Urban and Peri-Urban Agriculture as a Tool for Food Security and Climate Change Mitigation and Adaptation: The Case of Mestre
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Mapping Approach
2.3. Productivity and Consumption
2.4. Climate Change
2.4.1. Mitigation
2.4.2. Adaptation
3. Results
3.1. Mapping of UPA
3.2. Production and Consumption Assessment
3.3. Climate Change Mitigation and Adaptation Effects
3.4. Other Benefits Associated with UPA Multifunctionality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Population Fund. UN Population Division, World Urbanization Prospects: 2018 Revision, Key Facts. Available online: https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf (accessed on 1 March 2021).
- World Bank. Open Data of World Bank. Available online: http://data.worldbank.org (accessed on 1 March 2021).
- Zasada, I. Multifunctional peri-urban agriculture—A review of societal demands and the provision of goods and services by farming. Land Use Policy 2011, 28, 639–648. [Google Scholar] [CrossRef]
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agric. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Jabareen, Y. Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities 2013, 31, 220–229. [Google Scholar] [CrossRef]
- Kumar, K.; Hundal, L.S. Soil in the City: Sustainably Improving Urban Soils. J. Environ. Qual. 2016, 45, 2–8. [Google Scholar] [CrossRef]
- Maragno, D.; Fontana, M.D.; Musco, F. Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning. Sustainability 2020, 12, 1056. [Google Scholar] [CrossRef] [Green Version]
- De Zeeuw, H.; Van Veenhuizen, R.; Dubbeling, M. The role of urban agriculture in building resilient cities in developing countries. J. Agric. Sci. 2011, 149, 153–163. [Google Scholar] [CrossRef]
- Dubbeling, M.; van Veenhuizen, R.; Halliday, J. Urban agriculture as a climate change and disaster risk reduction strategy. Field Actions Sci. Rep. 2019, 20, 32–39. [Google Scholar]
- FAO 2015. Urban and Peri-Urban Horticulture. Available online: www.fao.org/ag/agp/greenercities/en/whyuph/index.html (accessed on 15 December 2020).
- Orsini, F.; Gasperi, D.; Marchetti, L.; Piovene, C.; Draghetti, S.; Ramazzotti, S.; Bazzocchi, G.G.; Gianquinto, G. Exploring the production capacity of rooftop gardens (RTGs) in urban agriculture: The potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna. Food Secur. 2014, 6, 781–792. [Google Scholar] [CrossRef]
- Lucertini, G.; Musco, F. Circular Urban Metabolism Framework. One Earth 2020, 2, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.; Guilherme, R.I.M.M.; Ferreira, C.S.S.; Oliveira, M.D.F.M.L.D. Urban agriculture, a tool towards more resilient urban communities? Curr. Opin. Environ. Sci. Health 2018, 5, 93–97. [Google Scholar] [CrossRef]
- Longato, D.; Lucertini, G.; Fontana, M.D.; Musco, F. Including Urban Metabolism Principles in Decision-Making: A Methodology for Planning Waste and Resource Management. Sustainability 2019, 11, 2101. [Google Scholar] [CrossRef] [Green Version]
- Lovell, S.T. Multifunctional Urban Agriculture for Sustainable Land Use Planning in the United States. Sustainability 2010, 2, 2499–2522. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, V.; Farah, L. Designing edible landscapes. Open House Int. 2009, 34, 5–7. [Google Scholar] [CrossRef]
- Pulighe, G.; Lupia, F. Multitemporal Geospatial Evaluation of Urban Agriculture and (Non)-Sustainable Food Self-Provisioning in Milan, Italy. Sustainability 2019, 11, 1846. [Google Scholar] [CrossRef] [Green Version]
- Reho, M. Conflittualità e integrazione intorno al paesaggio dell’agricoltura urbana. In Il Paesaggio tra Conflittualità e Integrazione; Castiglioni, B., Santacroce, C.P., Quaglia, C., Dal Pozzo, A., Eds.; CLEUP: Padova, Italy, 2018; pp. 71–79. [Google Scholar]
