring Programme. Progress on Drinking Water and Sanitation: 2012 Update; World Health Organization, UNICEF, Eds.; World Health Organization: Geneva, Switzerland, 2012; ISBN 978-92-806-4632-0. [Google Scholar]
- Excellent Development Transforming Lives through Sand Dams: Our Strategy to 2025. Available online: https://www.excellentdevelopment.com/our-strategy (accessed on 22 March 2021).
- Neal, I. The potential of sand dam road crossings. Dams Reserv. 2012, 22, 129–143. [Google Scholar] [CrossRef]
- Rockström, J.; Falkenmark, M. Agriculture: Increase water harvesting in Africa. Nature 2015, 519, 283–285. [Google Scholar] [CrossRef]
- Dettinger, M.D.; Diaz, H.F. Global Characteristics of Stream Flow Seasonality and Variability. J. Hydrometeorol. 2000, 1, 289–310. [Google Scholar] [CrossRef] [Green Version]
- Stofleth, J.M.; Shields, F.D., Jr.; Fox, G.A. Hyporheic and total transient storage in small, sand-bed streams. Hydrol. Process. 2008, 22, 1885–1894. [Google Scholar] [CrossRef]
- Boulton, A.J. Conservation of ephemeral streams and their ecosystem services: What are we missing? Aquat. Conserv. Mar. Freshw. Ecosyst. 2014, 24, 733–738. [Google Scholar] [CrossRef]
- Datry, T.; Singer, G.; Sauquet, E.; Jorda-Capdevila, D.; Von Schiller, D.; Stubbington, R.; Magand, C.; Pařil, P.; Miliša, M.; Acuña, V.; et al. Science and Management of Intermittent Rivers and Ephemeral Streams (SMIRES). Res. Ideas Outcomes 2017, 3, e21774. [Google Scholar] [CrossRef]
- Billi, P. Flash flood sediment transport in a steep sand-bed ephemeral stream. Int. J. Sediment Res. 2011, 26, 193–209. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Tang, H.; Zhao, C. Particle size distribution of bed materials in the sandy river bed of alluvial rivers. Int. J. Sediment Res. 2017, 32, 331–339. [Google Scholar] [CrossRef]
- Frederick, A.O.O.; Olufisayo, A.O.; George, M.O. Sand water storage: Unconventional methods to freshwater augmentation in isolated rural communities of South Africa. Sci. Res. Essays 2011, 6, 1885–1890. [Google Scholar] [CrossRef] [Green Version]
- Barrow, C.J. World atlas of desertification (United nations environment programme), edited by N. Middleton and D. S. G. Thomas. Edward Arnold, London, 1992. isbn 0 340 55512 2, £89.50 (hardback), ix + 69 pp. Land Degrad. Dev. 1992, 3, 249. [Google Scholar] [CrossRef]
- Hanson, G.; Nilsson, A. Ground-Water Dams for Rural-Water Supplies in Developing Countries. Ground Water 1986, 24, 497–506. [Google Scholar] [CrossRef]
- Stefan, C.; Ansems, N. Web-based global inventory of managed aquifer recharge applications. Sustain. Water Resour. Manag. 2018, 4, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Van Haveren, B.P. Dependable Water Supplies from Valley Alluvium in Arid Regions. Environ. Monit. Assess. 2004, 99, 259–266. [Google Scholar] [CrossRef]
- Wipplinger, O. Sand storage dams in South West Africa. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1974, 11, 208. [Google Scholar] [CrossRef]
- Kamel, A.H.; Almawla, A.S. Experimental Investigation about the Effect of Sand Storage Dams on Water Quality. Zanco J. Pure Appl. Sci. 2016, 28, 485–491. [Google Scholar]
- Rao, S.V.R.; Rasmussen, J.A. Technology of Small Community Water Supply Systems in Developing Countries. J. Water Resour. Plan. Manag. 1987, 113, 485–497. [Google Scholar] [CrossRef]
- Ishida, S.; Tsuchihara, T.; Yoshimoto, S.; Imaizumi, M. Sustainable Use of Groundwater with Underground Dams. Jpn. Agric. Res. Q. JARQ 2011, 45, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Ngugi, K.N.K.; Gichaba, C.M.M.; Kathumo, V.M.V.; Ertsen, M.W.M. Back to the drawing board: Assessing siting guidelines for sand dams in Kenya. Sustain. Water Resour. Manag. 2020, 6, 58. [Google Scholar] [CrossRef]
- Yifru, B.; Kim, M.-G.; Woo Chang, S.; Lee, J.; Chung, I.-M. Numerical Modeling of the Effect of Sand Dam on Groundwater Flow. J. Eng. Geol. 2018, 28, 529–540. [Google Scholar] [CrossRef]
- Hut, R.; Ertsen, M.; Joeman, N.; Vergeer, N.; Winsemius, H.; van de Giesen, N. Effects of sand storage dams on groundwater levels with examples from Kenya. Phys. Chem. Earth Parts A/B/C 2008, 33, 56–66. [Google Scholar] [CrossRef]
- Teel, W.S. Catching Rain: Sand Dams and Other Strategies for Developing Locally Resilient Water Supplies in Semiarid Areas of Kenya. In Agriculture and Ecosystem Resilience in Sub Saharan Africa: Climate Change Management; Springer International Publishing: Cham, Switzerland, 2019; pp. 327–342. [Google Scholar] [CrossRef]
- Quinn, R.; Avis, O.; Decker, M.; Parker, A.; Cairncross, S. An Assessment of the Microbiological Water Quality of Sand Dams in Southeastern Kenya. Water 2018, 10, 708. [Google Scholar] [CrossRef] [Green Version]
- Ndekezi, M.; James, W.K.; Patrick, G.H. Evaluation of sand-dam water quality and its suitability for domestic use in arid and semi-arid environments: A case study of Kitui-West Sub-County, Kenya. Int. J. Water Resour. Environ. Eng. 2019, 11, 91–111. [Google Scholar] [CrossRef] [Green Version]
- Graber Neufeld, D.; Muendo, B.; Muli, J.; Kanyari, J. Coliform bacteria and salt content as drinking water challenges at sand dams in Kenya. J. Water Health 2020, 18, 602–612. [Google Scholar] [CrossRef]
- Yifru, B.; Kim, M.-G.; Chang, S.-W.; Lee, J.; Chung, I.-M. Assessment of the Effect of Sand Dam on Groundwater Level: A Case Study in Chuncheon, South Korea. J. Eng. Geol. 2020, 30, 119–129. [Google Scholar] [CrossRef]
- Hoogmoed, M. Analyses of Impacts of a Sand Storage Dam on Groundwater Flow and Storage: Groundwater Flow Modeling in Kitui District, Kenya. Master’s Thesis, Vrije University Amsterdam, Amsterdam, The Netherlands, 2007. [Google Scholar]
- Aerts, J.; Lasage, R.; Beets, W.; de Moel, H.; Mutiso, G.; Mutiso, S.; de Vries, A. Robustness of Sand Storage Dams under Climate Change. Vadose Zone J. 2007, 6, 572–580. [Google Scholar] [CrossRef]
- Lasage, R.; Aerts, J.; Mutiso, G.-C.M.; de Vries, A. Potential for community based adaptation to droughts: Sand dams in Kitui, Kenya. Phys. Chem. Earth Parts A/B/C 2008, 33, 67–73. [Google Scholar] [CrossRef]
- Hellwig, D.H.R. Evaporation of water from sand, 4: The influence of the depth of the water-table and the particle size distribution of the sand. J. Hydrol. 1973, 18, 317–327. [Google Scholar] [CrossRef]
- Borst, L.; de Haas, S.A. Hydrology of Sand Storage Dams A Case study in the Kiindu Catchment, Kitui District, Kenya. Master’s Thesis, Vrije University Amsterdam, Amsterdam, The Netherlands, 2006. [Google Scholar]
- Jansen, J. The Influence of Sand Dams on Rainfall-Runoff Response and Water Availability in the Semi-Arid Kiindu Catchment, Kitui District, Kenya. Master’s Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2007. [Google Scholar]
- Quinn, R.; Rushton, K.; Parker, A. An examination of the hydrological system of a sand dam during the dry season leading to water balances. J. Hydrol. X 2019, 4, 100035. [Google Scholar] [CrossRef]
- De Trincheria, J.; Leal, W.F.; Otterpohl, R. Towards a universal optimization of the performance of sand storage dams in arid and semi-arid areas by systematically minimizing vulnerability to siltation: A case study in Makueni, Kenya. Int. J. Sediment Res. 2018, 33, 221–233. [Google Scholar] [CrossRef]
- Neufeld, D.G.; Muli, J.; Muendo, B.; Kanyari, J. Assessment of water presence and use at sand dams in Kenya. J. Arid Environ. 2021, 188, 104472. [Google Scholar] [CrossRef]
- Forzieri, G.; Gardenti, M.; Caparrini, F.; Castelli, F. A methodology for the pre-selection of suitable sites for surface and underground small dams in arid areas: A case study in the region of Kidal, Mali. Phys. Chem. Earth Parts A/B/C 2008, 33, 74–85. [Google Scholar] [CrossRef]
- Simon, P.L.-R. An Appraisal of the Effectiveness and Sustainability of Sand Dams to Improve Water Security and Resilience in Rural Somaliland. Master’s Thesis, Loughborough University, Loughborough, UK, 2019. [Google Scholar]
- Cozens, M.J.E.B. Technical Feasibility Framework for Sand Dams Applied to Eastern Chad. Master’s Thesis, Loughborough University, Loughborough, UK, 2017. [Google Scholar]
- Beswetherick, S.; Carrière, M.; Legendre, V.; Mather, W.; Perpes, T.; Saunier, B.; Pablo, S.; Moreno, C.; Le, K.; Pidou, C.; et al. Guidelines for the Siting of Sand Dams. Master’s Thesis, Cranfield University, Cranfield, UK, 2018. [Google Scholar]
- Maddrell, S.R. Sand Dams: A Practical & Technical Manual; Excellent Development: London, UK, 2018; ISBN 978-1-9997263-0-0. [Google Scholar]
- African Sand Dam Foundation Sand Dams. Available online: https://www.asdfafrica.org/about-sand-dams (accessed on 18 March 2021).
