Introduction and Spread of the Invasive Alien Species Ageratina altissima in a Disturbed Forest Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Species
2.3. Variable Description and Statistical Anlaysis
3. Results
3.1. Distribution of Ageratina Altissima
3.2. Distribution Model in Forest Edges
3.3. Distribution Model in Forest Interior
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Classification | Variables | Analysis Method (Unit) | Reference |
---|---|---|---|
Vegetation | Rate of broadleaf trees (RBT) | Percentage of broad-leaved trees among trees exceeding 6 m (%) | Field survey |
Rate of broadleaf subtrees (RBST) | Percentage of broad-leaved trees among trees of 2–6 m in height (%) | Field survey | |
Rate of broadleaf shrubs (RBS) | Percentage of broad-leaved trees among trees with a height of 2 m or less (%) | Field survey | |
Tree canopy (TC) | Percentage of canopy cover of trees exceeding 6 m in height (%) | Field survey | |
Subtree canopy (STC) | Percentage of canopy cover for trees 2–6 m in height (%) | Field survey | |
Shrub canopy (SC) | Percentage of canopy cover for trees under 2 m in height (%) | Field survey | |
Number of tree species (NTS) | Number of tree species exceeding 6 m in height (N) | Field survey | |
Number of subtree species (NSTS) | Number of species of trees 2–6 m in height (N) | Field survey | |
Number of shrub species (NSS) | Number of tree species up to 2 m in height (N) | Field survey | |
Herbaceous ground cover (HGC) | Percentage of herbaceous covering the ground (%) | Field survey | |
Topography | Distance from forest edges (DFE) | Calculate Euclidean distance from forest boundary (m) | Land cover map |
Elevation (ELE) | Elevation extracted from a Digital Elevation Model at 30 m spatial resolution (m) | DEM (Digital Elevation Map) | |
Slope (SLO) | Degree inclination analyzed by spatial analysis using Arcmap 10.5 (degree) | DEM (Digital Elevation Map) | |
Soil drainage (SD) | Extraction of soil drainage divided into five grades included as attributes in the soil map (grade) | Soil map | |
Soil hardness (SH) | Field measurement using a soil hardness tester SHM-1 (mm) | Field survey | |
Solar radiation (SR) | Analysis incoming solar radiation from a raster surface using Arcmap 10.5 (WH/m2) | DEM (Digital Elevation Map) | |
Land use and landscape ecology | Size of forested areas (SFA) | Calculation of forest area extracted from land cover map (m2) | Land cover map |
Shape index (SI) | Calculation of area-weighted mean shape index of forest extracted from land cover map using landscape ecology index (m/m2) | Land cover map | |
Edge density (ED) | Edge ratio per forest area (m/km2) | Land cover map | |
Distance from urbanized areas (DUA) | Distance from urbanized area extracted from land cover map (m) | Land cover map | |
Distance from roads (DR) | Distance from roads extracted from land cover map (m) | Land cover map | |
Rate of urbanized areas (RU500) | Proportion of urbanized areas within a 500-m radius of the survey sites (%) | Land cover map | |
Rate of agricultural areas (RA500) | Proportion of agricultural areas within a 500-m radius of the survey sites (%) | Land cover map |
References
- McGeoch, M.A.; Butchart, S.H.M.; Spear, D.; Marais, E.; Kleynhans, E.J.; Symes, A.; Chanson, J.; Hoffmann, M. Global indicators of biological invasion: Species numbers, biodiversity impact and policy responses. Divers. Distrib. 2010, 16, 95–108. [Google Scholar] [CrossRef]
- Roiloa, S.R.; Yu, F.H.; Barreiro, R. Plant invasions: Mechanisms, impacts and management. Flora Morphol. Distrib. Funct. Ecol. Plants 2020, 267, 151603. [Google Scholar] [CrossRef]