- Smith, L.C.; Frankenberger, T.R. Does Resilience Capacity Reduce the Negative Impact of Shocks on Household Food Security? Evidence from the 2014 Floods in Northern Bangladesh. World Dev. 2018, 102, 358–376. [Google Scholar] [CrossRef]
- Hamm, M.W.; Bellows, A.C. Community Food Security and Nutrition Educators. J. Nutr. Educ. Behav. 2003, 35, 37–43. [Google Scholar] [CrossRef]
- Morgan, K. Nourishing the city: The rise of the urban food question in the Global North. Urban Stud. 2015, 52, 1379–1394. [Google Scholar] [CrossRef]
- Biel, R. Sustainable Food Systemsnull; UCL Press: London, UK, 2016. [Google Scholar]
- Morgan, K. Feeding the City: The Challenge of Urban Food Planning. Int. Plan. Stud. 2009, 14, 341–348. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Zhai, P.; Zhou, B.; Chen, Y. A Review of Climate Change Attribution Studies. J. Meteorol. Res. 2018, 32, 671–692. [Google Scholar] [CrossRef]
- Salerno, F.; Gaetano, V.; Gianni, T. Urbanization and climate change impacts on surface water quality: Enhancing the resilience by reducing impervious surfaces. Water Res. 2018, 144, 491–502. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, Z.; Huang, H.; Wu, S.; Liu, G. Land Use and Climate Changes and Their Impacts on Runoff in the Yarlung Zangbo River Basin, China. Land Degrad. Dev. 2012, 25, 203–215. [Google Scholar] [CrossRef]
- O’Malley, C.; Piroozfar, P.; Farr, E.R.P.; Pomponi, F. Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustain. Cities Soc. 2015, 19, 222–235. [Google Scholar] [CrossRef] [Green Version]
- de Zeeuw, H.; Drechsel, P. Cities and Agriculture: Developing Resilient Urban Food Systems; Routledge: London, UK, 2015. [Google Scholar]
- De la Sota, C.; Ruffato-Ferreira, V.; Ruiz-García, L.; Alvarez, S. Urban green infrastructure as a strategy of climate change mitigation. A case study in northern Spain. Urban For. Urban Green. 2019, 40, 145–151. [Google Scholar] [CrossRef]
- Artmann, M.; Sartison, K. The Role of Urban Agriculture as a Nature-Based Solution: A Review for Developing a Systemic Assessment Framework. Sustainability 2018, 10, 1937. [Google Scholar] [CrossRef] [Green Version]
- Munafò, M. Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici; Report SNPA 08/19; ISPRA: Roma, Italy, 2019. [Google Scholar]
- Peron, F.; De Maria, M.; Spinazzè, F.; Mazzali, U. An analysis of the urban heat island of Venice mainland. Sustain. Cities Soc. 2015, 19, 300–309. [Google Scholar] [CrossRef]
- MUFPP. Milan Urban Food Policy Pacts. Available online: http://www.milanurbanfoodpolicypact.org/ (accessed on 10 February 2021).
- McClintock, N.; Cooper, J.; Khandeshi, S. Assessing the potential contribution of vacant land to urban vegetable production and consumption in Oakland, California. Landsc. Urban Plan. 2013, 111, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Richardson, J.J.; Moskal, L.M. Urban food crop production capacity and competition with the urban forest. Urban For. Urban Green. 2016, 15, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Saha, M.; Eckelman, M.J. Geospatial assessment of potential bioenergy crop production on urban marginal land. Appl. Energy 2015, 159, 540–547. [Google Scholar] [CrossRef]
- Dorigo, M. C40–Food System Network Venezia. Città Di Venezia, Direzione Sviluppo del territorio e Città Sos-tenibile; City Report; Comune di Venezia: Venezia, Italy, 2017. [Google Scholar]
- Comune di Bologna. Art. 42 Orti Urbani. 2018. Available online: http://dru.iperbole.bologna.it/rue-quadro-normativo/art42-orti-urbani (accessed on 5 February 2021).