- Bleich, V.C.; Weaver, R.A. “Improved” Sand Dams for Wildlife Habitat Management. J. Range Manag. 1983, 36, 133. [Google Scholar] [CrossRef]
- Hartley, P.A. Sand-Storage Dams: An Alternate Method of Rural Water Supply in Namibia. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 1997. [Google Scholar]
- Viducich, J.M.G. Spillway Staging and Selective Sediment Deposition in Sand Storage Dams. Master’s Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2015. [Google Scholar]
- Nissen-Petersen, E. Water from sand-rivers. 1997, pp. 394–396. Available online: https://wedc-knowledge.lboro.ac.uk/resources/conference/23/Nissen.pdf (accessed on 21 May 2021).
- Hayashi, A.; Akimoto, K.; Tomoda, T.; Kii, M. Global evaluation of the effects of agriculture and water management adaptations on the water-stressed population. Mitig. Adapt. Strateg. Glob. Change 2013, 18, 591–618. [Google Scholar] [CrossRef]
- Gijsbertsen, C.; Groen, J.; Waterloo, M.J. A Study to Up-Scaling of the Principle and Sediment (Transport) Processes Behind, Sand Storage Dams, Kitui District, Kenya. Master’s Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2007. [Google Scholar]
- Nissen-Petersen, E. Water from Dry Riverbeds:How Dry and Sandy Riverbeds Can Be Turned into Water Sources by Hand-Dug Wells, Subsurface Dams, Weirs and Sand Dams; Okech, J., Ed.; ASAL Consultants Ltd. for the Danish International Development Agency (DANIDA): Nairobi, Kenya, 2006. [Google Scholar]
- Strohschein, P.M. Exploring the Influence of Sand Storage Dams on Hydrology and Water Use. Master’s Thesis, Delft University of Technology (TU Delft), Delft, The Netherlands, 2016. [Google Scholar]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 1957, 38, 913. [Google Scholar] [CrossRef] [Green Version]
- Berochan, G.; Kiyimba, J.; Alupo, G. Mainstreaming Water Security through Rainwater Harvesting (Sand dam). In Proceedings of the 7th RWSN Forum “Water for Everyone”, Abidjan, Côte d’Ivoire, 29 November–2 December 2016; pp. 1–7. [Google Scholar]
- Onder, H.; Yilmaz, M. Underground Dams A Tool of Sustainable Development and Management of Groundwater Resources. Eur. Water 2005, 11/12, 35–45. [Google Scholar]
- Ryan, C.; Elsner, P. The potential for sand dams to increase the adaptive capacity of East African drylands to climate change. Reg. Environ. Change 2016, 16, 2087–2096. [Google Scholar] [CrossRef] [Green Version]
- Huang, E.Y.; Merwade, V. Sand Dam Hydraulics, Hydrology, and GIS Modeling Simulation in Predicting River Behavior under Multiple Weather Conditions to Solve Water Shortage Problems. In World Environmental and Water Resources Congress 2015; American Society of Civil Engineers: Reston, VA, USA, 2015; pp. 1545–1554. [Google Scholar]
- Marks, S.J.; Onda, K.; Davis, J. Does sense of ownership matter for rural water system sustainability? Evidence from Kenya. J. Watersanit. Hyg. Dev. 2013, 3, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Kitheka, J.U. Seasonal river channel water exchange and implications on salinity levels in sand dams: Case of semi-arid Kitui Region, Kenya. J. Environ. Earth Sci. 2016, 6, 66–85. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Quinn, R.; Parker, A.; Rushton, K. Evaporation from bare soil: Lysimeter experiments in sand dams interpreted using conceptual and numerical models. J. Hydrol. 2018, 564, 909–915. [Google Scholar] [CrossRef]
- Wipplinger, O. The Storage of Water in Sand. An Investigation of the Properties of Natural and Artificial Sand Reservoirs and of Methods of Developing such Reservoirs. PhD Thesis, Stellenbosch University, Stellenbosch, South Africa, 1953. [Google Scholar]
- Hellwig, D.H.R. Evaporation of water from sand, 1: Experimental set-up and climatic influences. J. Hydrol. 1973, 18, 93–108. [Google Scholar] [CrossRef]
- Standen, K.; Costa, L.R.D.; Monteiro, J.-P. In-Channel Managed Aquifer Recharge: A Review of Current Development Worldwide and Future Potential in Europe. Water 2020, 12, 3099. [Google Scholar] [CrossRef]
- Döll, P.; Schmied, H.M. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environ. Res. Lett. 2012, 7, 014037. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Glob. Environ. Chang. 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environ. Res. Lett. 2009, 4, 035006. [Google Scholar] [CrossRef]
Study Focus, Site | Source, Reference |
---|---|
Assessment of water quality | [50,51,52] |
Effect of a sand dam on groundwater | [21,47,48,53,54] |
Climate change and drought | [20,55,56] |
Particle size distribution and evaporation | [57] |
Occurrence of a sand dam | [29,40] |
Working principles and water balance | [19,58,59,60] |
Sustainable development analysis | [18,49,61] |
Functionality assessment | [62] |
Site selection, feasibility studies, manual | [22,46,63,64,65,66,67] |
African Sand Dam Foundation | [68] |
Excellent Development | [28,67] |
Soil Type | Range Grain Size (mm) | Porosity (%) | Effective Porosity (%) |
---|---|---|---|
Silt | <0.5 | 38 | 5 |
Fine sand | 0.5–1 | 40 | 19 |
Medium sand | 1–1.5 | 41 | 25 |
Coarse sand | 1–5 | 45 | 35 |
Small gravel | 5–19 | 46 | 41 |
Large gravel | 9–70 | 51 | 50 |
Parameter | Value | Reference |
---|---|---|
Catchment slope | >2° | [74] |
Catchment size | 0.15–366 Km2 | [71,74] |
Riverbed slope | 0.2–5% | [46,48,65] |
Width of riverbed | 5–25 m | [65,76] |
Riverbed thickness | 0.8–2.5 m | [76] |
Particle size in the bed | >0.2 mm | [65] |
Precipitation | >200 mm/year | [46] |
Water indicating plant occurrence, at least two types | <10 m radius | [22,46] |
Stream order [77] * | 1–3 | [46] |
Minimum flow rate for sediment transport | 0.2 m/s | [65] |
Characteristics | Range | Reference |
---|---|---|
Height of sand dam | 1–6 m | [49,55,79] |
Width of sand dam | <40 m | [46] |
Construction stages | 18–50 cm | [7,22,71,7,22,71] |
Spillway height above sand level | <50 cm | [22] |
Effective storage volume | 25–40% | [50,67,72] |
Construction cost (USD) | 5000–20,000 | [46,67] |
Retained river flow | 1–3% | [18,80] |
Distance between series of sand dams | >500 m | [18] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yifru, B.A.; Kim, M.-G.; Lee, J.-W.; Kim, I.-H.; Chang, S.-W.; Chung, I.-M. Water Storage in Dry Riverbeds of Arid and Semi-Arid Regions: Overview, Challenges, and Prospects of Sand Dam Technology. Sustainability 2021, 13, 5905. https://doi.org/10.3390/su13115905
Yifru BA, Kim M-G, Lee J-W, Kim I-H, Chang S-W, Chung I-M. Water Storage in Dry Riverbeds of Arid and Semi-Arid Regions: Overview, Challenges, and Prospects of Sand Dam Technology. Sustainability. 2021; 13(11):5905. https://doi.org/10.3390/su13115905
Chicago/Turabian StyleYifru, Bisrat Ayalew, Min-Gyu Kim, Jeong-Woo Lee, Il-Hwan Kim, Sun-Woo Chang, and Il-Moon Chung. 2021. "Water Storage in Dry Riverbeds of Arid and Semi-Arid Regions: Overview, Challenges, and Prospects of Sand Dam Technology" Sustainability 13, no. 11: 5905. https://doi.org/10.3390/su13115905
APA StyleYifru, B. A., Kim, M. -G., Lee, J. -W., Kim, I. -H., Chang, S. -W., & Chung, I. -M. (2021). Water Storage in Dry Riverbeds of Arid and Semi-Arid Regions: Overview, Challenges, and Prospects of Sand Dam Technology. Sustainability, 13(11), 5905. https://doi.org/10.3390/su13115905