Digital Technologies for Urban Metabolism Efficiency: Lessons from Urban Agenda Partnership on Circular Economy
Abstract
:1. Introduction
2. Digital Technologies for Urban Metabolism
3. Methods
- Identification of urban metabolism aims to map the economic, social, environmental, and technological resources that operate within the city context. In this sense, this information provides a knowledge heritage essential to improve the efficiency of resources [211].
- Brokerage activities allow the identification, involvement, and empowerment of the stakeholders in each urban process. Specifically, this phase aims to assign and connect stakeholders involved to their respective flows of social, economic, environmental, and technological resources.
- Monitoring and evaluation activities permit the monitoring of progress of the implemented activities and evaluation of the effectiveness of urban policies adopted. To do this, policymakers, stakeholders, urban policymakers, urban managers, and planners must have detailed, systemic, and multidimensional urban data to confirm or redefine the developed urban strategy.
4. Results
4.1. Identifying Urban Metabolism
4.2. Brokerage Activities
4.3. Monitoring and Evaluation
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arbolino, R.; De Simone, L.; Carlucci, F.; Yigitcanlar, T.; Ioppolo, G. Towards a sustainable industrial ecology: Implementation of a novel approach in the performance evaluation of Italian regions. J. Clean. Prod. 2018, 178, 220–236. [Google Scholar] [CrossRef] [Green Version]
- Ingrao, C.; Messineo, A.; Beltramo, R.; Yigitcanlar, T.; Ioppolo, G. How can life cycle thinking support sustainability of buildings? Investigating life cycle assessment applications for energy efficiency and environmental performance. J. Clean. Prod. 2018, 201, 556–569. [Google Scholar] [CrossRef]
- D’Amico, G.; Taddeo, R.; Shi, L.; Yigitcanlar, T.; Ioppolo, G. Ecological indicators of smart urban metabolism: A review of the literature on international standards. Ecol. Indic. 2020, 118, 106808. [Google Scholar] [CrossRef]
- European Commission. Circular Economy Action Plan. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:9903b325-6388-11ea-b735-01aa75ed71a1.0017.02/DOC_1&format=PDF (accessed on 7 May 2021).
- United Nations (UN). World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). Department of Economic and Social Affairs, Population Division. New York: United Nations. Available online: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (accessed on 7 May 2021).
- Ellen MacArthur Foundation. Circular Economy in Cities: Project Guide. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/CE-in-Cities-Project-Guide_Mar19.pdf (accessed on 7 May 2021).
- United Nations Environment Programme. Resilience and Resource Efficiency in Cities. New York, USA. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/20629/Resilience_resource_efficiency_cities.pdf?sequence=1&isAllowed=y (accessed on 6 May 2021).
- Climate-KIC & C40 Cities. Municipality-Led Circular Economy Case Studies. 2018. Available online: www.climate-kic.org/wp-content/uploads/2019/01/Circular-Cities.pdf (accessed on 5 May 2021).
- Paiho, S.; Mäki, E.; Wessberg, N.; Paavola, M.; Tuominen, P.; Antikainen, M.; Heikkilä, J.; Rozado, A.A.; Jung, N. Towards circular cities—Conceptualizing core aspects. Sustain. Cities Soc. 2020, 59, 102143. [Google Scholar] [CrossRef]
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development (A/RES/70/1), General Assembly. New York: United Nations. Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 4 May 2021).
- D’Amico, G.; L’Abbate, P.; Liao, W.; Yigitcanlar, T.; Ioppolo, G. Understanding Sensor Cities: Insights from Technology Giant Company Driven Smart Urbanism Practices. Sensors 2020, 20, 4391. [Google Scholar] [CrossRef]
- Giraldo Nohra, C.; Pereno, A.; Barbero, S. Systemic Design for Policy-Making: Towards the Next Circular Regions. Sustainability 2020, 12, 4494. [Google Scholar] [CrossRef]
- Ranta, V.; Aarikka-Stenroos, L.; Väisänen, J.M. Digital technologies catalysing business model innovation for circular economy —Multiple case study. Resour. Conserv. Recycl. 2021, 164, 105155. [Google Scholar] [CrossRef]
- Panori, A.; Kakderi, C.; Komninos, N.; Fellnhofer, K.; Reid, A.; Mora, L. Smart systems of innovation for smart places: Challenges in deploying digital platforms for co-creation and data-intelligence. Land Use Policy 2020, 104631. [Google Scholar] [CrossRef]
- Perng, S.; Kitchin, R.; Donncha, D.M. Hackathons, entrepreneurial life and the making of smart cities. Geoforum 2018, 97, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Rajakallio, K.; Cuthbertson, R.; Pulkka, L.; Junnila, S. Creating urban platforms—Opportunities and challenges for innovation in commercial real estate development. Cities 2018, 77, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Arkian, H.; Diyanat, A.; Pourkhalili, A. MIST: Fog-based Data Analytics Scheme with Cost-Efficient Resource Provisioning for IoT Crowdsensing Applications. J. Netw. Comput. Appl. 2017, 82, 152–165. [Google Scholar] [CrossRef]
- Goncalves, R.; Sgurev, V.; Jotsov, V.; Kacprzyk, J. Intelligent Systems: Theory, research and Innovation in Applications. In International Publishing; Springer: New York, NY, USA, 2020; p. 864. [Google Scholar]
- Tekouabou, S.C.K.; Alaoui, E.A.A.; Cherif, W.; Silkan, H. Improving parking availability prediction in smart cities with IoT and ensemble-based model. J. King Saud Univ. Comput. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Z. Some practical constraints and solutions for optical camera communication. Philos. Trans. A Math. Phys. Eng. Sci. 2020, 378, 20190191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlemann, T.H.J.; Lehmann, C.; Steinhilper, R. The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0. Procedia CIRP 2017, 61, 335–340. [Google Scholar] [CrossRef]
- Rathore MM, U.; Paul, A.; Hong, W.H. Exploiting IoT and Big Data Analytics: Defining Smart Digital City using Real-Time Urban Data. Sustain. Cities 2017, 40, 600–610. [Google Scholar] [CrossRef]
- Bibri, S.E. Big Data Science and Analytics for Smart Sustainable Urbanism. In Unprecedented Paradigmatic Shifts and Practical Advancements; Springer: Berlin, Germany, 2019. [Google Scholar]
- Yigitcanlar, T.; Desouza, K.C.; Butler, L.; Roozkhosh, F. Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies 2020, 13, 1473. [Google Scholar] [CrossRef] [Green Version]
