Smart Fishery: A Systematic Review and Research Agenda for Sustainable Fisheries in the Age of AI
Abstract
:1. Introduction
2. Materials and Methods
- Search string A: (“Artificial intelligence” OR ai OR smart) AND (fish) AND (fishery) AND (system)
- Search string B: (“Artificial intelligence” OR “deep learning” OR “machine learning”) AND (pollution OR “ecosystem health”) AND (marine)
- Search string C: (“Artificial intelligence” OR “deep learning” OR “machine learning”) AND (productivity OR phytoplankton) AND (marine)
- Search string D: (“Artificial intelligence” OR “deep learning” OR “machine learning”) AND (“marine ecosystem”)
3. Results: General Observation
3.1. Distribution of Articles by Year of Publication
3.2. Distribution of Papers by Location of Large Marine Ecosystems
3.3. Distributions of Papers by Authors’ Affiliation
4. Results: Content Analysis
4.1. Analysis of Smart Fishery Concept
4.1.1. AI and Monitoring Fish Stock
4.1.2. AI and Fishing
4.1.3. AI and Policy Issues
4.2. Smart Fishery and Sustainable Fishery
5. Towards a Research Agenda for Sustainable Fishery in the Age of AI
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
No | Literature | Title |
1 | Bukin et al. (2020) | New solutions of laser-induced fluorescence for oil pollution monitoring at sea |
2 | Busseni et al. (2020) | Large scale patterns of marine diatom richness: Drivers and trends in a changing ocean |
3 | Chen et al. (2020) | A machine-learning approach to modeling picophytoplankton abundances in the South China Sea |
4 | Chuaysi & Kiattisin (2020) | Fishing Vessels Behavior Identification for Combating IUU Fishing: Enable Traceability at Sea |
5 | D’Alelio et al. (2020) | Machine learning identifies a strong association between warming and reduced primary productivity in an oligotrophic ocean gyre |
6 | De Laurentiis et al. (2020) | Deep Learning for Mineral and Biogenic Oil Slick Classification With Airborne Synthetic Aperture Radar Data |
7 | DiBattista et al. (2020) | Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems |
8 | Liu et al. (2020) | Impact of Climate Change on Wintering Ground of Japanese Anchovy |
9 | Li et al. (2020) | NASA NeMO-Net’s Convolutional Neural Network: Mapping Marine Habitats with Spectrally Heterogeneous Remote Sensing Imagery |
10 | Pan et al. (2020) | Environmental drivers of phytoplankton taxonomic composition in an Antarctic fjord |
11 | Temitope Yekeen et al. (2020) | A novel deep learning instance segmentation model for automated marine oil spill detection |
12 | Yu & Du (2020) | A Machine-Learning-Based Model for Water Quality in Coastal Waters, Taking Dissolved Oxygen and Hypoxia in Chesapeake Bay as an Example |
13 | Jiao et al. (2019) | A new approach to oil spill detection that combines deep learning with unmanned aerial vehicles |
14 | González et al. (2019) | Automatic plankton quantification using deep features |
15 | Lehikoinen et al. (2019) | Evaluating complex relationships between ecological indicators and environmental factors in the Baltic Sea: A machine learning approach |
16 | Liu et al. (2019) | Semi-automatic oil spill detection on X-band marine radar images using texture analysis, machine learning, and adaptive thresholding |
17 | Lorencin et al. (2019) | Marine objects recognition using convolutional neural networks (Prepoznavanje morskih objekata uporabom konvolucijskih neuronskih mreža) |
18 | Lumini & Nanni (2019) | Deep learning and transfer learning features for plankton classification |
19 | Ozigis et al. (2019) | Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria |
20 | Song et al. (2019) | A Novel Marine Oil Spillage Identification Scheme Based on Convolution Neural Network Feature Extraction from Fully Polarimetric SAR Imagery |
