Adaption Actions to Cope with Climate Change: Evidence from Farmers’ Preferences on an Agrobiodiversity Conservation Programme in the Mediterranean Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vine landraces in Apulia
2.2. The Questionnaire
2.3. The CE Design
2.4. The Latent Class Model
3. Results
3.1. Sample Characteristics
3.2. CE Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, J.K.; Wang, Y.J. Financing Sustainable Agriculture under Climate Change. J. Integr. Agric. 2014, 13, 698–712. [Google Scholar] [CrossRef]
- Banna, H.; Afroz, R.; Masud, M.M.; Rana, M.S.; Koh, E.H.; Ahmad, R. Financing an efficient adaptation programme to climate change: A contingent valuation method tested in Malaysia. Cah. Agric. 2016, 25, 25003. [Google Scholar] [CrossRef] [Green Version]
- Thuiller, T.; Lavorel, S.; Araújo, M.B.; Sykes, M.T.; Prentice, I.C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 2005, 102, 8245–8250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardaro, R.; La Sala, P.; Roselli, L. How does the land market capitalize environmental, historical and cultural components in rural areas? Evidence from Italy. J. Environ. Manag. 2020, 269, 110776. [Google Scholar] [CrossRef]
- Esham, M.; Garforth, C. Agricultural adaptation to climate change: Insights from a farming community in Sri Lanka. Mitig. Adapt. Strateg. Glob. Change 2013, 18, 535–549. [Google Scholar] [CrossRef]
- Sardaro, R.; De Pascale, G.; Ingrao, C.; Faccilongo, N. Latent relationships between environmental impacts of cultivation practices and land market: Evidences from a spatial quantile regression analysis in Italy. J. Clean. Prod. 2021, 279, 123648. [Google Scholar] [CrossRef]
- Thornton, P.K.; Van de Steeg, J.; Notenbaert, A.; Herrero, M. The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agric. Syst. 2009, 101, 113–127. [Google Scholar] [CrossRef]
- European Commission. Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL Establishing Rules on Support for Strategic Plans to be Drawn up by Member States under the Common Agricultural Policy (CAP Strategic Plans) and Financed by the European Agricultural Guarantee Fund (EAGF) and by the European Agricultural Fund for Rural Development (EAFRD) and Repealing Regulation (EU) No 1305/2013 of the European Parliament and of the Council and Regulation (EU) No 1307/2013 of the European Parliament and of the Council (COM/2018/392 Final). 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A392%3AFIN (accessed on 7 May 2021).
- Adger, W.N.; Pulhin, J.M.; Barnett, J.; Dabelko, G.D.; Hovelsrud, G.K.; Levy, M.; Oswald Spring, Ú.; Vogel, C.H. Human security. In Climate Change: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 755–791. [Google Scholar]
- Ignaciuk, A. Adapting Agriculture to Climate Change: A Role for Public Policies. In OECD Food, Agriculture and Fisheries Papers, No. 85; OECD Publishing: Paris, France, 2015. [Google Scholar]
- Sardaro, R.; Fucilli, V.; Acciani, C. Measuring the value of rural landscape in support of preservation policies. Sci. Reg. 2015, 14, 125–138. [Google Scholar]
- Jarvis, A.; Lau, C.; Cook, S.; Wollenberg, E.; Hansen, J.; Bonila, O.; Challinor, A. An integrated adaptation and mitigation framework for developing agricultural research: Synergies and trade-offs. Exp. Agric. 2011, 47, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Hallegatte, S.; Lecocq, F.; Perthuis, C. Designing Climate Change Adaptation Policies. An Economic Framework; Policy Research Working Paper 5568; The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- OECD. Farmer Behaviour, Agricultural Management and Climate Change; OECD Publishing: Paris, France, 2012. [Google Scholar]
- Petrillo, F.; Sardaro, R. Urbanizzazione in chiave neoliberale e progetti di sviluppo a grande scala. Sci. Reg. 2014, 13, 125–134. [Google Scholar] [CrossRef]
- Pascual, U.; Jackson, L.E.; Drucker, A.G. Economics of agrobiodiversity. In Encyclopedia of Biodiversity, 2nd ed.; Academic Press: New York, NY, USA, 2013; pp. 31–44. [Google Scholar]
- Jackson, L.E.; Brussaard, L.; de Ruiter, P.C.; Pascual, U.; Perrings, C.; Bawa, K. Agrobiodiversity. In Encyclopedia of Biodiversity, 2nd ed.; Academic Press: New York, NY, USA, 2013; pp. 126–135. [Google Scholar]
- Camacho, V.T.C.; Maxted, N.; Scholten, M.; Ford-Lloyd, B. Defining and Identifying Crop Landraces. Plant Genet. Res. 2005, 3, 373–384. [Google Scholar]
- Sardaro, R.; Grittani, R.; Scrascia, M.; Pazzani, C.; Russo, V.; Garganese, F.; Porfido, C.; Diana, L.; Porcelli, F. The Red Palm Weevil in the city of Bari: A first damage assessment. Forests 2018, 9, 452. [Google Scholar] [CrossRef] [Green Version]
- Sardaro, R.; La Sala, P. New value to wool: Innovative garments for preservation of sheep landraces in Italy. Animals 2021, 11, 731. [Google Scholar] [CrossRef]
- Pascual, U.; Perrings, C. Developing incentives and economic mechanisms for in situ biodiversity conservation in agricultural landscapes. Agric. Ecos. Envir. 2007, 121, 256–268. [Google Scholar] [CrossRef]
- Meinard, Y.; Grill, P. The economic valuation of biodiversity as an abstract good. Ecol. Econ. 2011, 70, 1707–1714. [Google Scholar] [CrossRef]
- IPCC. Impacts, Adaptation and Vulnerability—Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Masud, M.M.; Azam, M.N.; Mohiuddin, M.; Banna, H.; Akhtar, R.; Alam, A.S.A.F.; Begum, H. Adaptation barriers and strategies towards climate change: Challenges in the agricultural sector. J. Clean. Prod. 2017, 156, 698–706. [Google Scholar] [CrossRef]
- Wreford, A.; Ignaciuk, A.; Gruère, G. Overcoming barriers to the adoption of climate-friendly practices in agriculture. In OECD Food, Agriculture and Fisheries Papers, No. 101; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Sardaro, R.; Faccilongo, N.; Roselli, L. Wind farms, farmland occupation and compensation: Evidences from landowners’ preferences through a stated choice survey in Italy. Energy Policy 2019, 133, 110885. [Google Scholar] [CrossRef]
- Dasgupta, P.; Morton, J.F.; Dodman, D.; Karapinar, B.; Meza, F.; Rivera-Ferre, M.G.; Toure Sarr, A.; Vincent, K.E. Rural areas. In Climate Change: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 613–657. [Google Scholar]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Lla-sat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Drucker, A.G.; Ramirez, M. Payments for agrobiodiversity conservation services: An overview of Latin American experiences, lessons learned and upscaling challenges. Land Use Policy 2020, 99, 104810. [Google Scholar] [CrossRef]
- Rocchi, L.; Paolotti, L.; Cortina, C.; Boggia, A. Conservation of landrace: The key role of the value for agrobiodiversity conservation. An application on ancient tomatoes varieties. Agric. Agric. Sci. Proc. 2016, 8, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Kates, R.W.; Travis, W.R.; Wilbanks, T.J. Transformational adaptation when incremental adaptation climate change insufficient. Proc. Natl. Acad. Sci. USA 2012, 109, 7156–7161. [Google Scholar] [CrossRef] [Green Version]
- Wreford, A.; Moran, D.; Adger, N. Climate Change and Agriculture: Impacts, Adaptation and Mitigation; OECD: Paris, France, 2010. [Google Scholar]
- Sardaro, R.; La Sala, P. The technical efficiency of the Apulian winegrowing farms with different irrigation water supply systems. Econ. Agro Aliment. 2020, 22, 10410. [Google Scholar]
- Birkmann, J.; von Teichman, K. Integrating disaster risk reduction and climate change adaptation: Key challenges-scales, knowledge, and norms. Sustain. Sci. 2010, 5, 171–184. [Google Scholar] [CrossRef]
- Jones, L.; Boyd, E. Exploring social barriers to adaptation: Insights from Western Nepal. Glob. Environ. Chang. 2011, 21, 1262–1274. [Google Scholar] [CrossRef]
- ISTAT. 2020. Available online: https://www.istat.it/it/agricoltura?dati (accessed on 7 May 2021).
- INEA. La Biodiversità Delle Colture Pugliesi; Istituto Nazionale di Economia Agraria: Roma, Italy, 2013. [Google Scholar]
- Apulia Region. Rural Development Programme 2014–2020. 2015. Available online: http://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/15122 (accessed on 7 May 2021).
- BURP, Bollettino Ufficiale Della Regione Puglia n. 5 del 21 January 2016. 2016. Available online: http://burp.regione.puglia.it/documents/10192/4845000/N5_21_01_16.pdf/b83bc318-796d-44a4-8609-6abdc7b25a16 (accessed on 7 May 2021).
- BURP, Bollettino Ufficiale Della Regione Puglia n. 16 del 31 January 2013. 2013. Available online: http://burp.regione.puglia.it/documents/10192/4849781/N16_31_01_13.pdf/ee7cb978-4505-4bf9-a828-417b3921abff (accessed on 7 May 2021).
- Hensher, D.A.; Rose, J.M.; Beck, M.J. Are there specific design elements of choice experiments and types of people that influence choice response certainty? J. Choice Model. 2012, 5, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, R.; Dekker, T.; Rolfe, J.; Windle, J. Choice certainty and consistency in repeated choice experiments. Environ. Res. Econ. 2010, 46, 93–109. [Google Scholar] [CrossRef] [Green Version]
- Romy, G.; Bliemer, M.; Ballweg, J. Design considerations of a choice experiment to estimate likely participation by north Australian pastoralists in contractual biodiversity conservation. J. Choice Model. 2014, 10, 34–45. [Google Scholar]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Applied Choice Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Johnston, R.J.; Boyle, K.J.; Adamowicz, W.; Bennett, J.; Brouwer, R.; Cameron, T.A.; Hanemann, W.M.; Hanley, N.; Ryan, M.; Scarpa, R.; et al. Contemporary Guidance for Stated Preference Studies. J. Assoc. Environ. Res. Econom. 2017, 4, 319–405. [Google Scholar] [CrossRef] [Green Version]
- Coast, J.; McDonald, R.; Baker, R. Issues arising from the use of qualitative methods in health economics. J. Health Serv. Res. Policy 2004, 9, 171–176. [Google Scholar] [CrossRef]
- Quick, K.; Zhao, Z. Suggested Design and Management Techniques for Enhancing Public Engagement in Transportation Policymaking. University of Minnesota Center for Transportation Studies Retrieved from the University of Minnesota Digital Conservancy. 2011. Available online: https://conservancy.umn.edu/handle/11299/116934 (accessed on 30 January 2021).
- Stewart, D.W.; Shamdasani, P.N. Focus Groups: Theory and Practice; Sage Publications: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Bloor, M. Focus Groups in Social Research; Sage Publications: Thousand Oaks, CA, USA, 2001. [Google Scholar]
- Vasconcelos, A.C.F.; Bonatti, M.; Schlindwein, S.L.; D’Agostini, L.R.; Homem, L.R.; Nelson, R. Landraces as an adaptation strategy to climate change for smallholders in Santa Catarina, Southern Brazil. Land Use Policy 2013, 34, 250–254. [Google Scholar] [CrossRef]
- Veteläinen, M.; Negri, V.; Maxted, N. A European strategic approach to conserving crop landraces. In European Landraces: On-farm Conservation, Management and Use. Biodiversity Technical Bulletin No. 15; Veteläinen, M., Negri, V., Maxted, N., Eds.; Biodiversity International: Rome, Italy, 2009; pp. 305–325. [Google Scholar]
- Hicks, J.R. The four consumer’s surpluses. Rev. Econ. Stud. 1943, 11, 31–41. [Google Scholar] [CrossRef]
- Burton, M. Inducing Strategic bias and Its Implications for Choice Modelling Design; Research Report n. 61; Australian National University: Canberra, Australia, 2010. [Google Scholar]
- Schläpfer, F.; Fischhoff, B. Task familiarity and contextual cues predict hypothetical bias in a meta-analysis of stated preference studies. Ecol. Econ. 2012, 81, 44–47. [Google Scholar] [CrossRef]
- Brennan, N.; Van Rensburg, T.M. Wind farm externalities and public preferences for community consultation in Ireland: A discrete choice experiments approach. Ener. Pol. 2016, 94, 355–365. [Google Scholar] [CrossRef]
- Tunçel, T.; Hammitt, J. A new meta-analysis on the WTP/WTA disparity. J. Environ. Econ. Manag. 2014, 68, 175–187. [Google Scholar] [CrossRef]
- Horowitz, J.; McConnell, K. A Review of WTA/WTP Studies. J. Environ. Econ. Manag. 2002, 44, 426–447. [Google Scholar] [CrossRef]
- Flynn, T.N.; Louviere, J.J.; Peters, T.J.; Coast, J. Best-worst scaling: What it can do for health care research and how to do it. J. Health Econ. 2007, 26, 171–189. [Google Scholar] [CrossRef] [PubMed]
- Rolfe, J.; Bennett, J. The impact of offering two versus three alternatives in choice modelling experiments. Ecol. Econ. 2009, 68, 1140–1148. [Google Scholar] [CrossRef]
- Louviere, J.J.; Hensher, D.A.; Swait, J.D. Stated Choice Methods: Analysis and Applications; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- De Bekker-Grob, E.W. Discrete Choice Experiments in Health Care: Theory and Applications; Erasmus University: Rotterdam, The Netherlands, 2009. [Google Scholar]
- Vermeulen, B.; Goos, P.; Scarpa, R.; Vandebroek, M. Bayesian conjoint choice designs for measuring willingness to pay. Environ. Res. Econom. 2011, 48, 129–149. [Google Scholar] [CrossRef]
- Lancaster, K.J. A new approach to consumer theory. J. Polit. Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- McFadden, D. Conditional logit analysis of qualitative choice behaviour. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1973; pp. 105–142. [Google Scholar]
- Greene, W.H. NLOGIT Version 5—Reference Guide; Econometric Software: Plainview, NY, USA, 2012. [Google Scholar]
- Train, K.E. Discrete Choice Methods with Simulation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Lazarsfeld, P.F.; Henry, N.W. Latent Structure Analysis; Houghton Mill: Boston, MA, USA, 1968. [Google Scholar]
- Goodman, L.A. The analysis of systems of qualitative variables when some of the variables are unobservable. Part I: A modified latent structure approach. Am. J. Soc. 1974, 79, 1179–1259. [Google Scholar] [CrossRef]
- Wedel, M.; Kamakura, W.A. Market Segmentation: Concepts and Methodological Foundations; Kluwer Academic Publishers: Boston, MA, USA, 2000. [Google Scholar]
- Greene, W.H.; Hensher, D.A. A latent class model for discrete choice analysis: Contrasts with mixed logit. Transp. Res. Part B Meth. 2003, 37, 681–698. [Google Scholar] [CrossRef]
- Boxall, P.C.; Adamowicz, W.L. Understanding heterogeneous preferences in random utility models: A latent class approach. Environ. Res. Econ. 2002, 23, 421–446. [Google Scholar] [CrossRef]
- Hole, A.R. A comparison of approaches to estimating confidence intervals for willingness to pay measures. Health Econ. 2007, 16, 827–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krinsky, I.; Robb, A.L. On approximating the statistical properties of elasticities. Rev. Econ. Stat. 1986, 68, 715–719. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Overview of CAP Reform 2014–2020. Agricultural Policy Perspectives Brief N°5. 2013. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/agri-policy-perspectives-brief-05_en.pdf (accessed on 7 May 2021).