- Yigitcanlar, T.; Butler, L.; Windle, E.; Desouza, K.C.; Mehmood, R.; Corchado, J.M. Can Building “Artificially Intelligent Cities” Safeguard Humanity from Natural Disasters, Pandemics, and Other Catastrophes? An Urban Scholar’s Perspective. Sensors 2020, 20, 2988. [Google Scholar] [CrossRef]
- Baucas, M.J.; Spachos, P. Using cloud and fog computing for large scale IoT-based urban sound classification. Simul. Model. Pract. Theory 2020, 101, 102013. [Google Scholar] [CrossRef] [Green Version]
- Daissaoui, A.; Boulmakoul, A.; Karim, L.; Lbath, A. IoT and Big Data Analytics for Smart Buildings: A Survey. Procedia Comput. Sci. 2020, 170, 161–168. [Google Scholar] [CrossRef]
- Wirtz, B.W.; Weyerer, J.C.; Schichtel, F.T. An integrative public IoT framework for smart government. Gov. Inf. Q. 2018, 36, 333–345. [Google Scholar] [CrossRef]
- Bibri, S.E. Compact urbanism and the synergic potential of its integration with data-driven smart urbanism: An extensive interdisciplinary literature review. Land Use Policy 2020, 97, 104703. [Google Scholar] [CrossRef]
- Biloria, N. From smart to empathic cities. Front. Archit. Res. 2021, 10, 3–16. Available online: https://www.sciencedirect.com/science/article/pii/S2095263520300698 (accessed on 5 May 2021). [CrossRef]
- Masik, G.; Sagan, I.; Scott, J.W. Smart City strategies and new urban development policies in the Polish context. Cities 2021, 108, 102970. [Google Scholar] [CrossRef]
- Thees, H.; Zacher, D.; Eckert, C. Work, life and leisure in an urban ecosystem—Co-creating Munich as an Entrepreneurial Destination. J. Hosp. Tour. Manag. 2020, 44, 171–183. [Google Scholar] [CrossRef]
- Almenar, J.B.; Elliot, T.; Rugani, B.; Philippe, B.; Gutierrez, T.N.; Sonnemann, G.; Geneletti, D. Nexus between nature-based solutions, ecosystem services and urban challenges. Land Use Policy 2021, 100, 104898. [Google Scholar] [CrossRef]
- Hossain, M.; Leminen, S.; Westerlund, M. A systematic review of living lab literature. J. Clean. Prod. 2019, 213, 976–988. [Google Scholar] [CrossRef]
- Gamache, G.; Anglade, J.; Feche, R.; Barataud, F.; Mignolet, C.; Coquil, X. Can living labs offer a pathway to support local agri-food sustainability transitions? Environ. Innov. Soc. Transit. 2020, 37, 93–107. [Google Scholar] [CrossRef]
- European Commission. Living Labs for User-Driven Open Innovation—An Overview of Activities. Directorate-General for the Information Society and Media. Luxembourg: Office for Official Publications of the European Communities. Available online: www.eurosportello.eu/sites/default/files/Living%20Lab%20brochure_jan09_en_0.pdf (accessed on 3 May 2021).
- Stapper, E.W.; Duyvendak, J.W. Good residents, bad residents: How participatory processes in urban redevelopment privilege entrepreneurial citizens. Cities 2020, 107, 102898. [Google Scholar] [CrossRef]
- Maranghi, S.; Parisi, M.L.; Facchini, A.; Rubino, A.; Kordas, O.; Basosi, R. Integrating urban metabolism and life cycle assessment to analyse urban sustainability. Ecol. Indic. 2020, 112, 106074. [Google Scholar] [CrossRef]
- John, B.; Luederitz, C.; Lang, D.J.; von Wehrden, H. Toward Sustainable Urban Metabolisms. From System Understanding to System Transformation. Ecol. Econ. 2019, 157, 402–414. [Google Scholar] [CrossRef]
- Marin, J.; De Meulder, B. Interpreting Circularity. Circularity Representations Concealing Transition Drivers. Sustainability 2018, 10, 1310. [Google Scholar] [CrossRef] [Green Version]
- Campbell-Johnston, K.; Cate, J.; Elfering-Petrovic, M.; Gupta, J. City level circular transitions: Barriers and limits in Amsterdam, Utrecht and The Hague. J. Clean. Prod. 2019, 235, 1232–1239. [Google Scholar] [CrossRef]
- Gravagnuolo, A.; Angelis, R.; Iodice, S. Circular Economy Strategies in the Historic Built Environment: Cultural Heritage Adaptive Reuse. In Proceedings of the 18th Annual STS Conference Graz 2019, Critical Issues in Science, Technology and Society Studies, Graz, Austria, 6–7 May 2019; pp. 6–7. [Google Scholar]
- Bibri, S.E.; Krogstie, J. On the social shaping dimensions of smart sustainable cities: A study in science, technology, and society. Sustain. Cities Soc. 2017, 29, 219–246. [Google Scholar] [CrossRef] [Green Version]
- Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A. How engaging are disaster management related social media channels? The case of Australian state emergency organisations. Int. J. Disaster Risk Reduct. 2020, 48, 101571. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. The role of information governance in big data analytics driven innovation. Inf. Manag. 2020, 57, 103361. [Google Scholar] [CrossRef]
- United Nations (UN). New Urban Agenda. New York. Available online: https://unhabitat.org/sites/default/files/2019/05/nua-english.pdf (accessed on 2 May 2021).
- Fatimah, Y.A.; Govindan, K.; Murniningsih, R.; Setiawan, A. Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. J. Clean. Prod. 2020, 269, 122263. [Google Scholar] [CrossRef]
- Strielkowski, W.; Streimikiene, D.; Fomina, A.; Semenova, E. Internet of Energy (IoE) and High-Renewables Electricity System Market Design. Energies 2019, 12, 4790. [Google Scholar] [CrossRef] [Green Version]
- Chui, K.; Lytras, M.; Visvizi, A. Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption. Energies 2018, 11, 2869. [Google Scholar] [CrossRef] [Green Version]
- Ghiani, E.; Serpi, A.; Pilloni, V.; Sias, G.; Simone, M.; Marcialis, G.; Armano, G.; Pegoraro, P.A. A Multidisciplinary Approach for the development of Smart Distribution Networks. Energies 2018, 11, 2530. [Google Scholar] [CrossRef] [Green Version]
- Shishegar, S.; Duchesne, S.; Pelletier, G.; Ghorbani, R. A smart predictive framework for system-level stormwater management optimization. J. Environ. Manag. 2021, 278, 111505. [Google Scholar] [CrossRef] [PubMed]
- Macke, J.; Sarate, J.; De Atayde Moschen, S. Smart Sustainable Cities Evaluation and Sense of Community. J. Clean. Prod. 2019, 239, 118103. [Google Scholar] [CrossRef]
- Muzammal, M.; Talat, R.; Sodhro, A.H.; Pirbhulal, S. A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks. Inf. Fusion. 2020, 53, 155–164. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Liu, N.; Zhang, Y. An urban material flow analysis framework and measurement method from the perspective of urban metabolism. J. Clean. Prod. 2020, 257, 120564. [Google Scholar] [CrossRef]
- Ali, M.; Kennedy, C.M.; Kiesecker, J.; Geng, Y. Integrating biodiversity offsets within Circular Economy policy in China. J. Clean. Prod. 2018, 185, 32–43. [Google Scholar] [CrossRef]
- Acheampong, R.A.; Cugurullo, F. Capturing the behavioural determinants behind the adoption of autonomous vehicles: Conceptual frameworks and measurement models to predict public transport, sharing and ownership trends of self-driving cars. Transp. Res. Part F Traffic Psychol. Behav. 2019, 62, 349–375. [Google Scholar] [CrossRef] [Green Version]
- Acheampong, R.A.; Cugurullo, F.; Dusparic, I.; Guériau, M. An Examination of User Adoption Behaviour of Autonomous Vehicles and Urban Sustainability Implications. Transp. Res. Procedia 2019, 41, 187–190. [Google Scholar] [CrossRef]
- Wu, C.; Chen, B.; Huang, X.; Wei, Y.D. Effect of land-use change and optimization on the ecosystem service values of Jiangsu province, China. Ecol. Indic. 2020, 117, 106507. [Google Scholar] [CrossRef]
- Mihăiţă, A.S.; Dupont, L.; Chery, O.; Camargo, M.; Cai, C. Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling. J. Clean. Prod. 2019, 221, 398–418. [Google Scholar] [CrossRef]
- Isern, J.; Barranco, F.; Deniz, D.; Lesonen, J.; Hannuksela, J.; Carrillo, R.R. Reconfigurable cyber-physical system for critical infrastructure protection in smart cities via smart video-surveillance. Pattern Recognit. Lett. 2020, 140, 303–309. [Google Scholar] [CrossRef]
- Kristoffersen, E.; Blomsma, F.; Mikalef, P.; Li, J. The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies. J. Bus. Res. 2020, 120, 241–261. [Google Scholar] [CrossRef]
- Levoso, A.; Gasol, C.M.; Martinez-Blanco, J.; Durany, X.G.; Lehmann, M.; Gaya, R.F. Methodological framework for the implementation of circular economy in urban systems. J. Clean. Prod. 2020, 248, 119227. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Amulya, K.; Annie Modestra, J. Urban Biocycles—Closing Metabolic loops for Resilient and Regenerative Ecosystem: A Perspective. Bioresour. Technol. 2020, 306, 123098. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Huang, Z.; Zhao, W. Are smart cities more ecologically efficient? Evidence from China. Sustain. Cities Soc. 2020, 60, 102008. [Google Scholar] [CrossRef]
- Hartley, K.; van Santen, R.; Kirchherr, J. Policies for transitioning towards a circular economy: Expectations from the European Union. Resour. Conserv. Recycl. 2020, 155, 104634. [Google Scholar] [CrossRef]
- Pancholi, S.; Yigitcanlar, T.; Guaralda, M.; Mayere, S.; Caldwell, G.A.; Medland, R. University and innovation district symbiosis in the context of placemaking: Insights from Australian cities. Land Use Policy 2020, 99, 105109. [Google Scholar] [CrossRef]
- Prendeville, S.; Cherim, E.; Bocken, N. Circular Cities: Mapping Six Cities in Transition. Environ. Innov. Soc. Transit. 2017, 26, 171–194. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, C.; Pincetl, S.; Bunje, P. The study of urban metabolism and its applications to urban planning and design. Environ. Pollut. 2011, 159, 1965–1973. [Google Scholar] [CrossRef]
- Milios, L. Advancing to a Circular Economy: Three essential ingredients for a comprehensive policy mix. Sustain. Sci. 2018, 13, 861–878. [Google Scholar] [CrossRef] [Green Version]
- Petit-Boix, A.; Leipold, S. Circular economy in cities: Reviewing how environmental research aligns with local practices. J. Clean. Prod. 2018, 195, 1270–1281. [Google Scholar] [CrossRef]
- Jentoft, H.S. Urban Agenda Partnership on Circular Economy—General Presentation. Available online: https://ec.europa.eu/regional_policy/sources/conferences/cities_forum_2017/partnership_circular_jentoft.pdf (accessed on 29 April 2021).
- Marsal-Llacuna, M.L. The people’s smart city dashboard (PSCD): Delivering on community-led governance with blockchain. Technol. Forecast. Soc. Chang. 2020, 158, 120150. [Google Scholar] [CrossRef]
- Shah, I.; Dong, L.; Park, H.S. Tracking urban sustainability transition: An eco-efficiency analysis on eco-industrial development in Ulsan, Korea. J. Clean. Prod. 2020, 262, 121286. [Google Scholar] [CrossRef]
- Montenegro Navarro, N.; Jonker, J. Circular City Governance—An Explorative Research Study into Current Barriers and Governance Practices in Circular City Transitions in Europe; European Urban Agenda Circular Economy: Luxembourg, 2018. [Google Scholar]
- Mudede, M.F.; Newete, S.W.; Abutaleb, K.; Nkongolo, N. Monitoring the urban environment quality in the city of Johannesburg using remote sensing data. J. Afr. Earth Sci. 2020, 171, 103969. [Google Scholar] [CrossRef]
- Kalinin, M.; Krundyshev, V.; Zegzhda, P. Cybersecurity Risk Assessment in Smart City Infrastructures. Machines 2021, 9, 78. [Google Scholar] [CrossRef]
- Rey-Pérez, J.; Domínguez-Ruiz, V. Multidisciplinarity, Citizen Participation and Geographic Information System, Cross-Cutting Strategies for Sustainable Development in Rural Heritage. The Case Study of Valverde de Burguilloes (Spain). Sustainability 2020, 12, 9628. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Han, H.; Kamruzzaman, M.; Ioppolo, G.; Sabatini-Marques, J. The making of smart cities: Are Songdo, Masdar, Amsterdam, San Francisco and Brisbane the best we could build? Land Use Policy 2019, 88, 104187. [Google Scholar] [CrossRef]
- Mora, L.; Deakin, M.; Reid, A. Strategic principles for smart city development: A multiple case study analysis of European best practices. Technol. Forecast. Soc. Chang. 2019, 142, 70–97. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; da Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar] [CrossRef]
- Hatuka, T.; Zur, H. From smart cities to smart social urbanism: A framework for shaping the socio-technological ecosystems in cities. Telemat. Inform. 2020, 55, 101430. [Google Scholar] [CrossRef]
- Wathne, M.W.; Haarstad, H. The smart city as mobile policy: Insights on contemporary urbanism. Geoforum 2020, 108, 130–138. [Google Scholar] [CrossRef]
- Alcayaga, A.; Wiener, M.; Hansen, E.G. Towards a framework of smart-circular systems: An integrative literature review. J. Clean. Prod. 2019, 221, 622–634. [Google Scholar] [CrossRef]
- Fratini, C.F.; Georg, S.; Jorgensen, M.S. Exploring circular economy imaginaries in European cities: A research agenda for the governance of urban sustainability. J. Clean. Prod. 2019, 228, 974–989. [Google Scholar] [CrossRef]
- European Commission. Roadmap Circular Resource Efficiency Management Plan. Available online: https://ec.europa.eu/futurium/en/system/files/ged/roadmap_circular_resource_efficiency_management_plan_v6.pdf (accessed on 10 December 2020).
- Williams, J. Circular Cities: Challenges to Implementing Looping Actions. Sustainability 2019, 11, 423. [Google Scholar] [CrossRef] [Green Version]
- Girard, L.F.; Nocca, F. Moving Towards the Circular Economy/City Model: Which Tools for Operationalizing This Model? Sustainability 2019, 11, 6253. [Google Scholar] [CrossRef] [Green Version]
- de Ferreira, A.C.; Fuso-Nerini, F. A Framework for Implementing and Tracking Circular Economy in Cities: The case of Porto. Sustainability 2019, 11, 1813. [Google Scholar] [CrossRef] [Green Version]
- Kirchherr, J.; Piscicelli, L.; Bour, R.; Kostense-Smit, E.; Muller, J.; Huibrechtse-Truijens, A.; Hekkert, M. Barriers to the circular economy: Evidence from the European Union (EU). Ecol. Econ. 2018, 150, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Currie, P.K.; Musango, J.K. African urbanization: Assimilating urban metabolism into sustainability discourse and practice. J. Ind. Ecol. 2017, 21, 1262–1276. [Google Scholar] [CrossRef]
- Zhang, Y. Urban Metabolism, 2nd ed.; Elsevier: Oxford, UK, 2019; pp. 441–451. [Google Scholar]
- Beloin-Saint-Pierre, D.; Rugani, B.; Lasvaux, S.; Mailhac, A.; Popovici, E.; Sibiude, G.; Benetto, E.; Schiopu, N. A review of urban metabolism studies to identify key methodological choices for future harmonization and implementation. J. Clean. Prod. 2017, 163, S223–S240. [Google Scholar] [CrossRef]
- Cui, X. How can cities support sustainability: A bibliometric analysis of urban metabolism. Ecol. Ind. 2018, 93, 704–717. [Google Scholar] [CrossRef]
- Cui, X.; Wang, X.; Feng, Y. Examining urban metabolism: A material flow perspective on cities and their sustainability. J. Clean. Prod. 2019, 214, 767–781. [Google Scholar] [CrossRef]
- Dijst, M.; Worrell, E.; Böcker, L.; Brunner, P.; Davoudi, S.; Geertman, S.; Harmsen, R.; Helbich, M.; Holtslag, A.A.; Kwan, M.P.; et al. Exploring urban metabolism—Towards an interdisciplinary perspective. Resour. Conserv. Recycl. 2018, 132, 190–203. [Google Scholar] [CrossRef]
- Li, H.; Kwan, M.P. Advancing analytical methods for urban metabolism studies. Resourc. Conserv. Recycl. 2018, 132, 239–245. [Google Scholar] [CrossRef]
- Céspedes Restrepo, J.D.; Morales-Pinzón, T. Urban metabolism and sustainability: Precedents, genesis and research perspectives. Resourc. Conserv. Recycl. 2018, 131, 216–224. [Google Scholar] [CrossRef]
- Musango, J.K.; Currie, P.; Robinson, B. Urban Metabolism for Resource Efficient Cities: From Theory to Implementation; UN Environment, Economy Division: Paris, France, 2017. [Google Scholar]
- Kissinger, M.; Stossel, Z. Towards an interspatial urban metabolism analysis in an interconnected world. Ecol. Ind. 2019, 101, 1077–1085. [Google Scholar] [CrossRef]
- Allwinkle, S.; Cruickshank, P. Creating Smart-er Cities: An Overview. J. Urban Technol. 2011, 18, 1–16. [Google Scholar] [CrossRef]
- Barns, S.; Cosgrave, E.; Acuto, M.; Mcneill, D. Digital infrastructures and urban governance. Urban Policy Res. 2016, 35, 20–31. [Google Scholar] [CrossRef]
- Al Nuaimi, E.; Al Neyadi, H.; Mohamed, N.; Al-Jaroodi, J. Applications of big data to smart cities. J. Internet Serv. Appl. 2015, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Mazza, D.; Tarchi, D.; Corazza, G.E. A unified urban mobile cloud computing offloading mechanism for smart cities. IEEE Commun. Mag. 2017, 55, 30–37. [Google Scholar] [CrossRef]
- Piao, H.; Duan, H.; Zhu, M. Simulation of Urban Landscape Around Subway Station based on Machine Learning and Virtual Reality. Microprocess. Microsyst. 2020, 2020, 103495. [Google Scholar] [CrossRef]
- Pioppi, B.; Pigliautile, I.; Pisello, A.L. Human-centric microclimate analysis of Urban Heat Island: Wearable sensing and data-driven techniques for identifying mitigation strategies in New York City. Urban Clim. 2020, 34, 100716. [Google Scholar] [CrossRef]
- Kurilkin, A.V.; Vyatkina, O.O.; Mityagin, S.A.; Ivanov, S.V. Evaluation of Urban Mobility Using Surveillance Cameras. Procedia Comput. Sci. 2015, 66, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Fatimah, Y.A.; Widianto, A.; Hanafi, M. Cyber-physical System Enabled in Sustainable Waste Management 4.0: A Smart Waste Collection System for Indonesian Semi-Urban Cities. Procedia Manuf. 2020, 43, 535–542. [Google Scholar] [CrossRef]
- Fernández-Ares, A.J.; Mora, A.M.; Odeh, S.M.; García-Sánchez, P.; Arenas, M.G. Wireless monitoring and tracking system for vehicles: A study case in an urban scenario. Simul. Model. Pract. Theory 2017, 73, 22–42. [Google Scholar] [CrossRef]
- Kalluri, B.; Chronopoulos, C.; Kozine, I. The concept of smartness in cyber-physical systems and connection to urban environment. Annu. Rev. Control 2020. [Google Scholar] [CrossRef]
- Marsal-Llacuna, M.L. Future living framework: Is blockchain the next enabling network? Technol. Forecast. Soc. Chang. 2018, 128, 226–234. [Google Scholar] [CrossRef]
- Gozalvez, J. 5G worldwide developments [mobile radio]. IEEE Veh. Technol. Mag. 2017, 12, 4–11. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kankanamge, N.; Vella, K. How are the smart city concepts and technologies perceived and utilized? A systematic geo-twitter analysis of smart cities in Australia. J. Urban Technol. 2020, 28, 135–154. [Google Scholar] [CrossRef]
- Musango, J.K.; Currie, P.; Smit, S.; Kovacic, Z. Urban metabolism of the informal city: Probing and measuring the ‘unmeasurable’ to monitor Sustainable Development Goal 11 indicators. Ecol. Indic. 2020, 119, 106746. [Google Scholar] [CrossRef]
- Allam, Z.; Jones, D. Towards a circular economy: A case study of waste conversion into housing units in cotonou, Benin. Urban Sci. 2018, 2, 118. [Google Scholar] [CrossRef] [Green Version]
- Allam, Z.; Jones, D. Promoting resilience, liveability and sustainability through landscape architectural design: A conceptual framework for Port Louis, Mauritius; a small island developing state. Int. Fed. Landsc. Arch. 2018, 1599–1611. [Google Scholar]
- Lim, C.; Kim, K.J.; Maglio, P.P. Smart cities with big data: Reference models, challenges, and considerations. Cities 2018, 82, 86–99. [Google Scholar] [CrossRef]
- Ratti, C.; Townsend, A. The Social Nexus. Sci. Am. 2011, 305, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Lund, H.; Mathiesen, B.; Connolly, D.; Østergaard, P. Renewable energy systems—A smart energy systems approach to the choice and modelling of 100% renewable solutions. Chem. Eng. Trans. 2014, 39, 1–6. [Google Scholar]
- Mydlarz, C.; Salamon, J.; Bello, J.P. The implementation of low-cost urban acoustic monitoring devices. Appl. Acoustics. 2017, 117, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Yates, D.; Paquette, S. Emergency knowledge management and social media technologies: A case study of the 2010 Haitian earthquake. Int. J. Inf. Manag. 2011, 31, 6–13. [Google Scholar] [CrossRef]
- Huntingford, C.; Jeffers, E.S.; Bonsall, M.B.; Christensen, H.M.; Lees, T.; Yang, H. Machine learning and artificial intelligence to aid climate change research and preparedness. Environ. Res. Lett. 2019, 14, 124007. [Google Scholar] [CrossRef] [Green Version]
- Zilli, D.; Parson, O.; Merrett, G.V.; Rogers, A. A hidden Markov model-based acoustic cicada detector for crowdsourced smartphone biodiversity monitoring. J. Artif. Intell. Res. 2014, 51, 805–827. [Google Scholar] [CrossRef]
- Shah, H.; Ghazali, R.; Hassim, Y.M. Honey bees inspired learning algorithm: Nature intelligence can predict natural disaster. In Recent Advances on Soft Computing and Data Mining; Springer: Cham, Switzerland, 2014; pp. 215–225. [Google Scholar]
- Vaishya, R.; Javaid, M.; Khan, I.H.; Haleem, A. An Artificial intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 337–339. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Nerini, F.F. The role of artificial intelligence in achieving the sustainable development goals. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mbungu, N.T.; Bansal, R.C.; Naidoo, R.; Bettayeb, M.; Siti, M.W.; Bipath, M. A dynamic energy management system using smart metering. Appl. Energy 2020, 280, 115990. [Google Scholar] [CrossRef]
- Pawar, P.; Vittal, K.P. Design and development of advanced smart energy management system integrated with IoT framework in smart grid environment. J. Energy Storage 2019, 25, 100846. [Google Scholar] [CrossRef]
- Sehar, F.; Pipattanasomporn, M.; Rahman, S. Integrated automation for optimal demand management in commercial buildings considering occupant comfort. Sustain. Cities Soc. 2017, 28, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Malekjamshidi, Z.; Zhu, J. A magnetically coupled multi-port, multi-operation-mode micro-grid with a predictive dynamic programming-based energy management for residential applications. Int. J. Electr. Power Energy Syst. 2019, 104, 784–796. [Google Scholar] [CrossRef]
- Klein, B.; Koenig, R.; Schmitt, G. Managing urban resilience: Stream processing platform for responsive cities. Inform. Spektrum 2017, 40, 35–45. [Google Scholar] [CrossRef]
- Chow CW, K.; Liu, J.; Li, J.; Swain, N.; Reid, K.; Saint, C.P. Development of smart data analytics tools to support wastewater treatment plant operation. Chemom. Intell. Lab. Syst. 2018, 177, 140–150. [Google Scholar] [CrossRef]
- O’Donovan, P.; Coburn, D.; Jones, E.; Hannon, L.; Glavin, M.; Mullins, D.; Clifford, E. A Cloud-based Distributed Data Collection System for Decentralised Wastewater Treatment Plants. Procedia Eng. 2015, 119, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Tetteh, N.; Amponsah, O. Sustainable adoption of smart homes from the Sub-Saharan African perspective. Sustain. Cities Soc. 2020, 63, 102434. [Google Scholar] [CrossRef]
- Abbas, A.M.; Youssef, K.Y.; Mahmoud, I.I.; Zekry, A. NB-IoT optimization for smart meters networks of smart cities: Case study. Alex. Eng. J. 2020, 59, 4267–4281. [Google Scholar] [CrossRef]
- Challa, M.L.; Soujanya, K.L.S. Secured smart mobile app for smart home environment. Mater. Proc. 2021, 37, 2109–2113. [Google Scholar]
- Zhang, A.; Venkatesh, V.G.; Liu, Y.; Wan, M.; Qu, T.; Huisingh, D. Barriers to smart waste management for a circular economy in China. J. Clean. Prod. 2019, 240, 118198. [Google Scholar] [CrossRef] [Green Version]
- Ahad, M.A.; Paiva, S.; Tripathi, G.; Feroz, G. Enabling technologies and sustainable smart cities. Sustain. Cities Soc. 2020, 61, 102301. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Reike, D.; Vermeulen, W.J.; Witjes, S. The circular economy: New or refurbished as CE 3.0?—exploring controversies in the conceptualization of the circular economy through a focus on history and resource value retention options. Resour. Conserv. Recycl. 2018, 135, 246–264. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Chen, J.; Huang, S.; BalaMurugan, S.; Tamizharasi, G.S. Artificial intelligence based e-waste management for environmental planning. Environ. Impact Assess. Rev. 2021, 87, 106498. [Google Scholar] [CrossRef]
- Shen, Y.C.; Wang, M.Y.; Yang, Y.C. Discovering the potential opportunities of scientific advancement and technological innovation: A case study of smart health monitoring technology. Technol. Forecast. Soc. Chang. 2020, 160, 120225. [Google Scholar] [CrossRef]
- Hajli, N.; Featherman, M.S. The impact of new ICT technologies and its applications on health service development and management. Technol. Forecast. Soc. Chang. 2018, 126, 1–2. [Google Scholar] [CrossRef]
- Mital, M.; Chang, V.; Choudhary, P.; Papa, A.; Pani, A.K. Adoption of Internet of things in India: A test of competing models using a structured equation modelling approach. Technol. Forecast. Soc. Chang. 2017, 136, 339–346. [Google Scholar] [CrossRef]
- Sodhro, A.H.; Sangaiah, A.K.; Sodhro, G.H.; Lohano, S.; Pirbhulal, S. An Energy-Efficient Algorithm for Wearable Electrocardiogram Signal Processing in Ubiquitous Healthcare Applications. Sensors 2018, 18, 923. [Google Scholar] [CrossRef] [Green Version]
- Farahani, B.; Firouzi, F.; Chang, V.; Badaroglu, M.; Constant, N.; Mankodiya, K. Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Futur. Gener. Comput. Syst. 2018, 78, 659–676. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Wen, D.; Li, J.; Qin, R. Multi-level monitoring of subtle urban changes for the megacities of China using high-resolution multi-view satellite imagery. Remote Sens. Environ. 2017, 196, 56–75. [Google Scholar] [CrossRef]
- Agustina, J.R.; Clavell, G.G. The impact of CCTV on fundamental rights and crime prevention strategies: The case of the Catalan Control Commission of Video surveillance Devices. Comput. Law Secur. Rev. 2011, 27, 168–174. [Google Scholar] [CrossRef]
- Feng, H.; Bai, F.; Xu, Y. Identification of critical roads in urban transportation network based on GPS trajectory data. Phys. A Stat. Mech. Appl. 2019, 535, 122337. [Google Scholar] [CrossRef]
- Borrion, H.; Ekblom, P.; Alrajeh, D.; Borrion, A.L.; Keane, A.; Koch, D.; Toubaline, S. The Problem with Crime Problem-Solving: Towards a Second Generation Pop? Br. J. Criminol. 2019, 60, 219–240. [Google Scholar] [CrossRef]
- Laufs, J.; Borrion, H.; Bradford, B. Security and the smart city: A systematic review. Sustain. Cities Soc. 2020, 55, 102023. [Google Scholar] [CrossRef]
- Watts, G. COVID-19 and the digital divide in the UK. Lancet Digit. Health 2020, 2, e395–e396. [Google Scholar] [CrossRef]
- Whitelaw, S.; Mamas, M.A.; Topol, E.; Van Spall, H.G.C. Applications of digital technology in COVID-19 pandemic planning and response. Lancet Digit. Health 2020, 2, e435–e440. [Google Scholar] [CrossRef]
- Beaunoyer, E.; Dupéré, S.; Guitton, J. COVID-19 and digital inequalities: Reciprocal impacts and mitigation strategies. Comput. Hum. Behav. 2020, 111, 106424. [Google Scholar] [CrossRef]
- Adam, I. Digital leisure engagement and concerns among inbound tourists in Ghana. J. Outdoor Recreat. Tour. 2019, 26, 13–22. [Google Scholar] [CrossRef]
- Eichelberger, S.; Peters, M.; Pikkemaat, B.; Chan, C.S. Entrepreneurial ecosystems in smart cities for tourism development: From stakeholder perceptions to regional tourism policy. J. Hosp. Tour. Manag. 2020, 45, 319–329. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Del Giudice, M.; Soto-Acosta, P. Disruptive technological change within knowledge-driven economies: The future of the Internet of Things. Technol. Forecast. Soc. Chang. 2018, 136, 265–267. [Google Scholar] [CrossRef]
- Sodhro, A.H.; Pirbhulal, S.; Luo, Z.; de Albuquerque, V.H.C. Towards an optimal resource management for IoT based Green and sustainable smart cities. J. Clean. Prod. 2019, 220, 1167–1179. [Google Scholar] [CrossRef]
- Esser, A.; Sys, C.; Vanelslander, T.; Verhetsel, A. The labour market for the port of the future. A case study for the port of Antwerp. Case Stud. Transp. Policy 2020, 8, 349–360. [Google Scholar] [CrossRef]
- Kim, H.M. Chapter 16—Smart cities beyond COVID-19. In Smart Cities for Technological and Social Innovation; 2021; pp. 299–308. [Google Scholar]
- Ingemarsdotter, E.; Jamsin, E.; Balkenende, R. Opportunities and challenges in IoT-enabled circular business model implementation—A case study. Resour. Conserv. Recycl. 2020, 162, 105047. [Google Scholar] [CrossRef]
- Kitheka, B.M.; Baldwin, E.D.; Powell, R.B. Grey to green: Tracing the path to environmental transformation and regeneration of a major industrial city. Cities 2021, 108, 102987. [Google Scholar] [CrossRef]
- Noori, S.; Korevaar, G.; Ramirez Ramirez, A. Assessing industrial symbiosis potential in Emerging Industrial Clusters: The case of Persian Gulf Mining and metal industries special economic zone. J. Clean. Prod. 2020, 281, 124765. [Google Scholar] [CrossRef]
- da Silva Andrade, L.P.C.; Ferreira, C.V.; da Silva, F.C.; de Oliveira Gomes, J. Strategic Management Method for the Incubation Process of Industrial Companies: Case Study of the Tooling Industry in Brazil. Procedia CIRP 2016, 41, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Benny Ng, W.K.; Appel-Meulenbroek, R.; Cloodt, M.; Arentze, T. Perceptual measures of science parks: Tenant firms’ associations between science park attributes and benefits. Technol. Forecast. Soc. Chang. 2020, 163, 120408. [Google Scholar]
- Cepeliauskaite, G.; Keppner, B.; Simkute, Z.; Stasiskiene, Z.; Leuser, L.; Kalnina, I.; Kotovica, N.; Andiņš, J.; Muiste, M. Smart-Mobility Services for Climate Mitigation in Urban Areas: Case Studies of Baltic Countries and Germany. Sustainability 2021, 13, 4127. [Google Scholar] [CrossRef]
- Cugurullo, F.; Acheampong, R.A.; Gueriau, M.; Dusparic, I. The transition to autonomous cars, the redesign of cities and the future of urban sustainability. Urban Geogr. 2020, 163, 1–27. [Google Scholar] [CrossRef]
- Maldonado Silveira Alonso Munhoz, P.A.; da Costa Dias, F.; Kowal Chinelli, C.; Azevedo Guedes, A.L.; Neves dos Santos, J.A.; da Silveira e Silva, W.; Pereira Soares, C.A. Smart Mobility: The Main Drivers for Increasing the Intelligence of Urban Mobility. Sustainability 2020, 12, 10675. [Google Scholar] [CrossRef]
- Orro, A.; Novales, M.; Monteagudo, Á.; Pérez-López, J.-B.; Bugarín, M.R. Impact on City Bus Transit Services of the COVID-19 Lockdown and Return to the New Normal: The Case of A Coruña (Spain). Sustainability 2020, 12, 7206. [Google Scholar] [CrossRef]
- Škultéty, F.; Beňová, D.; Gnap, J. City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals. Sustainability 2021, 13, 3641. [Google Scholar] [CrossRef]
- Alomari, E.; Katib, I.; Albeshri, A.; Yigitcanlar, T.; Mehmood, R. Iktishaf+: A Big Data Tool with Automatic Labeling for Road Traffic Social Sensing and Event Detection Using Distributed Machine Learning. Sensors 2021, 21, 2993. [Google Scholar] [CrossRef]
- Santana, E.F.Z.; Covas, G.; Duarte, F.; Santi, P.; Ratti, C.; Kon, F. Transitioning to a driverless city: Evaluating a hybrid system for autonomous and non-autonomous vehicles. Simul. Model. Pract. Theory 2021, 107, 102210. [Google Scholar] [CrossRef]
- D’Amico, G.; Szopik-Depczyńska, K.; Dembińska, I.; Ioppolo, G. Smart and sustainable logistics of Port cities: A framework for comprehending enabling factors, domains and goals. Sustain. Cities Soc. 2021, 69, 102801. [Google Scholar] [CrossRef]
- Lyons, G.; Mokhtarian, P.; Dijst, M.; Böcker, L. The dynamics of urban metabolism in the face of digitalization and changing lifestyles: Understanding and influencing our cities. Resour. Conserv. Recycl. 2018, 132, 246–257. [Google Scholar] [CrossRef] [Green Version]
- Schneir, J.R.; Ajibulu, A.; Konstantinou, K.; Bradford, J.; Zimmermann, G.; Droste, H.; Canto, R. A business case for 5G mobile broadband in a dense urban area. Telecommun. Policy 2019, 43, 101813. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Wang, Y.; Li, J.; Chang, X.; Cao, Y.; Xie, J.; Gong, J. High-resolution urban land-cover mapping and landscape analysis of the 42 major cities in China using ZY-3 satellite images. Sci. Bull. 2020, 65, 1039–1048. [Google Scholar] [CrossRef]
- Mudda, S.; Zignani, M.; Gaito, S.; Giordano, S.; Rossi, G.P. Timely and personalized services using mobile cellular data. Online Soc. Netw. Media 2019, 13, 100048. [Google Scholar] [CrossRef]
- Poncian, J. ICT, citizen engagement and the governance of extractive resources in Tanzania: Documenting the practice and challenges. Extr. Ind. Soc. 2020, 7, 1498–1510. [Google Scholar] [CrossRef]
- Artyushina, A. Is civic data governance the key to democratic smart cities? The role of the urban data trust in Sidewalk Toronto. Telemat. Inform. 2020, 55, 101456. [Google Scholar] [CrossRef]
- De Carlo, M.; Ferilli, G.; d’Angella, F.; Buscema, M. Artificial intelligence to design collaborative strategy: An application to urban destinations. J. Bus. Res. 2020, 129, 936–948. [Google Scholar] [CrossRef]
- Voto, A. Blockchains and the civic nervous systems. Open Ed. J. Inst. Veolia 2017, 17, 60–63. [Google Scholar]
- Kitchin, R.; McArdle, G. Urban Data and City Dashboards: Six Key Issues. In Data and the City; Routledge: London, UK, 2016; pp. 1–21. [Google Scholar]
- Barns, S. Platform urbanism. Negotiating Platform Ecosystems in Connected Cities. In Palgrave Macmillan; Springer Nature: Singapore, 2020. [Google Scholar]
- Caprotti, F.; Liu, D. Emerging platform urbanism in China: Reconfiguration of data, citizenship and materialities. Techn. Forecast. Soc. Chang. 2020, 151, 119690. [Google Scholar] [CrossRef]
- Bhushan, B.; Khamparia, A.; Sagayam, M.; Sharma, S.K.; Ahad, M.A.; Debnath, N. Blockchain for smart cities: A review of architectures, integration trends and future research directions. Sustain. Cities Soc. 2020, 61, 102360. [Google Scholar] [CrossRef]
- Peponi, A.; Morgado, P. Transition to Smart and Regenerative Urban Places (SRUP): Contributions to a New Conceptual Framework. Land 2021, 10, 2. [Google Scholar] [CrossRef]
- Nambisan, S.; Baron, R.A. On the costs of digital entrepreneurship: Role conflict, stress, and venture performance in digital platform-based ecosystems. J. Bus. Res. 2021, 125, 520–532. [Google Scholar] [CrossRef]
- Von Schönfeld, K.C.; Ferreira, A. Urban Planning and European Innovation Policy: Achieving Sustainability, Social Inclusion, and Economic Growth? Sustainability 2021, 13, 1137. [Google Scholar] [CrossRef]
- Agovino, M.; Casaccia, M.; Crociata, A.; Sacco, P.L. European Regional Development Fund and pro-environmental behaviour. The case of Italian separate waste collection. Socio Econ. Plan. Sci. 2019, 65, 36–50. [Google Scholar] [CrossRef]
- Cárdenas Alonso, G.; Nieto Masot, A. Towards Rural Sustainable Development? Contributions of the EAFRD 2007-2013 in Low Demographic Density Territories: The Case of Extremadura (SW Spain). Sustainability 2017, 9, 1173. [Google Scholar] [CrossRef] [Green Version]
- Lopes, J.M.; Gomes, S.; Oliveira, J.; Oliveira, M. The Role of Open Innovation, and the Performance of European Union Regions. J. Open Innov. Technol. Mark. Complex. 2021, 7, 120. [Google Scholar] [CrossRef]
- Gamache, S.; Amadou Diallo, T.; Shankardass, K.; Lebel, A. The Elaboration of an Intersectoral Partnership to Perform Health Impact Assessment in Urban Planning: The Experience of Quebec City (Canada). Int. J. Environ. Res. Public Health 2020, 17, 7556. [Google Scholar] [CrossRef] [PubMed]
- Poponi, S.; Arcese, G.; Mosconi, E.M.; Pacchera, F.; Martucci, O.; Elmo, G.C. Multi-Actor Governance for a Circular Economy in the Agri-Food Sector: Bio-Districts. Sustainability 2021, 13, 4718. [Google Scholar] [CrossRef]
- Pitidis, V.; Coaffee, J. Catalysing governance transformations through urban resilience implementation: The case of Thessaloniki, Greece. Cities 2020, 107, 102934. [Google Scholar] [CrossRef]
- Repette, P.; Sabatini-Marques, J.; Yigitcanlar, T.; Sell, D.; Costa, E. The Evolution of City-as-a-Platform: Smart Urban Development Governance with Collective Knowledge-Based Platform Urbanism. Land 2021, 10, 33. [Google Scholar] [CrossRef]
- Kim, C.; Kim, K.A. The Institutional Change form E-Government toward Smarter City; Comparative Analysis between Royal Borough of Greenwich, UK, and Seongdong-gu, South Korea. J. Open Innov. Technol. Mark. Complex. 2021, 7, 42. [Google Scholar] [CrossRef]
- Wu, W.-N. Determinants of citizen-generated data in a smart city: Analysis of 311 system user behaviour. Sustain. Cities Soc. 2020, 59, 102167. [Google Scholar] [CrossRef]
- Chen, C.-W. Clarifying rebound effects of the circular economy in the context of sustainable cities. Sustain. Cities Soc. 2021, 66, 102622. [Google Scholar] [CrossRef]
- Jang, M.; Aavakare, M.; Nikou, S.; Kim, S. The impact of literacy on intention to use digital technology for learning: A comparative study of Korea and Finland. Telecommun. Policy 2021, 102154. [Google Scholar] [CrossRef]
- Gravagnuolo, A.; Micheletti, S.; Bosone, M. A Participatory Approach for “Circular” Adaptive Reuse of Cultural Heritage. Building a Heritage Community in Salerno, Italy. Sustainability 2021, 13, 4812. [Google Scholar] [CrossRef]
- Edelmann, N.; Mergel, I. Co-Production of Digital Public Services in Austrian Public Administrations. Adm. Sci. 2021, 11, 22. [Google Scholar] [CrossRef]
- Wu, S.M.; Guo, D.; Wu, Y.J.; Wu, Y.C. Future Development of Taiwan’s Smart Cities from an Information Security Perspective. Sustainability 2018, 10, 4520. [Google Scholar] [CrossRef] [Green Version]
- Battistini, R.; Mantecchini, L.; Postorino, M.N. Users’ Acceptance of Connected and Automated Shuttles for Tourism Purposes: A Survey Study. Sustainability 2020, 12, 10188. [Google Scholar] [CrossRef]
- Schiavone, F.; Paolone, F.; Mancini, D. Business model innovation for urban smartization. Technol. Forecast. Soc. Chang. 2019, 142, 210–219. [Google Scholar] [CrossRef]
- European Union. SHARING. Stocktaking and Assessment of Typologies of Urban Circular Collaborative Economy Initiatives. Case Study: Porto—Urban and Circular Lifestyles. Available online: https://ec.europa.eu/futurium/en/system/files/ged/sharing_annex2_cs_porto.pdf (accessed on 10 December 2020).
- European Union. SHARING. Stocktaking and Assessment of Typologies of Urban Circular Collaboratibe Economy Initiatives. Case Study: Flanders—Foster Social Connections and Improve Accessibility of Different Areas in a Sustainable Way (Making Links between Commons). Available online: https://ec.europa.eu/futurium/en/system/files/ged/sharing_annex2_cs_flanders.pdf (accessed on 10 December 2020).
- European Union. SHARING. Stocktaking and Assessment of Typologies of Urban Circular Collaborative Economy Initiatives. Case Study: The Hague—Poverty Reduction and Social Entrepreneurship. Available online: https://ec.europa.eu/futurium/en/system/files/ged/sharing_annex2_cs_thehague.pdf (accessed on 20 December 2020).
- Municipality of Prato. Piano Prato Smart City—Prima Indagine Sullo Stato di Sviluppo Della Smart City a Prato. Available online: www.pratosmartcity.it/wp-content/uploads/2019/11/Rapporto_indagine_SmartCity_Prato.pdf (accessed on 13 January 2021).
- Hirsch, C. Sustainable and Circular Consumption in Oslo. Urban Agenda Partnership on Circular Economy Cities Forum workshop. Rotterdam, 27 November 2017. Available online: https://ec.europa.eu/regional_policy/sources/conferences/cities_forum_2017/sustainable_oslo_hirsch.pdf (accessed on 20 December 2020).
- KCMA (Kaunas City Municipality Administration). Strategic Development Plan of Kaunas City Municipality up to 2022. Decision No. T-127 of 2 April 2015 of Kaunas City Municipality Council. Available online: http://en.kaunas.lt/wp-content/uploads/sites/10/2015/11/STRATEGIC-DEVELOPMENT-PLAN-OF-KAUNAS-CITY-MUNICIPALITY-UP-TO-2022.pdf (accessed on 10 December 2020).
- Millar, C.C.; Choi, C.J. Development and knowledge resources: A conceptual analysis. J. Knowl. Manag. 2010, 14, 759–776. [Google Scholar] [CrossRef]
- Kaunas. A Network of 240 Video Cameras Is Being Installed in Kaunas. Available online: https://kaunas.kasvyksta.lt/2019/11/28/miestas/kauno-mieste-irengiamas-240-vaizdo-kameru-tinklas/ (accessed on 13 January 2021).
- Borsacchi, L.; Barberis, V.; Pinelli, P. Circular economy and industrial symbiosis: The role of the municipality of Prato within the EU Urban Agenda partnership. In Proceedings of the 24th International Sustainable Development Research Society Conference (ISDRS 2018), Messina, Italy, 13–15 June 2018. [Google Scholar]
- Feiferytė-Skirienė, A.; Čepeliauskaitė, G.; Stasiškienė, Ž. Urban metabolism: Measuring the Kaunas city sustainable development. BEYOND 2020—World Sustainable Built Environment conference. IOP Conf. Ser. Earth Environ. Sci. 2020, 588, 042040. [Google Scholar]
- Ioppolo, G.; Cucurachi, S.; Salomone, R.; Shi, L.; Yigitcanlar, T. Integrating strategic environmental assessment and material flow accounting: A novel approach for moving towards sustainable urban futures. Int. J. Life Cycle Assess. 2019, 24, 1269–1284. [Google Scholar] [CrossRef]
Circular City | Location | Initiative | Urban Metabolism Dimension | Digital Technology | Source |
---|---|---|---|---|---|
Municipality of Porto | Portugal | Via Verde Boleias | Mobility | Web sharing platform | [205] |
Reporitorio de materiais | Construction | Web sharing platform | |||
Horta à Porta | Agriculture | Web sharing platform | |||
OPO’ Lab | Economy | Coworking sharing platform | |||
Flanders region | Belgium | Cambio | Mobility | Web sharing platform | [206] |
Dégage | Mobility | Web sharing platform | |||
Peerby | Materials efficiency | Web sharing platform | |||
Municipality of The Hague | The Netherlands | Made in Moerwijk | Social entrepreneurship | Web sharing platform | [207] |
KledingBank Den Haag | Social entrepreneurship | Web sharing platform | |||
Lekkernassuh | Agriculture | Web sharing platform | |||
De Groene Regents | Energy | Web sharing platform | |||
Municipality of Prato | Italy | Automatic Vehicle Monitoring | Mobility | Sensor dashboard | [208] |
Cityworks | Mobility; construction | Sensor dashboard | |||
Trucks Monitoring in urban cleaning | Environment | Real-time monitoring platform | |||
Smart Safety | Safety | Digital video surveillance cameras | |||
Baciacavallo purification plant | Water; wastewater | Real-time monitoring stations | |||
Smart Energy | Energy | Smart grids; smart meters | |||
Municipality of Oslo | Norway | Urban Ecological Innovation Centre | Waste; economy | Physical and web sharing platforms | [209] |
Municipality of Kaunas | Lithuania | Sustainable Economic Development promotion and enhancing competitiveness | Economy | [210] | |
Developing a clever and civil society | Governance; population and social conditions; health; education; urban planning; safety | Web platform; real-time monitoring stations; sensor dashboard | |||
Sustainable Territory and Infrastructure Development | Water; Wastewater; Energy; transport; waste; mobility | Real-time monitoring stations; sensor dashboard |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amico, G.; Arbolino, R.; Shi, L.; Yigitcanlar, T.; Ioppolo, G. Digital Technologies for Urban Metabolism Efficiency: Lessons from Urban Agenda Partnership on Circular Economy. Sustainability 2021, 13, 6043. https://doi.org/10.3390/su13116043
D’Amico G, Arbolino R, Shi L, Yigitcanlar T, Ioppolo G. Digital Technologies for Urban Metabolism Efficiency: Lessons from Urban Agenda Partnership on Circular Economy. Sustainability. 2021; 13(11):6043. https://doi.org/10.3390/su13116043
Chicago/Turabian StyleD’Amico, Gaspare, Roberta Arbolino, Lei Shi, Tan Yigitcanlar, and Giuseppe Ioppolo. 2021. "Digital Technologies for Urban Metabolism Efficiency: Lessons from Urban Agenda Partnership on Circular Economy" Sustainability 13, no. 11: 6043. https://doi.org/10.3390/su13116043
APA StyleD’Amico, G., Arbolino, R., Shi, L., Yigitcanlar, T., & Ioppolo, G. (2021). Digital Technologies for Urban Metabolism Efficiency: Lessons from Urban Agenda Partnership on Circular Economy. Sustainability, 13(11), 6043. https://doi.org/10.3390/su13116043