- Lososová, Z.; Chytrý, M.; Tichý, L.; Danihelka, J.; Fajmon, K.; Hájek, O.; Kintrová, K.; Láníková, D.; Otýpková, Z.; Řehořek, V. Biotic homogenization of Central European urban floras depends on residence time of alien species and habitat types. Biol. Conserv. 2012, 145, 179–184. [Google Scholar] [CrossRef]
- Kim, E.; Song, W.; Yoon, E.; Jung, H. Definition of invasive disturbance species and its influence factor. J. Korea Soc. Environ. Restor. Technol. 2016, 19, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.S.; Song, D.Y.; Kim, C.G.; Song, B.H.; Woo, S.H.; Lee, C.W. Allelopathic effects of common ragweed (ambrosia artemisifolia var. elatior) on the germination and seedling growth of crops and weeds. Weed Turfgrass Sci. 2010, 30, 34–42. [Google Scholar]
- Alston, K.P.; Richardson, D.M. The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol. Conserv. 2006, 132, 183–198. [Google Scholar] [CrossRef]
- Lockwood, J.L.; Cassey, P.; Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 2005, 20, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Memmott, J.; Fowler, S.V.; Paynter, Q.; Sheppard, A.W.; Syrett, P. The invertebrate fauna on broom, Cytisus scoparius, in two native and two exotic habitats Jane. Acta Oenol. 2000, 21, 213–222. [Google Scholar] [CrossRef]
- Pauchard, A.; Alaback, P.B. Edge type defines alien plant species invasions along Pinus contorta burned, highway and clearcut forest edges. For. Ecol. Manag. 2006, 223, 327–335. [Google Scholar] [CrossRef]
- Lozano, V.; Marzialetti, F.; Carranza, M.L.; Chapman, D.; Branquart, E.; Dološ, K.; Große-Stoltenberg, A.; Fiori, M.; Capece, P.; Brundu, G. Modelling Acacia saligna invasion in a large Mediterranean island using PAB factors: A tool for implementing the European legislation on invasive species. Ecol. Indic. 2020, 116, 106–516. [Google Scholar] [CrossRef]
- Mack, R.N.; Simberloff, D.; Lonsdale, W.M.; Evans, H.; Clout, M.; Bazzaz, F.A. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 2000, 10, 689. [Google Scholar] [CrossRef]
- Deng, X.; Ye, W.H.; Feng, H.L.; Yang, Q.H.; Cao, H.L.; Xu, K.Y.; Zhang, Y. Gas exchange characteristics of the invasive species Mikania micrantha and its indigenous congener M. cordata (Asteraceae) in South China. Bot. Bull. Acad. Sin. 2004, 45, 213–220. [Google Scholar] [CrossRef]
- McKinney, M.L. Effects of human population, area, and time on non-native plant and fish diversity in the United States. Biol. Conserv. 2001, 100, 243–252. [Google Scholar] [CrossRef]
- Richard, T.; Forman, T.; Deblinger, R.D. The ecological road-effect zone of a Massachusetts (U.S.A.) suburban highway. Conserv. Biol. 2000, 14, 36–46. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Lee, J.W.; Kwon, Y.H.; Shin, H.T.; Kim, S.J.; Ahn, J.B.; Huh, T.I. Invasive Alien Plants in South Korea; Korea National Arboretum: Pocheon, Korea, 2016; ISBN 979-11-87031-52-9 93480. [Google Scholar]
- Kim, D.E. Management system of invasive alien species threating biodiversity in Korea and suggestions for the improvement. J. Environ. Impact Assess. 2018, 27, 33–55. [Google Scholar]
- Kim, E.; Song, W.; Lee, D. A multi-scale metrics approach to forest fragmentation for strategic environmental impact assessment. Environ. Impact Assess. Rev. 2013, 42, 31–38. [Google Scholar] [CrossRef]
- Davis, T.Z.; Lee, S.T.; Collett, M.G.; Stegelmeier, B.L.; Green, B.T.; Buck, S.R.; Pfister, J.A. Toxicity of white snakeroot (Ageratina altissima) and chemical extracts of white snakeroot in goats. J. Agric. Food Chem. 2015, 63, 2092–2097. [Google Scholar] [CrossRef]
- Kim, H.; Jang, Y.L.; Park, P.S. Distribution pattern of Ageratina altissima along trails at Mt. Umyeon in Seoul, Korea. Korean J. Agric. For. Meteorol. 2014, 16, 227–232. [Google Scholar] [CrossRef]
- Kil, J.H.; Shim, K.C.; Jeon, Y.M.; Lee, H.J. