Behavior Patterns, Energy Consumption and Comfort during COVID-19 Lockdown Related to Home Features, Socioeconomic Factors and Energy Poverty in Madrid
Abstract
:Highlights
- Almost a third of the participating households usually dedicate more than 10% of their income to energy expenses (and they can be considered energy-poor).
- General energy consumption increased without having a significant relationship with the situation of vulnerability, or with energy poverty.
- Of the participating households, 43.6% increased their consumption of hot water during confinement, while the use of heating was strictly necessary for half of the sample. None of the uses of these services indicated a significant relationship with energy poverty.
- Half of the sample did not apply energy saving measures in confinement, compared to a quarter who applied three or more measures, statistically related to energy poverty.
- Thermal discomfort, applying thermal adaptation measures on a daily basis, and having thermal preferences for heat in the home were related to being energy-poor.
1. Introduction
2. Literature Analysis
3. Materials and Methods
3.1. Study Area
3.2. Data Collection and Recruitment
3.3. Variables Chosen for the Study
3.4. Data Analysis
4. Results
4.1. Characteristics of the Participants in Madrid
4.2. Characteristics of Participating Households’ Dwellings
4.3. Comparative Energy Expenditure (Energy Poverty)
4.4. Energy Consumption and Saving Strategies during Lockdown
4.5. Thermal Comfort during Lockdown
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuerdo-Vilches, T.; Navas-Martín, M.; Oteiza, I. A mixed approach on resilience of Spanish dwellings and households during COVID-19 lockdown. Sustainability 2020, 12, 10198. [Google Scholar] [CrossRef]
- Straka, W.; Kondragunta, S.; Wei, Z.; Zhang, H.; Miller, S.D.; Watts, A. Examining the economic and environmental impacts of covid-19 using earth observation data. Remote Sens. 2021, 13, 5. [Google Scholar] [CrossRef]
- Kearns, A.; Whitley, E.; Curl, A. Occupant behaviour as a fourth driver of fuel poverty (aka warmth & energy deprivation). Energy Policy 2019, 129, 1143–1155. [Google Scholar] [PubMed]
- Besagni, G.; Vilà, L.P.; Borgarello, M. Italian household load profiles: A monitoring campaign. Builduings 2020, 10, 217. [Google Scholar] [CrossRef]
- Gouveia, J.P.; Seixas, J.; Long, G. Mining households’ energy data to disclose fuel poverty: Lessons for Southern Europe. J. Clean. Prod. 2018, 178, 534–550. [Google Scholar] [CrossRef]
- Piekut, M. Patterns of energy consumption in Polish one-person households. Energies 2020, 13, 5699. [Google Scholar] [CrossRef]
- Sánchez, C.S.-G.; Fernández, A.S.; Peiró, M.N. Feminisation of energy poverty in the city of Madrid. Energy Build. 2020, 223, 110157. [Google Scholar] [CrossRef]
- Feenstra, M.; Özerol, G. Energy justice as a search light for gender-energy nexus: Towards a conceptual framework. Renew. Sustain. Energy Rev. 2021, 138, 110668. [Google Scholar] [CrossRef]
- Scarpellini, S.; Hernández, M.A.S.; Moneva, J.M.; Portillo-Tarragona, P.; Rodríguez, M.E.L. Measurement of spatial socioeconomic impact of energy poverty. Energy Policy 2019, 124, 320–331. [Google Scholar] [CrossRef]
- Fabbri, K.; Gaspari, J. Mapping the energy poverty: A case study based on the energy performance certificates in the city of Bologna. Energy Build. 2021, 234, 110718. [Google Scholar] [CrossRef]
- Burgess, M.; Whitehead, M. Just transitions, poverty and energy consumption: Personal carbon accounts and households in poverty. Energies 2020, 13, 5953. [Google Scholar] [CrossRef]
- Horta, A.; Gouveia, J.P.; Schmidt, L.; Sousa, J.C.; Palma, P.; Simões, S. Energy poverty in Portugal: Combining vulnerability mapping with household interviews. Energy Build. 2019, 203. [Google Scholar] [CrossRef] [Green Version]
- Papada, L.; Balaskas, A.; Katsoulakos, N.; Kaliampakos, D.; Damigos, D. Fighting energy poverty using user-driven approaches in mountainous Greece: Lessons learnt from a living lab. Energies 2021, 14, 1525. [Google Scholar] [CrossRef]
- Eurofound. Living, Working and COVID-19’, COVID-19 Series; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- European Comission. What Is Energy Poverty? EU Energy Poverty Observatory. Available online: https://www.energypoverty.eu/about/what-energy-poverty (accessed on 14 March 2021).
- Siksnelyte-Butkiene, I.; Streimikiene, D.; Lekavicius, V.; Balezentis, T. Energy poverty indicators: A systematic literature review and comprehensive analysis of integrity. Sustain. Cities Soc. 2021, 67, 102756. [Google Scholar] [CrossRef]
- Eras-Almeida, A.A.; Egido-Aguilera, M.A. What is still necessary for supporting the SDG7 in the most vulnerable contexts? Sustainability 2020, 12, 7184. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Thomson, H.; Cornelis, M. Confronting energy poverty in Europe: A research and policy agenda. Energies 2021, 14, 858. [Google Scholar] [CrossRef]
- Latief, R.; Kong, Y.; Peng, Y.; Javeed, S.A. Conceptualizing pathways of sustainable development in the union for the mediterranean countries with an empirical intersection of energy consumption and economic growth. Int. J. Environ. Res. Public Health 2020, 17, 5614. [Google Scholar] [CrossRef] [PubMed]
- Baumli, K.; Jamasb, T. Assessing private investment in African renewable energy infrastructure: A multi-criteria decision analysis approach. Sustainability 2020, 12, 9425. [Google Scholar] [CrossRef]
- González-Eguino, M. Energy poverty: An overview. Renew. Sustain. Energy Rev. 2015, 47, 377–385. [Google Scholar] [CrossRef]
- Robinson, C.; Yan, D.; Bouzarovski, S.; Zhang, Y. Energy poverty and thermal comfort in northern urban China: A household-scale typology of infrastructural inequalities. Energy Build. 2018, 177, 363–374. [Google Scholar] [CrossRef]
- Ravindra, K.; Kaur-Sidhu, M.; Mor, S.; Chakma, J.; Pillarisetti, A. Impact of the COVID-19 pandemic on clean fuel programmes in India and ensuring sustainability for household energy needs. Environ. Int. 2021, 147, 106335. [Google Scholar] [CrossRef]
- Teschner, N.; Sinea, A.; Vornicu, A.; Abu-Hamed, T.; Negev, M. Extreme energy poverty in the urban peripheries of Romania and Israel: Policy, planning and infrastructure. Energy Res. Soc. Sci. 2020, 66. [Google Scholar] [CrossRef]
- Szulgowska-Zgrzywa, M.; Stefanowicz, E.; Piechurski, K.; Chmielewska, A.; Kowalczyk, M. Impact of users’ behavior and real weather conditions on the energy consumption of tenement houses in Wroclaw, Poland: Energy performance gap simulation based on a model calibrated by field measurements. Energies 2020, 13, 6707. [Google Scholar] [CrossRef]
- Broadman, B. Fuel Poverty: From Cold Homes to Affordable Warmth; Belhaven Press: London, UK, 1991; Available online: https://books.google.es/books/about/Fuel_Poverty.html?id=HwYtAAAAMAAJ&redir_esc=y (accessed on 2 April 2021).
- Moore, R. Definitions of fuel poverty: Implications for policy. Energy Policy 2012, 49, 19–26. [Google Scholar] [CrossRef]
- Hills, J. Getting the Measure of Fuel Poverty: Final Report of the Fuel Poverty Review; Centre for Analysis of Social Exclusion: London, UK, 2012. [Google Scholar]
- Villalobos, C.; Chávez, C.; Uribe, A. Energy poverty measures and the identification of the energy poor: A comparison between the utilitarian and capability-based approaches in Chile. Energy Policy 2021, 152, 112146. [Google Scholar] [CrossRef]
- Gouveia, J.P.; Palma, P.; Simoes, S.G. Energy poverty vulnerability index: A multidimensional tool to identify hotspots for local action. Energy Rep. 2019, 5, 187–201. [Google Scholar] [CrossRef]
- Martín-Consuegra, F.; Gómez Giménez, J.M.; Alonso, C.; Córdoba Hernández, R.; Hernández Aja, A.; Oteiza, I. Multidimensional index of fuel poverty in deprived neighbourhoods. Case study of Madrid. Energy Build. 2020, 224. [Google Scholar] [CrossRef]
- Pérez-Fargallo, A.; Bienvenido-Huertas, D.; Rubio-Bellido, C.; Trebilcock, M. Energy poverty risk mapping methodology considering the user’s thermal adaptability: The case of Chile. Energy Sustain. Dev. 2020, 58, 63–77. [Google Scholar] [CrossRef]
- Díaz, J.; Antonio-López-Bueno, J.; Culqui, D.; Asensio, C.; Sánchez-Martínez, G.; Linares, C. Does exposure to noise pollution influence the incidence and severity of COVID-19? Environ. Res. 2021, 195. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Furszyfer Del Rio, D.; Griffiths, S. Contextualizing the Covid-19 pandemic for a carbon-constrained world: Insights for sustainability transitions, energy justice, and research methodology. Energy Res. Soc. Sci. 2020, 68, 101701. [Google Scholar] [CrossRef]
- Hesselman, M.; Varo, A.; Guyet, R.; Thomson, H. Mapping COVID-19 Emergency Measures on Household Energy Services. Engager Cost. Available online: http://www.engager-energy.net/covid19/ (accessed on 2 April 2021).
- de España, G. Estrategia a Largo Plazo para la Rehabilitación Energética en el Sector de la Edificación en España en Desarrollo del Artículo 4 de la Directiva 2012/27/UE. 2020. Available online: https://www.mitma.gob.es/el-ministerio/planes-estrategicos/estrategia-a-largo-plazo-para-la-rehabilitacion-energetica-en-el-sector-de-la-edificacion-en-espana (accessed on 12 October 2020).
- European Comission. Renovation Wave. Energy. Available online: https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/renovation-wave_en (accessed on 2 April 2021).
- Elavarasan, R.M.; Shafiullah, G.; Raju, K.; Mudgal, V.; Arif, M.; Jamal, T.; Subramanian, S.; Balaguru, V.S.; Reddy, K.; Subramaniam, U. COVID-19: Impact analysis and recommendations for power sector operation. Appl. Energy 2020, 279, 115739. [Google Scholar] [CrossRef] [PubMed]
- Mofijur, M.; Fattah, I.R.; Alam, A.; Islam, A.S.; Ong, H.C.; Rahman, S.A.; Najafi, G.; Ahmed, S.; Uddin, A.; Mahlia, T. Impact of COVID-19 on the social, economic, environmental and energy domains: Lessons learnt from a global pandemic. Sustain. Prod. Consum. 2021, 26, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Abu-Rayash, A.; Dincer, I. Analysis of the electricity demand trends amidst the COVID-19 coronavirus pandemic. Energy Res. Soc. Sci. 2020, 68, 101682. [Google Scholar] [CrossRef]
- Kanitkar, T. The COVID-19 lockdown in India: Impacts on the economy and the power sector. Glob. Transit. 2020, 2, 150–156. [Google Scholar] [CrossRef]
- Krarti, M.; Aldubyan, M. Review analysis of COVID-19 impact on electricity demand for residential buildings. Renew. Sustain. Energy Rev. 2021, 143, 110888. [Google Scholar] [CrossRef]
- Sumner, A.; Ortiz-Juarez, E.; Hoy, C. Precarity and the Pandemic: COVID-19 and Poverty Incidence, Intensity, and Severity in Developing Countries; UNU-WIDER: Helsinki, Finland, 2020. [Google Scholar] [CrossRef]
- Suryahadi, A.; Al Izzati, R.; Suryadarma, D. Estimating the Impact of Covid-19 on Poverty in Indonesia. Bull. Indones. Econ. Stud. 2020, 56, 175–192. [Google Scholar] [CrossRef]
- Ashford, N.A.; Hall, R.P.; Arango-Quiroga, J.; Metaxas, K.A.; Showalter, A.L. Addressing inequality: The first step beyond COVID-19 and towards sustainability. Sustainability 2020, 12, 5404. [Google Scholar] [CrossRef]
- Bardazzi, R.; Bortolotti, L.; Pazienza, M.G. To eat and not to heat? Energy poverty and income inequality in Italian regions. Energy Res. Soc. Sci. 2021, 73, 10194. [Google Scholar] [CrossRef]
- Ba, M. Towards a measure of multidimensional poverty in COVID-19 time in Senegal: Identification of risk factors and vulnerable people. Open J. Soc. Sci. 2020, 8, 267–285. [Google Scholar] [CrossRef]
- Boateng, G.O.; Phipps, L.M.; Smith, L.E.; Armah, F.A. Household energy insecurity and COVID-19 have independent and synergistic health effects on vulnerable populations. Front. Public Health 2021, 8, 609608. [Google Scholar] [CrossRef]
- Anser, M.K.; Yousaf, Z.; Khan, M.A.; Nassani, A.A.; Alotaibi, S.M.; Abro, M.M.Q.; Vo, X.V.; Zaman, K. Does communicable diseases (including COVID-19) may increase global poverty risk? A cloud on the horizon. Environ. Res. 2020, 187, 109668. [Google Scholar] [CrossRef]
- Carrere, J.; Peralta, A.; Oliveras, L.; López, M.J.; Marí-Dell’Olmo, M.; Benach, J.; Novoa, A.M. Energy poverty, its intensity and health in vulnerable populations in a Southern European city. Gac. Sanit. 2020. [Google Scholar] [CrossRef] [PubMed]
- Mohan, G. The impact of household energy poverty on the mental health of parents of young children. J. Public Health 2021. [Google Scholar] [CrossRef]
- Paul, B.V.; Finn, A.; Chaudhary, S.; Mayer Gukovas, R.; Sundaram, R. COVID-19, Poverty, and Social Safety Net Response in Zambia; The World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Mastropietro, P.; Rodilla, P.; Batlle, C. Emergency measures to protect energy consumers during the Covid-19 pandemic: A global review and critical analysis. Energy Res. Soc. Sci. 2020, 68, 101678. [Google Scholar] [CrossRef] [PubMed]
- Zuk, P.; Zuk, P.; Plucinski, P. Coal basin in Upper Silesia and energy transition in Poland in the context of pandemic: The socio-political diversity of preferences in energy and environmental policy. Resour. Policy 2021, 71. [Google Scholar] [CrossRef]
- Nagaj, R.; Korpysa, J. Impact of COVID-19 on the level of energy poverty in Poland. Energies 2020, 13, 4977. [Google Scholar] [CrossRef]
- Brown, M.A.; Soni, A.; Doshi, A.D.; King, C. The persistence of high energy burden: Results of a bibliometric analysis. Energy Res. Soc. Sci. 2020, 70, 101756. [Google Scholar] [CrossRef] [PubMed]
- Memmott, T.; Carley, S.; Graff, M.; Konisky, D.M. Sociodemographic disparities in energy insecurity among low-income households before and during the COVID-19 pandemic. Nat. Energy 2021, 6, 186–193. [Google Scholar] [CrossRef]
- Echegaray, F. What POST-COVID-19 lifestyles may look like? Identifying scenarios and their implications for sustainability. Sustain. Prod. Consum. 2021, 27, 567–574. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S. Preventing carbon emission retaliatory rebound post-COVID-19 requires expanding free trade and improving energy efficiency. Sci. Total Environ. 2020, 746, 141158. [Google Scholar] [CrossRef]
- Cheshmehzangi, A. COVID-19 and household energy implications: What are the main impacts on energy use? Heliyon 2020, 6, e05202. [Google Scholar] [CrossRef]
- Shupler, M.; Mwitari, J.; Gohole, A.; de Cuevas, R.A.; Puzzolo, E.; Čukić, I.; Nix, E.; Pope, D. COVID-19 impacts on household energy & food security in a Kenyan informal settlement: The need for integrated approaches to the SDGs. Renew. Sustain. Energy Rev. 2021, 144, 111018. [Google Scholar]
- Yan, L.; Li, J.; Liu, M.; Hu, M.; Xu, Z.; Xue, K. Heating behavior using household air-conditioners during the COVID-19 lockdown in Wuhan: An exploratory and comparative study. Build. Environ. 2021, 195, 107731. [Google Scholar] [CrossRef] [PubMed]
- Panão, M.J.O. Lessons learnt from using energy poverty expenditure-based indicators in a mild winter climate. Energy Build. 2021, 242, 110936. [Google Scholar] [CrossRef]
- Santiago, I.; Moreno-Munoz, A.; Quintero-Jiménez, P.; Garcia-Torres, F.; Gonzalez-Redondo, M. Electricity demand during pandemic times: The case of the COVID-19 in Spain. Energy Policy 2021, 148, 111964. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Sánchez-García, D.; Rubio-Bellido, C.; Oliveira, M.J. Influence of adaptive energy saving techniques on office buildings located in cities of the Iberian Peninsula. Sustain. Cities Soc. 2020, 53. [Google Scholar] [CrossRef]
- Euractiv. COVID-19 Means Tackling Energy Poverty Is More Urgent than Ever. Available online: https://www.euractiv.com/section/energy/opinion/covid-19-means-tackling-energy-poverty-is-more-urgent-than-ever/ (accessed on 27 April 2021).
- BBVA Research. Impact of COVID in Spain with Data on Mobility, Electricity Demand and Card Expenditure. Available online: https://www.bbvaresearch.com/en/publicaciones/impact-of-covid-in-spain-with-data-on-mobility-electricity-demand-and-card-expenditure/ (accessed on 27 April 2021).
- Ramos, J.; Gómez, A. El COVID-19 Agrava las Diferencias Entre Hombres y Mujeres en la Conciliación de la Vida Familiar y Laboral. Available online: https://www.ivie.es/es_ES/covid-19-agrava-las-diferencias-hombres-mujeres-la-conciliacion-la-vida-familiar-laboral/ (accessed on 6 April 2021).
- Fell, M.J.; Pagel, L.; Chen, C.-F.; Goldberg, M.H.; Herberz, M.; Huebner, G.M.; Sareen, S.; Hahnel, U.J. Validity of energy social research during and after COVID-19: Challenges, considerations, and responses. Energy Res. Soc. Sci. 2020, 68, 101646. [Google Scholar] [CrossRef] [PubMed]
- Ayuntamiento de Madrid. ‘Padrón Municipal de Habitantes 2020; Ayuntamiento de Madrid: Madrid, Spain, May 2020. [Google Scholar]
- Ayuntamiento de Madrid. ‘Padrón Municipal de Habitantes (Explotación Estadística); Ayuntamiento de Madrid: Madrid, Spain, July 2020. [Google Scholar]
- Ranking de Vulnerabilidad de los Distritos y Barrios de Madrid–Portal de Datos Abiertos del Ayuntamiento de Madrid. Available online: https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=d029ed1e80d38610VgnVCM2000001f4a900aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default (accessed on 2 April 2021).
- Herrero, S.T. Energy poverty indicators: A critical review of methods. Indoor Built Environ. 2017, 26, 1018–1031. [Google Scholar] [CrossRef]
- AENOR-UNE. UNE-EN ISO 7730:2006. Ergonomics of the Thermal Environment–Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0037517 (accessed on 2 April 2021).
- ASHRAE. Standard 55–Thermal Environmental Conditions for Human Occupancy. Available online: https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy. (accessed on 2 April 2021).
- Nomecalles–Nomenclator y Callejero de la Comunidad de Madrid. Available online: http://www.madrid.org/nomecalles (accessed on 13 April 2021).
- Faiella, I.; Lavecchia, L. Energy poverty. How can you fight it, if you can’t measure it? Energy Build. 2021, 233, 110692. [Google Scholar] [CrossRef]
- Sánchez, C.S.-G.; González, F.J.N.; Aja, A.H. Energy poverty methodology based on minimal thermal habitability conditions for low income housing in Spain. Energy Build. 2018, 169, 127–140. [Google Scholar] [CrossRef]
- BOE. BOE-A-2006-5515 Real Decreto 314/2006, de 17 de Marzo, por el que se Aprueba el Código Técnico de la Edificación. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2006-5515 (accessed on 2 April 2021).
- Eurofound. Living, Working and COVID-19: Impact on Gender Equality. Available online: https://www.eurofound.europa.eu/publications/presentation/living-working-and-covid-19-impact-on-gender-equality (accessed on 2 April 2021).
- Hupkau, C.; Victoria, C. Covid-19 and gender inequality in Spain. ESADE. 2020. Available online: https://www.esade.edu/en (accessed on 13 April 2020).
- Sullivan, C.; Lewis, S. Home-based Telework, Gender, and the Synchronization of Work and Family: Perspectives of Teleworkers and their Co-residents. Gender Work. Organ. 2001, 8, 123–145. [Google Scholar] [CrossRef]
- Comparador de Luz y Gas: Tarifas de Energía. 2021. Available online: https://tarifaluzhora.es/comparador (accessed on 2 April 2021).
- European Investment Bank. 2020–2021 EIB Climate Survey, Part 3 of 3. Available online: https://www.eib.org/en/surveys/climate-survey/3rd-climate-survey/best-ways-to-fight-climate-change.htm# (accessed on 2 April 2021).
- Antepara, I.; Papada, L.; Gouveia, J.P.; Katsoulakos, N.; Kaliampakos, D. Improving energy poverty measurement in Southern European regions through equivalization of modeled energy costs. Sustainability 2020, 12, 5721. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Herrero, S.T. The energy divide: Integrating energy transitions, regional inequalities and poverty trends in the European Union. Eur. Urban Reg. Stud. 2017, 24, 69–86. [Google Scholar] [CrossRef] [Green Version]
- Thema, J.; Vondung, F. Expenditure-based indicators of energy poverty—An analysis of income and expenditure elasticities. Energies 2020, 14, 8. [Google Scholar] [CrossRef]
- Karpinska, L.; Śmiech, S. Conceptualising housing costs: The hidden face of energy poverty in Poland. Energy Policy 2020, 147, 111819. [Google Scholar] [CrossRef]
- Castaño-Rosa, R.; Solís-Guzmán, J.; Marrero, M. Energy poverty goes south? Understanding the costs of energy poverty with the index of vulnerable homes in Spain. Energy Res. Soc. Sci. 2020, 60. [Google Scholar] [CrossRef]
- Organización Mundial de la Salud. Directrices Sobre Vivienda y Salud; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Antepara, I.; Bajomi, A.; Barrella, R.; Cornelis, M.; Cuerdo, T.; Dobbins, A.; Feenstra, M.; Gouveia, J.P.; Blaya, M.G.; Guyet, R.; et al. European Energy Poverty: Agenda Co-Creation and Knowledge Innovation. Policy Bried No. 4. New Narratives and Actors for Citizen-Led Energy Poverty Dialogues; COST (European Co-Operation in Science and Technology): Brussels, Belgium, 2020. [Google Scholar]
- Moreno-Arribas, M.V.; de Lucas, J.M. Una Visión Global de la Pandemia COVID-19: Qué Sabemos y qué Estamos Investigando Desde el CSIC; CSIC: Madrid, Spain, 2021; Available online: http://libros.csic.es/product_info.php?products_id=1464&PHPSESSID=3dda41b3d63245c0beacfd68a00479e1 (accessed on 2 April 2021).
- Morand, S.; Lajaunie, C. Outbreaks of vector-borne and zoonotic diseases are associated with changes in forest cover and oil palm expansion at global scale. Front. Vet. Sci. 2021, 8, 661063. [Google Scholar] [CrossRef] [PubMed]
- UNEP. Preventing the Next Pandemic: Zoonotic Diseases and How to Break the Chain of Transmission. Available online: https://www.unep.org/news-and-stories/statements/preventing-next-pandemic-zoonotic-diseases-and-how-break-chain (accessed on 2 April 2021).
Category | Variables |
---|---|
Sociodemographic | Age, gender, employment status, education level and country of birth. |
Characteristics of the household and cohabitants | Occupancy regime, vulnerability index quartile, useful surface area, number of cohabitants, useful surface area per cohabitant, cohabitation with children under 18 years of age and cohabitation with persons over 65 years of age. |
Energy expenditure before and during lockdown (energy poverty) | Usual energy expenditure and estimated energy expenditure in confinement (ten per cent threshold). |
Energy consumption and savings during lockdown | Comparative use of appliances and devices, comparative use of domestic hot water, use of heating, and savings measures. |
Thermal comfort | Perceived thermal sensation, usual clothing, priority adaptation measure if there is thermal dissatisfaction, priority adaptation frequency, thermal preference. |
Variable | Total n (% Column) | Male n (% Column) | Female n (% Column) | p * |
---|---|---|---|---|
General | 367 (100) | 114 (31.1) | 252 (68.9) | |
Age | 0.857 | |||
18–34 | 69 (19) | 22(19.6) | 47 (18.7) | |
35–54 | 207 (56.9) | 65 (58.0) | 142 (56.3) | |
≥55 | 88 (24.2) | 25 (22.3) | 63 (25) | |
Education level | 0.068 | |||
Up to High School/Vocat. Training | 51 (14.0) | 20 (17.5) | 31 (12.4) | |
University | 163 (44.7) | 41 (36) | 122 (48.6) | |
Posgraduate | 151 (41.4) | 53 (46.5) | 98 (39) | |
Employment status | 0.001 | |||
Civil servant | 126 (45.3) | 28 (33.7) | 86 (50.3) | |
Employee | 111 (39.9) | 33 (39.8) | 71 (41.5) | |
Self-employed/Entrepreneur | 41 (14.7) | 22 (23.5) | 14 (8.2) | |
Place of birth | 0.909 | |||
Spanish | 346 (95.7) | 108 (84.7) | 238 (94.4) | |
Foreign | 20 (4.3) | 6 (5.3) | 14 (5.6) | |
Vulnerability index | 0.745 | |||
Quartile 1 (higher vulnerability) | 58 (16.4) | 16 (14.3) | 42 (17.4) | |
Quartile 2 | 106 (29.9) | 35 (31.3) | 71 (29.3) | |
Quartile 3 | 85 (24.0) | 32 (28.6) | 53 (21.9) | |
Quartile 4 (lower vulnerability) | 105 (29.7) | 29 (25.9) | 76 (31.4) |
Variable | Total N (% Col) | First Quartile N (% Col) | Second Quartile N (% Col) | Third Quartile N (% Col) | Fourth Quartile N (% Col) | p * |
---|---|---|---|---|---|---|
General | 355 (100) | 58 (16.3) | 106 (29.9) | 85 (23.9) | 106 (29.9) | |
People in the household | 0.052 | |||||
One | 84 (25.5) | 13 (25) | 31 (31) | 19 (23.8) | 21 (21.4) | |
Two | 98 (29.7) | 14 (26.9) | 38 (38) | 23 (28.8) | 23 (23.5) | |
More than two | 148 (44.8) | 25 (48.1) | 31 (31) | 38 (47.5) | 54 (51.1) | |
Cohabiting with children under 18 | 0.03 | |||||
No | 222 (67.3) | 30 (57.7) | 77 (77) | 56 (70) | 59 (60.2) | |
Yes | 108 (32.7) | 22 (42.3) | 23 (23) | 24 (30) | 39 (39.8) | |
Cohabiting with people over 65 | 0.168 | |||||
No | 276 (83.6) | 44 (84.6) | 80 (80) | 73 (91.3) | 79 (80.6) | |
Yes | 54 (16.4) | 8 (15.4) | 20 (20) | 7 (8.8) | 19 (19.4) | |
Usable surface area | 0.001 | |||||
Up to 60 m2 | 85 (25.8) | 10 (18.9) | 33 (33) | 24 (30.4) | 18 (18.4) | |