21 | Pelta et al. (2019) | A machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing |
22 | Albalooshi et al. (2018) | Deep belief active contours (DBAC) with its application to oil spill segmentation from remotely sensed sea surface imagery |
23 | Dunker et al. (2018) | Combining high-throughput imaging flow cytometry and deep learning for e—cient species and life-cycle stage identification of phytoplankton. |
24 | Hu et al. (2018) | Comparison of machine learning techniques in inferring phytoplankton size classes |
25 | Stock et al. (2018) | Mapping ecological indicators of human impact with statistical and machine learning methods: Tests on the California coast |
26 | Bourel et al. (2017) | Consensus methods based on machine learning techniques for marine phytoplankton presence–absence prediction |
27 | De souza et al. (2016) | Improving fishing pattern detection from satellite AIS using data mining and machine learning |
28 | Tamvakis et al. (2014) | Optimizing biodiversity prediction from abiotic parameters |
29 | Kim et al. (2013) | Machine learning approaches to coastal water quality monitoring using GOCI satellite data |
30 | Budka et al. (2010) | Robust predictive modelling of water pollution using biomarker data |
31 | Chau (2006) | A Review on Integration of Artificial Intelligence into Water Quality Modelling |
32 | Keramitsoglou et al. (2006) | Automatic identification of oil spills on satellite images |
33 | Kubat et al. (1998) | Machine Learning for the Detection of Oil Spills in Satellite Radar Images |
34 | Ricketts (1992) | Current approaches in Geographic Information Systems for coastal management |
References
- Bradley, D.; Merrifield, M.; Miller, K.M.; LoMonico, S.; Wilson, J.R.; Gleason, M.G. Opportunities to improve fisheries management through innovative technology and advanced data systems. Fish Fish. 2019, 20, 564–583. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Liu, J.; Gao, Q.; Dong, S.; Zhou, C. Deep learning for smart fish farming: Applications, opportunities and challenges. Rev. Aquac. 2020, 13, 66–90. [Google Scholar] [CrossRef]
- Fosso, K.; Wamba, S.; Bawack, R.; Guthrie, C.; Queiroz, M.; Carillo, K. Are we preparing for a good AI society? A bibliometric review and research agenda. SSRN Electron. J. 2021, 164, 120482. [Google Scholar] [CrossRef]
- Peeters, R.; Schuilenburg, M. The Algorithmic Society, Technology, Power, and Knowledge; Routledge: London, UK, 2021. [Google Scholar]
- Ossewaarde, M.; Gulenc, E. National Varieties of Artificial. Computer 2020, 53, 53–61. [Google Scholar] [CrossRef]
- Mustafa, F.H. A Review of Smart Fish Farming Systems. J. Aquac. Eng. Fish. Res. 2016, 2, 193–200. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.; Costa, E.; Pereira, N. A Systematic Review of IoT Solutions for Smart Farming. Sensors 2020, 20, 4231. [Google Scholar] [CrossRef] [PubMed]
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; Da-Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar] [CrossRef]
- Sarkis-Onofre, R.; Catalá-López, F.; Aromataris, E.; Lockwood, C. How to properly use the PRISMA Statement. Syst. Rev. 2021, 10, 1–3. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming–A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Sherman, K. Manuscript in Press at Encyclopedia of Ocean. Sciences; Elsevier Science: Amsterdam, The Netherlands, 2016; No. Sdg 14. [Google Scholar]
- Yigitcanlar, T.; DeSouza, K.C.; Butler, L.; Roozkhosh, F. Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies 2020, 13, 1473. [Google Scholar] [CrossRef] [Green Version]
- Rathnayake, C.; Joshi, S.; Cerratto-Pargman, T. Mapping the current landscape of citizen-driven environmental monitoring: A systematic literature review. Sustain. Sci. Pract. Policy 2020, 16, 326–334. [Google Scholar] [CrossRef]
- Mukendi, A.; Davies, I.; Glozer, S.; McDonagh, P. Sustainable fashion: Current and future research directions. Eur. J. Mark. 2020, 54, 2873–2909. [Google Scholar] [CrossRef]
- Mattei, F.; Scardi, M. Embedding ecological knowledge into artificial neural network training: A marine phytoplankton primary production model case study. Ecol. Modell. 2020, 421, 108985. [Google Scholar] [CrossRef]
- Liang, X.; Zhen, Z.; Song, Y.; Jian, L.; Song, D.; Songa, D. Pol-SAR Based Oil Spillage Classification With Various Scenarios of Prior Knowledge. IEEE Access 2019, 7, 66895–66909. [Google Scholar] [CrossRef]
- Yin, R.K. Qualitative Research from Start to Finish; Guilford Publications: New York, NY, USA, 2011. [Google Scholar]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sazonova, L.; Osipov, G.; Godovnikov, M. Godovnikov Intelligent system for fish stock prediction and allowable catch evaluation. Environ. Model. Softw. 1999, 14, 391–399. [Google Scholar] [CrossRef]
- Ricketts, P.J. Current approaches in Geographic Information Systems for coastal management. Mar. Pollut. Bull. 1992, 25, 82–87. [Google Scholar] [CrossRef]
- Boom, B.J.; Beauxis-Aussalet, E.; Hardman, L.; Fisher, R.B. Uncertainty-aware estimation of population abundance using machine learning. Multimed. Syst. 2016, 22, 737–749. [Google Scholar] [CrossRef] [Green Version]
- Villon, S.; Mouillot, D.; Chaumont, M.; Darling, E.S.; Subsol, G.; Claverie, T.; Villéger, S. A Deep learning method for accurate and fast identification of coral reef fishes in underwater images. Ecol. Inform. 2018, 48, 238–244. [Google Scholar] [CrossRef] [Green Version]
- Labao, A.B.; Naval, P.C. Cascaded deep network systems with linked ensemble components for underwater fish detection in the wild. Ecol. Inform. 2019, 52, 103–121. [Google Scholar] [CrossRef]
- Salman, A.; Jalal, A.; Shafait, F.; Mian, A.; Shortis, M.; Seager, J.; Harvey, E. Fish species classification in unconstrained underwater environments based on deep learning. Limnol. Oceanogr. Methods 2016, 14, 570–585. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Zhang, S.; Wang, C.; Yu, Z.; Zheng, H.; Zheng, B. Improving transfer learning and squeeze- and-excitation networks for small-scale fine-grained fish image classification. IEEE Access 2018, 6, 78503–78512. [Google Scholar] [CrossRef]
- Ditria, E.M.; Lopez-Marcano, S.; Sievers, M.; Jinks, E.L.; Brown, C.J.; Connolly, R.M. Automating the Analysis of Fish Abundance Using Object Detection: Optimizing Animal Ecology With Deep Learning. Front. Mar. Sci. 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Alshdaifat, N.F.F.; Talib, A.Z.; Osman, M.A. Improved deep learning framework for fish segmentation in underwater videos. Ecol. Inform. 2020, 59, 101121. [Google Scholar] [CrossRef]
- Banan, A.; Nasiri, A.; Taheri-Garavand, A. Deep learning-based appearance features extraction for automated carp species identification. Aquac. Eng. 2019, 89, 102053. [Google Scholar] [CrossRef]
- Ju, Z.; Xue, Y. Fish species recognition using an improved AlexNet model. Optik 2020, 223, 165499. [Google Scholar] [CrossRef]
- Yu, X.; Shen, J.; Du, J. A Machine-Learning-Based Model for Water Quality in Coastal Waters, Taking Dissolved Oxygen and Hypoxia in Chesapeake Bay as an Example. Water Resour. Res. 2020, 56, 1–19. [Google Scholar] [CrossRef]
- Pérez-Ortiz, M.; Fernández-Delgado, M.; Cernadas, E.; Domínguez-Petit, R.; Gutiérrez, P.A.; Hervás-Martínez, C. On the Use of Nominal and Ordinal Classifiers for the Discrimination of States of Development in Fish Oocytes. Neural Process. Lett. 2016, 44, 555–570. [Google Scholar] [CrossRef]
- Li, K.; Sidorovskaia, N.A.; Tiemann, C.O. Model-based unsupervised clustering for distinguishing Cuvier’s and Gervais’ beaked whales in acoustic data. Ecol. Inform. 2020, 58, 101094. [Google Scholar] [CrossRef]
- Raza, K.; Hong, S. Fast and Accurate Fish Detection Design with Improved YOLO-v3 Model and Transfer Learning. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 7–16. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Salman, A.; Malik, M.I.; Shafait, F.; Mian, A.; Shortis, M.R.; Harvey, E.S. Automatic fish species classification in underwater videos: Exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES J. Mar. Sci. 2018, 75, 374–389. [Google Scholar] [CrossRef]
- Jalal, A.; Salman, A.; Mian, A.; Shortis, M.; Shafait, F. Fish detection and species classification in underwater environments using deep learning with temporal information. Ecol. Inform. 2020, 57, 101088. [Google Scholar] [CrossRef]
- Chuaysi, B.; Kiattisin, S. Fishing Vessels Behavior Identification for Combating IUU Fishing: Enable Traceability at Sea. Wirel. Pers. Commun. 2020, 115, 2971–2993. [Google Scholar] [CrossRef]
- Kylili, K.; Hadjistassou, C.; Artusi, A. An intelligent way for discerning plastics at the shorelines and the seas. Environ. Sci. Pollut. Res. 2020, 27, 42631–42643. [Google Scholar] [CrossRef] [PubMed]
- Cantorna, D.; Dafonte, C.; Iglesias, A.; Arcay, B. Oil spill segmentation in SAR images using convolutional neural networks. A comparative analysis with clustering and logistic regression algorithms. Appl. Soft Comput. 2019, 84, 105716. [Google Scholar] [CrossRef]
- Al-Ruzouq, R.; Gibril, M.; Shanableh, A.; Kais, A.; Hamed, O.; Al-Mansoori, S.; Khalil, M. Sensors, Features, and Machine Learning for Oil Spill Detection and Monitoring: A Review. Remote Sens. 2020, 12, 3338. [Google Scholar] [CrossRef]
- Song, D.; Zhen, Z.; Wang, B.; Li, X.; Gao, L.; Wang, N.; Xie, T.; Zhang, T. A Novel Marine Oil Spillage Identification Scheme Based on Convolution Neural Network Feature Extraction from Fully Polarimetric SAR Imagery. IEEE Access 2020, 8, 59801–59820. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.; Alabia, I.D.; Tian, Y.; Ye, Z.; Yu, H.; Li, J.; Cheng, J. Impact of Climate Change on Wintering Ground of Japanese Anchovy (Engraulis japonicus) Using Marine Geospatial Statistics. Front. Mar. Sci. 2020, 7, 1–15. [Google Scholar] [CrossRef]
- Pais, M.P.; Henriques, S.; Batista, M.I.; Costa, M.J.; Cabral, H. Seeking functional homogeneity: A framework for definition and classification of fish assemblage types to support assessment tools on temperate reefs. Ecol. Indic. 2013, 34, 231–245. [Google Scholar] [CrossRef]
- Marini, S.; Fanelli, E.; Sbragaglia, V.; Azzurro, E.; Fernandez, J.D.R.; Aguzzi, J. Tracking Fish Abundance by Underwater Image Recognition. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanelli, E.; Aguzzi, J.; Marini, S.; Del Del Rio, J.; Nogueras, M.; Canese, S.; Stefanni, S.; Danovaro, R.; Conversano, F. Towards Naples Ecological REsearch for Augmented Observatories (NEREA): The NEREA-Fix Module, a Stand-Alone Platform for Long-Term Deep-Sea Ecosystem Monitoring. Sensors 2020, 20, 2911. [Google Scholar] [CrossRef]
- Franceschini, S.; Mattei, F.; D’Andrea, L.; Di Nardi, A.; Fiorentino, F.; Garofalo, G.; Scardi, M.; Cataudella, S.; Russo, T. Rummaging through the bin: Modelling marine litter distribution using Artificial Neural Networks. Mar. Pollut. Bull. 2019, 149, 110580. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.H. Multiple marine ecological disturbance assessments for latin american and caribbean large marine ecosystems. Environ. Dev. 2017, 22, 129–142. [Google Scholar] [CrossRef]
- Kritzer, J.P. Influences of at-sea fishery monitoring on science, management, and fleet dynamics. Aquac. Fish. 2020, 5, 107–112. [Google Scholar] [CrossRef]
- Sala, E.; Mayorga, J.; Costello, C.; Kroodsma, D.; Palomares, M.L.D.; Pauly, D.; Sumaila, U.R.; Zeller, D. The economics of fishing the high seas. Sci. Adv. 2018, 4, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartholomew, D.C.; Mangel, J.C.; Alfaro-Shigueto, J.; Pingo, S.; Jimenez, A.; Godley, B.J. Remote electronic monitoring as a potential alternative to on-board observers in small-scale fisheries. Biol. Conserv. 2018, 219, 35–45. [Google Scholar] [CrossRef]
- Luan, J.; Zhang, C.; Xu, B.; Xue, Y.; Ren, Y. The predictive performances of random forest models with limited sample size and different species traits. Fish. Res. 2020, 227, 105534. [Google Scholar] [CrossRef]
- Gloaguen, P.; Mahévas, S.; Rivot, E.; Woillez, M.; Guitton, J.; Vermard, Y.; Etienne, M.P. An autoregressive model to describe fishing vessel movement and activity. Environmetrics 2014, 26, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Verweij, M.; Van Densen, W.; Mol, A. The tower of Babel: Different perceptions and controversies on change and status of North Sea fish stocks in multi-stakeholder settings. Mar. Policy 2010, 34, 522–533. [Google Scholar] [CrossRef]
- De Souza, E.N.; Boerder, K.; Matwin, S.; Worm, B. Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning. PLoS ONE 2016, 11, e0158248. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Truby, J. Governing Artificial Intelligence to benefit the UN Sustainable Development Goals. Sustain. Dev. 2020, 28, 946–959. [Google Scholar] [CrossRef]
- Nishant, R.; Kennedy, M.; Corbett, J. Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. Int. J. Inf. Manag. 2020, 53, 102104. [Google Scholar] [CrossRef]
- Ozigis, M.S.; Kaduk, J.D.; Jarvis, C.H. Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: A case site within the Niger Delta region of Nigeria. Environ. Sci. Pollut. Res. 2018, 26, 3621–3635. [Google Scholar] [CrossRef] [Green Version]
- Stock, A.; Haupt, A.; Mach, M.; Micheli, F. Mapping ecological indicators of human impact with statistical and machine learning methods: Tests on the California coast. Ecol. Inform. 2018, 48, 37–47. [Google Scholar] [CrossRef]
- Stahl, B.C. INNOVATION GOVERNANCE Artificial Intelligence for a Better Future An. Ecosystem Perspective on the Ethics of AI and Emerging Digital Technologies Foreword by Julian Kinderlerer; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Noble, D.F. Forces of Production: A Social History of Industrial Automation; Knopf: New York, NY, USA, 1984. [Google Scholar]
- O’Neil, C. Weapons of Math. Destruction: How Big Data Increases Inequality and Threatens Democracy; Crown Publishers: New York, NY, USA, 2016; Volume 78, No. 3; ISBN 978-0553418811. [Google Scholar]
- Courtland, R. Bias detectives: The researchers striving to make algorithms fair. Nature 2018, 558, 357–360. [Google Scholar] [CrossRef]
- Beyer, H.L.; Dujardin, Y.; Watts, M.E.; Possingham, H.P. Solving conservation planning problems with integer linear programming. Ecol. Model. 2016, 328, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Van Dyck, B.; Sharma, D.; Stirling, A. Control, care, and conviviality in the politics of technology for sustainability. Sustain. Sci. Pract. Policy 2020, 16, 247–262. [Google Scholar] [CrossRef]
- Olsson, P.; Galaz, V.; Boonstra, W.J. Sustainability transformations: A resilience perspective. Ecol. Soc. 2014, 19. [Google Scholar] [CrossRef] [Green Version]
- Hammond, M. Democratic deliberation for sustainability transformations: Between constructiveness and disruption. Sustain. Sci. Pract. Policy 2020, 16, 220–230. [Google Scholar] [CrossRef]
- Mikalsen, K.H.; Jentoft, S. Participatory practices in fisheries across Europe: Making stakeholders more responsible. Mar. Policy 2008, 32, 169–177. [Google Scholar] [CrossRef]