- Noack, E.M.; Schüler, S. Rural development and human well-being: Do pillar-II-programmes take into account ecosystem services? A study in Lower Saxony, Germany. Environ. Sci. Policy 2020, 106, 191–200. [Google Scholar] [CrossRef]
- Van Dijl, E.A.; Grogan, K.A.; Borisova, T. Determinants of adoption of drought adaptations among vegetable growers in Florida. J. Soil Water Conserv. 2015, 70, 218–231. [Google Scholar] [CrossRef] [Green Version]
- Karali, E.; Brunner, B.; Doherty, R.; Hersperger, A.; Rounsevell, M. Identifying the factors that influence farmer participation in environmental management practices in Switzerland. Hum. Ecol. 2014, 42, 951–963. [Google Scholar] [CrossRef]
- Davis, J.; Caskie, P.; Wallace, M. Economics of farmer early retirement policy. Appl. Econ. 2009, 41, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Fischer, H.; Burton, R.J.F. Understanding Farm Succession as Socially Constructed Endogenous Cycles. Sociol. Rural. 2014, 54, 417–438. [Google Scholar] [CrossRef]
- Giacomarra, M.; Crescimanno, M.; Vrontis, D.; Pastor, L.M.; Galati, A. The ability of fish ecolabels to promote a change in the sustainability awareness. Mar. Policy 2020, 123, 104292. [Google Scholar] [CrossRef]
- Lim, K.H.; Reed, M. Do ecolabels cheapen wines? J. Clean. Prod. 2020, 245, 118696. [Google Scholar] [CrossRef]
- Giannoccaro, G.; Carlucci, D.; Sardaro, R.; Roselli, L.; De Gennaro, B.C. Assessing consumer preferences for organic vs eco-labelled olive oils. Org. Agric. 2019, 9, 483–494. [Google Scholar] [CrossRef]
- Baumgart-Getz, A.; Prokopy, L.S.; Floress, K. Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature. J. Environ. Manag. 2012, 96, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, B.; Álvaro-Fuentes, J.; Cunningham, R.; Iglesias, A. Towards mitigation of greenhouse gases by small changes in farming practices: Understanding local barriers in Spain. Mitig. Adapt. Strateg. Glob. Chang. 2014, 21, 995–1028. [Google Scholar] [CrossRef] [Green Version]
- Eakin, H.; York, A.; Aggarwal, R.; Waters, S.; Welch, J.; Rubiños, C.; Smith-Heisters, S.; Bausch, C.; Anderies, J.M. Cognitive and institutional influences on farmers’ adaptive capacity: Insights into barriers and opportunities for transformative change in central Arizona. Reg. Environ. Chang. 2015, 16, 801–814. [Google Scholar] [CrossRef]
- Rosin, C. Food security and the justification of productivism in New Zealand. J. Rural Stud. 2013, 29, 50–58. [Google Scholar] [CrossRef]
- Sardaro, R.; Bozzo, F.; Fucilli, V. High-voltage overhead transmission lines and farmland value: Evidences from the real estate market in Apulia, southern Italy. Energy Policy 2018, 119, 449–457. [Google Scholar] [CrossRef]
- Acciani, C.; Sardaro, R. Perception of risk by electromagnetic fields in the context of power-line easement: Impact on agricultural land value. Aestimum 2014, 64, 39–55. [Google Scholar]
- Martin, P.; Wishart, J.; Cromarty, A.; Chang, X. New markets and supply chains for Scottish Bere barley. In European Landraces: On-Farm Conservation, Management and Use—Biodiversity Technical Bulletin No. 15; Veteläinen, M., Negri, V., Maxted, N., Eds.; Biodiversity International: Rome, Italy, 2009; pp. 251–263. [Google Scholar]
Attributes | Definition | Levels |
---|---|---|