- Sanyé-Mengual, E.; Specht, K.; Krikser, T.; Vanni, C.; Pennisi, G.; Orsini, F.; Gianquinto, G.P. Social acceptance and perceived ecosystem services of urban agriculture in Southern Europe: The case of Bologna, Italy. PLoS ONE 2018, 13, e0200993. [Google Scholar] [CrossRef] [Green Version]
- McDougall, R.; Kristiansen, P.; Rader, R. Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc. Natl. Acad. Sci. USA 2019, 116, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Hara, Y.; McPhearson, T.; Sampei, Y.; McGrath, B. Assessing urban agriculture potential: A comparative study of Osaka, Japan and New York city, United States. Sustain. Sci. 2018, 13, 937–952. [Google Scholar] [CrossRef]
- Algert, S.J.; Baameur, A.; Renvall, M.J. Vegetable Output and Cost Savings of Community Gardens in San Jose, California. J. Acad. Nutr. Diet. 2014, 114, 1072–1076. [Google Scholar] [CrossRef]
- Vitale, M.; Giosuè, A.; Vaccaro, O.; Riccardi, G. Recent Trends in Dietary Habits of the Italian Population: Potential Impact on Health and the Environment. Nutrients 2021, 13, 476. [Google Scholar] [CrossRef]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef] [Green Version]
- Chabbi, A.; Lehmann, J.; Ciais, P.; Loescher, H.W.; Cotrufo, M.F.; Don, A.; SanClements, M.; Schipper, L.; Six, J.; Smith, P.; et al. Aligning agriculture and climate policy. Nat. Clim. Chang. 2017, 7, 307–309. [Google Scholar] [CrossRef]
- Saiz, S.; Kennedy, C.; Bass, B.; Pressnail, K. Comparative Life Cycle Assessment of Standard and Green Roofs. Environ. Sci. Technol. 2006, 40, 4312–4316. [Google Scholar] [CrossRef]
- EU. Energy Consumption for m2. 2013. Available online: https://ec.europa.eu/energy/content/energy-consumption-m%C2%B2-2_en (accessed on 1 March 2021).
- ENEA. KiloWattene: Fattore di Emissione di CO2 e Consumo di Energia Primaria per Kilowattora di Energia Elettrica al Contatore. Available online: http://kilowattene.enea.it/kilowattene-co2-energia-primaria.html (accessed on 1 March 2021).
- Parajuli, R.; Thoma, G.; Matlock, M.D. Environmental sustainability of fruit and vegetable production supply chains in the face of climate change: A review. Sci. Total Environ. 2019, 650, 2863–2879. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, B.G.; Clausen, J.C. Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol. Eng. 2011, 37, 963–969. [Google Scholar] [CrossRef]
- Fassman-Beck, E.; Voyde, E.; Simcock, R.; Hong, Y.S. 4 Living roofs in 3 locations: Does configuration affect runoff mitigation? J. Hydrol. 2013, 490, 11–20. [Google Scholar] [CrossRef]
- Ackerman, K.; Conard, M.; Culligan, P.; Plunz, R.; Sutto, M.P.; Whittinghill, L. Sustainable food systems for future cities: The potential of urban agriculture. Econ. Soc. Rev. 2014, 45, 189–206. [Google Scholar]
- Susca, T.; Gaffin, S.R.; Dell’Osso, G.R. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef]
- EU-Environment. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Green Infrastructure (GI)—Enhancing Europe’s Natural Capital COM/2013/0249 Final; European Commission: Bruxelles, Belgium, 2014; Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:d41348f2-01d5-4abe-b817-4c73e6f1b2df.0014.03/DOC_1&format=PDF (accessed on 1 March 2021).
- Gurr, G.M.; Wratten, S.D.; Snyder, W. Biodiversity and Insect Pests. In Biodiversity and Insect Pests; Wiley: Oxford, UK, 2012; pp. 1–20. [Google Scholar]
- OkvatAlex, H.A.; Zautra, A.J. Community Gardening: A Parsimonious Path to Individual, Community, and Environmental Resilience. Am. J. Community Psychol. 2011, 47, 374–387. [Google Scholar] [CrossRef]
- Kingsley, J.Y.; Townsend, M.; Henderson-Wilson, C. Cultivating health and wellbeing: Members’ perceptions of the health benefits of a Port Melbourne community garden. Leis. Stud. 2009, 28, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Tidball, K.G. From Risk to Resilience: What Role for Community Greening and Civic Ecology in Cities. Soc. Learn. Towards Sustain. World 2007, 2, 149–164. [Google Scholar]
- European Commission. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities: Final Report of the Horizon 2020 Expert Group on ‘nature-Based Solutions and Re-Naturing Cities; European Commission: Brussels, Belgium, 2015; pp. 149–164. [Google Scholar]