61–80 m2 | 83 (25.2) | 24 (45.3) | 21 (21) | 13 (16.5) | 25 (25.5) | |
81–100 m2 | 100 (30.3) | 15 (28.3) | 28 (28) | 30 (38) | 27 (27.6) | |
≥100 m2 | 62 (18.8) | 4 (7.5) | 18 (18) | 12 (15.2) | 28 (28.6) | |
Usable surface area per person | 0.523 | |||||
≤24 m2/person | 83 (25.2) | 19 (36.5) | 19 (19) | 21 (26.6) | 24 (24.5) | |
>24–≤35 m2/person | 91 (27.7) | 11 (21.2) | 28 (28) | 23 (29.1) | 29 (29.6) | |
>35–≤50 m2/person | 74 (22.5) | 9 (17.3) | 27 (27) | 19 (24.1) | 19 (19.4) | |
≥51 m2/person | 81 (24.6) | 13 (25) | 26 (26) | 16 (20.3) | 26 (26.5) | |
Occupancy regime | 0.111 | |||||
Own | 217 (68.2) | 39 (81.3) | 67 (69.1) | 51 (68) | 60 (61.2) | |
Rented | 101 (31.8) | 9 (18.7) | 30 (30.9) | 24 (32) | 38 (38.8) |
Variable | Total N (% Column) | No Energy Poverty (<10% Household Expenditure) N (% Col) | Energy Poverty (≥10% Household Expenditure) N (% Col) | p * |
---|---|---|---|---|
General | 280 (100) | 193 (68.9) | 87 (31.1) | |
Usual clothing | 0.637 | |||
Light/Very light | 72 (25.8) | 51 (26.6) | 21 (24.1) | |
Normal | 164 (58.8) | 114 (59.4) | 50 (57.5) | |
Warm/Very warm | 43 (15.4) | 27 (14.1) | 16 (18.4) | |
Adaptation measures to thermal discomfort | 0.819 | |||
Changing clothes | 163 (59.1) | 111 (58.4) | 52 (60.5) | |
Opening/closing windows | 79 (28.6) | 54 (28.4) | 25 (29.1) | |
Turning heating on/off | 34 (12.3) | 25 (13.2) | 9 (10.1) | |
Frequency of application of adaptation measures | 0.035 | |||
Daily | 105 (38) | 64 (33.9) | 41 (47.1) | |
Weekly/occasionally | 171 (62) | 125 (66.1) | 46 (52.9) | |
Thermal sensation in the household | 0.025 | |||
Cold | 72 (26.1) | 42 (22.1) | 30 (34.9) | |
Neutral/warm | 204 (73.9) | 148 (77.9) | 56 (65.1) | |
Thermal preferences in the household | 0.027 | |||
Warmer | 87 (31.5) | 52 (27.4) | 35 (40.7) | |
No change/colder | 189 (68.5) | 138 (72.6) | 51 (59.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuerdo-Vilches, T.; Navas-Martín, M.Á.; Oteiza, I. Behavior Patterns, Energy Consumption and Comfort during COVID-19 Lockdown Related to Home Features, Socioeconomic Factors and Energy Poverty in Madrid. Sustainability 2021, 13, 5949. https://doi.org/10.3390/su13115949
Cuerdo-Vilches T, Navas-Martín MÁ, Oteiza I. Behavior Patterns, Energy Consumption and Comfort during COVID-19 Lockdown Related to Home Features, Socioeconomic Factors and Energy Poverty in Madrid. Sustainability. 2021; 13(11):5949. https://doi.org/10.3390/su13115949
Chicago/Turabian StyleCuerdo-Vilches, Teresa, Miguel Ángel Navas-Martín, and Ignacio Oteiza. 2021. "Behavior Patterns, Energy Consumption and Comfort during COVID-19 Lockdown Related to Home Features, Socioeconomic Factors and Energy Poverty in Madrid" Sustainability 13, no. 11: 5949. https://doi.org/10.3390/su13115949
APA StyleCuerdo-Vilches, T., Navas-Martín, M. Á., & Oteiza, I. (2021). Behavior Patterns, Energy Consumption and Comfort during COVID-19 Lockdown Related to Home Features, Socioeconomic Factors and Energy Poverty in Madrid. Sustainability, 13(11), 5949. https://doi.org/10.3390/su13115949