Landrace | Number of vine landraces cultivated in the farm (n.) | 1, 2, 3 |
Area | Farm vineyard area allocated for the programme (%) | 25, 50, 100 |
Duration | Duration of the programme (Years) | 5, 10 |
Avoidance | Option to leave the programme | Yes, No |
Compensation | Regional payment to farmers for their adherence to the programme (EUR ha−1 year−1) | 200, 400, 600, 800, 1000, 1200 |
Attributes | Option A | Option B | No Option |
---|---|---|---|
Landrace | 3 | 1 | Neither A nor B. I do not want to participate in the regional programme |
Area | 100% | 25% | |
Duration | 10 years | 5 years | |
Avoidance | No | Yes | |
Compensation | EUR 1000 | EUR 200 | |
My choice | □ | □ | □ |
Variable | Type of Barrier a | Code | Mean | Std. Dev. | Min. | Max. |
---|---|---|---|---|---|---|
Male (No/Yes) * | sc | Male | 0.86 | 0.72 | 0 | 1 |
Age (years) * | sc | Age | 55.19 | 26.83 | 18 | 77 |
Years of schooling (year) * | sc | Schooling | 7.44 | 8.26 | 3 | 18 |
Farm size (hectares) * | s | Size | 2.41 | 6.94 | 0.48 | 28.57 |
Gross margin (EUR ha−1 yr−1) * | s | Margin | 7143.66 | 13,712.91 | 4602.55 | 13,021.75 |
Tendone cultivation system (No/Yes) | s | Tendone | 0.41 | 0.56 | 0 | 1 |
Landraces on farm (No/Yes) | s | Landraces | 0.14 | 0.25 | 0 | 1 |
Organic farming (No/Yes) * | s | Organic | 0.19 | 0.16 | 0 | 1 |
Possible farm successor (No/Yes) | s | Successor | 0.46 | 0.75 | 0 | 1 |
Wine production and selling (No/Yes) * | e | Wine | 0.11 | 0.19 | 0 | 1 |
Part-time (No/Yes) * | e | Part-time | 0.24 | 0.27 | 0 | 1 |
CAP aids in past ten years (No/Yes) | e | CAP | 0.53 | 0.49 | 0 | 1 |
Access to credit in past ten years (No/Yes) | e | Credit | 0.36 | 0.29 | 0 | 1 |
Easy access to climate information (No/Yes) | e | Information | 0.21 | 0.35 | 0 | 1 |
Costs of adaptation (No/Yes) | e | Costs | 0.79 | 0.81 | 0 | 1 |
Crop cultivated for generations (No/Yes) | sc | Generations | 0.88 | 0.69 | 0 | 1 |
Agriculture for food production (No/Yes) | sc | Food | 0.71 | 0.52 | 0 | 1 |
Believe in climate change (No/Yes) | bc | Believe | 0.97 | 0.70 | 0 | 1 |
Farmers contribute to climate change (No/Yes) | bc | Contribute | 0.39 | 0.41 | 0 | 1 |
Uncertainty about future climate changes (No/Yes) | bc | Uncertainty | 0.52 | 0.59 | 0 | 1 |
Intensive rural area (No/Yes) * | Intensive | 0.33 | 0.39 | 0 | 1 | |
Intermediate rural area (No/Yes) * | Intermediate | 0.48 | 0.51 | 0 | 1 | |
Rural areas with development problems (No/Yes) * | Problems | 0.19 | 0.27 | 0 | 1 | |
Northern Apulia (Foggia province) (No/Yes) * | F | 0.16 | 0.21 | 0 | 1 | |
Central Apulia (Barletta-Andria-Trani and Bari provinces) (No/Yes) * | BTB | 0.35 | 0.38 | 0 | 1 | |
Southern Apulia (Brindisi, Taranto and Lecce provinces) (No/Yes) * | BTL | 0.49 | 0.47 | 0 | 1 |
Model | Log-Likelihood | AIC a | BIC b | AIC3 c |
---|---|---|---|---|
MNL | −2146.88 | 4351.76 | 2233.65 | 4380.76 |
LCM2 | −1819.04 | 3712.08 | 1929.74 | 3749.08 |
LCM3 | −1715.41 | 3562.82 | 1912.88 | 3628.82 |
LCM4 | −1742.77 | 3675.54 | 2027.01 | 3770.54 |
LCM5 | −1781.35 | 3810.70 | 2152.35 | 3934.70 |
Class Probability | LCM1 | LCM2 | LCM3 | |||
---|---|---|---|---|---|---|
(Reference Class) | ||||||
0.278 | 0.458 | 0.264 | ||||
Coeff. | Std. Err. | Coeff. | Std. Err. | Coeff. | Std. Err. | |
Utility function | ||||||