- Aanesen, M.; Armstrong, C.W.; Bloomfield, H.J.; Röckmann, C. What does stakeholder involvement mean for fisheries management? Ecol. Soc. 2014, 19. [Google Scholar] [CrossRef] [Green Version]
- Kvamsdal, S.F.; Eide, A.; Ekerhovd, N.-A.; Enberg, K.; Gudmundsdottir, A.; Hoel, A.H.; Mills, K.E.; Mueter, F.J.; Ravn-Jonsen, L.; Sandal, L.K.; et al. Harvest control rules in modern fisheries management. Elementa 2016, 2016, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Kuhlmann, S.; Rip, A. Next generation science policy and Grand Challenges. In Handbook on Science and Public Policy; Edward Elgar: Cheltenham, UK, 2019; pp. 12–25. [Google Scholar]
- Meuwissen, M.P.M.; Feindt, P.H.; Spiegel, A.; Termeer, C.J.A.M.; Mathijs, E.; De Mey, Y.; Finger, R.; Balmann, A.; Wauters, E.; Urquhart, J.; et al. A Framework to Assess the Resilience of Farming Systems. Agric. Syst. 2019, 176, 102656. [Google Scholar] [CrossRef]
Selection Criteria |
---|
1. Determine the AI techniques of counting fish or directly related to fish abundance by using the eye-balling technique; |
2. Identify the suitable literature pieces focusing on AI and at least one module in LMEs approach after reading the full-text; |
3. Narrow down the selected categories and review the reliability of these against LMEs approach; |
4. Shortlist the categories and crosschecked crossed-checked with fishery system components; |
5. Review the shortlisted categories by going through the selected and reviewed literature one more time; |
6. Confirm the selection and finalize the classification of the categories; |
7. Place the reviewed literature pieces under the determined categories. |
No | Geogrraphical Area (Affiliation) | Number of Authors | Example of Papers |
---|---|---|---|
1 | China | 60 | Ju and Xue (2020)/Jiao et al. (2019) |
2 | Italy | 44 | Marini et al. (2018)/Lumini & Nanni (2019) |
3 | USA | 39 | De Laurentiis et al. (2020)/Fannjiang et al. (2019) |
4 | Australia | 23 | Ditria et al. (2020)/Lopez-Marcano et al. (2020) |
5 | Spain | 20 | Lopez-vazquez (2020)/Pérez-Ortiz et al. (2016) |
6 | Japan | 15 | Watanabe et al. (2019)/Asakura et al. (2018) |
7 | France | 12 | Villon et al. (2018)/Busseni et al. (2020) |
8 | Canada | 11 | Knudby et al. (2010)/Ricketts (1992) |
9 | Pakistan | 10 | Jalal et al. (2020)/Saddiqui et al. (2018) |
10 | UK | 9 | Qiu et al. (2018) |
11 | Greece | 8 | Keramitsoglou et al. (2006)/Tamvakis et al. (2014) |
12 | Russia | 8 | Bukin et al. (2020) |
13 | Sweden | 7 | Lehikoinen et al. (2019) |
14 | Malaysia | 6 | Al-Ruzouq et al. (2020)/Temitope Yekeen et al. (2020) |
15 | Germany | 5 | Dunker et al. (2018) |
16 | UAE | 5 | Al-Ruzouq et al. (2020) |
17 | Portugal | 5 | Pais et al. (2013) |
18 | Croatia | 4 | Lorencin et al. (2019) |
19 | South Korea | 4 | Kim et al. (2013) |
20 | Uruguay | 3 | Bourel et al. (2017) |
21 | Cyprus | 3 | Kylili et al. (2020) |
22 | Iran | 3 | Banan et al. (2020) |
23 | Netherlands | 2 | Boom et al. (2016) |
24 | Philippines | 2 | Laboa et al. (2019) |
25 | Thailand | 2 | Chuaysi & Kiattisin (2020) |
26 | Hong Kong | 2 | Chen et al. (2020) |
27 | Norway | 2 | Budka et al. (2010) |
28 | Bahrain | 2 | Albalooshi et al. (2018) |
29 | Argentina | 2 | Pan et al. (2020) |
30 | New Zealand | 2 | DiBattista et al. (2020) |
31 | Poland | 1 | De souza et al. (2016) |
No | Author | Year | Title | Journal | Location | Theme |
---|---|---|---|---|---|---|
1 | Alshdaifat et al. | 2020 | Improved deep learning framework for fish segmentation in underwater videos | Ecological Informatics | N/A | Fish segmentation |
2 | Banan et al. | 2020 | Deep learning-based appearance features extraction for automated carp species identification | Aquacultural Engineering | N/A | Fish species identification |
3 | Ditria et al. | 2020 | Automating the Analysis of Fish Abundance Using Object Detection: Optimizing Animal Ecology With Deep Learning | Frontiers in Marine Science | Northeast Australian Shelf-Great Barrier Reef (LME #40) | Abundance of fish species |
4 | Jalal et al. | 2020 | Fish detection and species classification in underwater environments using deep learning with temporal information | Ecological Informatics | South China Sea (LME #36) & West-Central Australian Shelf (LME #44) | Abundance of fish species |
5 | Li et al. | 2020 | Model-based unsupervised clustering for distinguishing Cuvier’s and Gervais’ beaked whales in acoustic data | Ecological Informatics | Gulf of Mexico (LME #5) | Whale’s regional distribution |
6 | Lopez-vazquez | 2020 | Video image enhancement and machine learning pipeline for underwater animal detection and classification at cabled observatories | Sensors (Switzerland) | Barents Sea (LME #20) | Classification of different species |
7 | Lopez-Marcano et al. | 2020 | The slow rise of technology: Computer vision techniques in fish population connectivity | Aquatic Conservation: Marine and Freshwater Ecosystems | N/A | Fish connectivity |
8 | Ju and Xue | 2020 | Fish species recognition using an improved AlexNet model | Optik | N/A | Fish species recognition |
9 | Raza & Hong | 2020 | Fast and accurate fish detection design with improved yolo-v3 model and transfer learning | International Journal of Advanced Computer Science and Applications | N/A | Fish detection |
10 | Laboa et al. | 2019 | Cascaded deep network systems with linked ensemble components for underwater fish detection in the wild | Ecological Informatics | N/A | Fish detection |
11 | Asakura et al. | 2018 | Regional feature extraction of various fishes based on chemical and microbial variable selection using machine learning | Analytical Methods | Kuroshio Current (LME #49) | Fish classification |
12 | Marini et al. | 2018 | Tracking Fish Abundance by Underwater Image Recognition | Scientific Reports | Mediterenean Sea (LME #26) | Fish abundance |
13 | Meng et al. | 2018 | Underwater-Drone with Panoramic Camera for Automatic Fish Recognition Based on Deep Learning | IEEE Access | N/A | Fish recognition |
14 | Qiu et al. | 2018 | Improving transfer learning and squeeze- and excitation-networks for small-scale fine-grained fish image classification | IEEE Access | Mediterenean Sea (LME #26) | Fish classification |
15 | Saddiqui et al. | 2018 | Automatic fish species classification in underwater videos: Exploiting pre-trained deep neural network models to compensate for limited labelled data | ICES Journal of Marine Science | West-Central Australian Shelf (LME #44) | Fish species classification |
16 | Villon et al. | 2018 | A Deep learning method for accurate and fast identification of coral reef fishes in underwater images | Ecological Informatics | Agulhas Current (LME #30) | Fish identification |
17 | Boom et al. | 2016 | Uncertainty-aware estimation of population abundance using machine learning | Multimedia Systems | N/A | Fish abundance |
18 | Pérez-Ortiz et al. | 2016 | On the Use of Nominal and Ordinal Classifiers for the Discrimination of States of Development in Fish Oocytes | Neural Processing Letters | N/A | Fish classification |
19 | Qin et al. | 2016 | DeepFish: Accurate underwater live fish recognition with a deep architecture | Neurocomputing | N/A | Fish recognition |
20 | Salman et al. | 2016 | Fish species classification in unconstrained underwater environments based on deep learning | Limnology and Oceanography: Methods | N/A | Fish species classification |
21 | Pais et al. | 2013 | Seeking functional homogeneity: A framework for definition and classification of fish assemblage types to support assessment tools on temperate reefs | Ecological Indicators | North Sea (LME #22), Iberian Coastal (LME # 25), Mediterranean Sea (LME #26), Guinea Current (LME #28), Celtic-Biscay Shelf (LME #24) | Classification of fish assemblage types |
22 | Knudby et al. | 2010 | Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine learning techniques | Remote Sensing of Environment | Somali Coastal Current (LME #31) | Fish species identification |
No | Author | Year | Title | Journal | Location | Theme |
---|---|---|---|---|---|---|
1 | Kylili et al. | 2020 | An intelligent way for discerning plastics at the shorelines and the seas | Environmental Science and Pollution Research | N/A | Deberis and plastic recognition |
2 | Al-Ruzouq et al. | 2020 | Sensors, features, and machine learning for oil spill detection and monitoring: A review | Remote Sensing | Arabian Sea (LME #32), Agulhas Current (LME #30) | Oil spill detention |
3 | Fanelli et al. | 2020 | Towards naples ecological research for augmented observatories (NEREA): The NEREA-fix module, a stand-alone platform for long-term deep-sea ecosystem monitoring | Sensors (Switzerland) | Mediterranean Sea (LME #26) | Primary productioin |
4 | Mattei & Scardi | 2020 | Embedding ecological knowledge into artificial neural network training: A marine phytoplankton primary production model case study | Ecological Modelling | Northeast U.S. Continental Shelf (LME #7), Scotian Shelf (LME #8) | Primary productioin |
5 | Li et al. | 2020 | Developing a microscopic image dataset in support of intelligent phytoplankton detection using deep learning | ICES Journal of Marine Science | Yellow Sea (LME #48) | Primary productioin |
6 | Fannjiang et al. | 2019 | Augmenting biologging with supervised machine learning to study in situ behavior of the medusa Chrysaora fuscescens | Journal of Experimental Biology | California Current (LME #3) | Primary productioin |
7 | Franceschini et al. | 2019 | Rummaging through the bin: Modelling marine litter distribution using Artificial Neural Networks | Marine Pollution Bulletin | Mediterranean Sea (LME #26) | Deberis and plastic recognition |
8 | Cantorna et al. | 2019 | Oil spill segmentation in SAR images using convolutional neural networks. A comparative analysis with clustering and logistic regression algorithms | Applied Soft Computing Journal | N/A | Oil spill segmentation |
9 | Watanabe et al. | 2019 | Underwater and airborne monitoring of marine ecosystems and debris | Journal of Applied Remote Sensing | N/A | Deberis and plastic recognition |
10 | Schmid et al. | 2018 | Lipid load triggers migration to diapause in Arctic Calanus copepods—Insights from underwater imaging | Journal of Plankton Research | West Greenland Shelf (LME #18) | Primary productioin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honarmand Ebrahimi, S.; Ossewaarde, M.; Need, A. Smart Fishery: A Systematic Review and Research Agenda for Sustainable Fisheries in the Age of AI. Sustainability 2021, 13, 6037. https://doi.org/10.3390/su13116037
Honarmand Ebrahimi S, Ossewaarde M, Need A. Smart Fishery: A Systematic Review and Research Agenda for Sustainable Fisheries in the Age of AI. Sustainability. 2021; 13(11):6037. https://doi.org/10.3390/su13116037
Chicago/Turabian StyleHonarmand Ebrahimi, Sanaz, Marinus Ossewaarde, and Ariana Need. 2021. "Smart Fishery: A Systematic Review and Research Agenda for Sustainable Fisheries in the Age of AI" Sustainability 13, no. 11: 6037. https://doi.org/10.3390/su13116037
APA StyleHonarmand Ebrahimi, S., Ossewaarde, M., & Need, A. (2021). Smart Fishery: A Systematic Review and Research Agenda for Sustainable Fisheries in the Age of AI. Sustainability, 13(11), 6037. https://doi.org/10.3390/su13116037