- Gasperi, D.; Pennisi, G.; Rizzati, N.; Magrefi, F.; Bazzocchi, G.; Mezzacapo, U.; Stefani, M.C.; Sanyé-Mengual, E.; Orsini, F.; Gianquinto, G. Towards Regenerated and Productive Vacant Areas through Urban Horticulture: Lessons from Bologna, Italy. Sustainability 2016, 8, 1347. [Google Scholar] [CrossRef] [Green Version]
- Meharg, A.A. Perspective: City farming needs monitoring. Nat. Cell Biol. 2016, 531, S60. [Google Scholar] [CrossRef]
- Wortman, S.E.; Lovell, S. Environmental Challenges Threatening the Growth of Urban Agriculture in the United States. J. Environ. Qual. 2013, 42, 1283–1294. [Google Scholar] [CrossRef]
- Romanova, O.; Lovell, S. Food safety considerations of urban agroforestry systems grown in contaminated environments. Urban Agric. Reg. Food Syst. 2021, 6, e20008. [Google Scholar] [CrossRef]
- Reho, M. L’agricoltura in Città: Nuove Sfide per la Pianificazione. In Paesaggio Agrario. tra Obsolescenza. e Degrado. Riflessioni e Materiali per il Recupero e la Valorizzazione; Salgaro, S., Masotti, L., Alaimo, A., Eds.; Patron: Bologna, Italy, 2018; pp. 203–212. [Google Scholar]
- van der Jagt, A.P.; Szaraz, L.R.; Delshammar, T.; Cvejić, R.; Santos, A.; Goodness, J.; Buijs, A. Cultivating nature-based solutions: The governance of communal urban gardens in the European Union. Environ. Res. 2017, 159, 264–275. [Google Scholar] [CrossRef]
Layers | Description | Dataset/Layer | Attribute/Column | Profile (Code) |
---|---|---|---|---|
Rooftop | This layer identifies the morphology of urban roofs, differentiating their shape, slope, and type | ELE_CP.shp | ELE_CP_TY | 04 |
Type of building use | This layer identifies the main destination of the urban buildings (residential, industrial, commercial, public services) | EDIFC.shp | EDIFC_USO | 01 OR 02 OR 03 OR 071 |
Private courtyards | This layer identifies equipped private ground areas, namely, areas pertaining to the settlement units ancillary to the building. | AATT.shp | AATT_TY | 01 |
Public green areas | This layer identifies public green areas, areas for ornamental or recreational purposes. The areas of flower beds, gardens, lawns, wooded areas within the urban area for public use. | AR_VRD.shp | AR_VRD_TY | 02 OR 04 |
Existing urban gardens | This layer identifies urban gardens managed collectively and not. Namely, a piece of land intended for the production of fruit and vegetables. These include small plots of land for cultivation for domestic use, possibly aggregated into unitarily organized colonies. | - | - | - |
Designed urban gardens | This layer identifies urban gardens under construction or planned in the short term. Namely, part of land intended for the production of fruit and vegetables. These include small plots of land for cultivation for domestic use, possibly aggregated into unitarily organized colonies. | - | - | - |
UPA Typology | Area (m2) | Productivity (kg m2/year) | Yield (kg/year) | Consumption (kg per capita/years) | Feeding Population (Inhabitants) |
---|---|---|---|---|---|
ground | 5,348,052.13 | 5.73 | 30,644,338.7 | 74.8 | 567,056 |
rooftop | 774,493.4 | 15.2 | 11,771,478.88 |
Climate Change | Impact Typology | Data | Total |
---|---|---|---|
Mitigation | CO2 sequestration | 588,614.9 kg CO2 year | 754,974.7 kg CO2 year |
Mitigation | CO2 reduction (heating/cooling) | 166,359.8 kg CO2 year | |
Adaptation | UF reduction | 465 mm m2 year | 360,139.4 m3 year |
Adaptation | UHI reduction | June, 4 days; July, 10 days; August, 10 days | 24 days year |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucertini, G.; Di Giustino, G. Urban and Peri-Urban Agriculture as a Tool for Food Security and Climate Change Mitigation and Adaptation: The Case of Mestre. Sustainability 2021, 13, 5999. https://doi.org/10.3390/su13115999
Lucertini G, Di Giustino G. Urban and Peri-Urban Agriculture as a Tool for Food Security and Climate Change Mitigation and Adaptation: The Case of Mestre. Sustainability. 2021; 13(11):5999. https://doi.org/10.3390/su13115999
Chicago/Turabian StyleLucertini, Giulia, and Gianmarco Di Giustino. 2021. "Urban and Peri-Urban Agriculture as a Tool for Food Security and Climate Change Mitigation and Adaptation: The Case of Mestre" Sustainability 13, no. 11: 5999. https://doi.org/10.3390/su13115999
APA StyleLucertini, G., & Di Giustino, G. (2021). Urban and Peri-Urban Agriculture as a Tool for Food Security and Climate Change Mitigation and Adaptation: The Case of Mestre. Sustainability, 13(11), 5999. https://doi.org/10.3390/su13115999