Landrace: 2 | 3.686 | 1.67 ** | 1.784 | 0.67 ** | 0.619 | 0.13 *** |
Landrace: 3 | −2.054 | 0.81 ** | 2.965 | 1.06 ** | −1.277 | 0.96 |
Area: 50 | −0.705 | 0.15 *** | 0.474 | 0.12 *** | 0.322 | 0.06 *** |
Area: 100 | −3.936 | 0.74 *** | 0.170 | 0.14 | −1.319 | 0.50 ** |
Duration: 10 | −1.449 | 0.61 ** | 0.233 | 0.14 | 0.715 | 0.63 |
Avoidance: No | −0.482 | 0.11 *** | −0.341 | 0.13 ** | 0.524 | 0.41 |
Compensation | 0.004 | 0.00 *** | 0.005 | 0.00 *** | 0.010 | 0.00 *** |
ASC | −1.102 | 0.46 ** | −2.814 | 0.51 *** | −1.706 | 0.69 ** |
Segment probability function | ||||||
Constant | 0.360 | 0.15 ** | 0.251 | 0.05 *** | ||
Male | 0.835 | 0.34 ** | 0.480 | 0.39 | ||
Schooling | 0.472 | 0.38 | 0.625 | 0.26 ** | ||
Size | 1.048 | 0.39 ** | −0.837 | 0.32 ** | ||
Margin | 1.274 | 0.52 ** | −0.951 | 0.40 ** | ||
Tendone | 1.536 | 0.59 ** | −0.582 | 0.35 | ||
Organic | −1.427 | 0.27 *** | 0.681 | 0.25 ** | ||
Successor | 0.622 | 0.22 ** | 0.493 | 0.42 | ||
Wine | −1.375 | 0.52 ** | 0.228 | 0.13 | ||
Part-time | −0.949 | 0.35 ** | 0.581 | 0.22 ** | ||
CAP | 0.801 | 0.47 | 0.684 | 0.25 ** | ||
Credit | 0.616 | 0.25 ** | 0.228 | 0.16 | ||
Information | 0.473 | 0.34 | 0.326 | 0.12 ** | ||
Costs | 1.327 | 0.29 *** | 0.684 | 0.50 | ||
Generations | 0.534 | 0.38 | 0.691 | 0.24 ** | ||
Food | 0.618 | 0.26 ** | 0.501 | 0.49 | ||
Believe | 0.489 | 0.36 | 0.615 | 0.14 *** | ||
Contribute | 0.275 | 0.19 | 0.407 | 0.14 ** | ||
Uncertainty | 0.465 | 0.18 ** | 0.726 | 0.65 | ||
Intensive | 1.259 | 0.24 *** | −0.822 | 0.64 | ||
Intermediate | −0.888 | 0.33 ** | 0.893 | 0.21 *** | ||
Obs. | 1.985 | |||||
McFadden pseudo-R2 | 0.401 |
LCM1 | LCM2 | LCM3 | |
---|---|---|---|
Landrace: 2 | 921.50 (663.48 1179.52) | 356.80 (246.19 467.41) | 63.16 (50.53 75.80) |
Landrace: 3 | −513.50 (−662.42 −364.59) | 593.00 (397.31 788.69) | |
Area: 50 | −176.25 (−218.55 −133.95) | 94.80 (76.79 112.81) | 32.86 (25.63 40.09) |
Area: 100 | −984.00 (−1180.80 −787.20) | −134.59 (−177.66 −91.52) | |
Duration: 10 | −362.25 (−467.30 −257.20) | ||
Avoidance: No | −120.50 (−145.81 −95.20) | −68.20 (−88.66 −47.74) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sardaro, R.; Faccilongo, N.; Contò, F.; La Sala, P. Adaption Actions to Cope with Climate Change: Evidence from Farmers’ Preferences on an Agrobiodiversity Conservation Programme in the Mediterranean Area. Sustainability 2021, 13, 5977. https://doi.org/10.3390/su13115977
Sardaro R, Faccilongo N, Contò F, La Sala P. Adaption Actions to Cope with Climate Change: Evidence from Farmers’ Preferences on an Agrobiodiversity Conservation Programme in the Mediterranean Area. Sustainability. 2021; 13(11):5977. https://doi.org/10.3390/su13115977
Chicago/Turabian StyleSardaro, Ruggiero, Nicola Faccilongo, Francesco Contò, and Piermichele La Sala. 2021. "Adaption Actions to Cope with Climate Change: Evidence from Farmers’ Preferences on an Agrobiodiversity Conservation Programme in the Mediterranean Area" Sustainability 13, no. 11: 5977. https://doi.org/10.3390/su13115977
APA StyleSardaro, R., Faccilongo, N., Contò, F., & La Sala, P. (2021). Adaption Actions to Cope with Climate Change: Evidence from Farmers’ Preferences on an Agrobiodiversity Conservation Programme in the Mediterranean Area. Sustainability, 13(11), 5977. https://doi.org/10.3390/su13115977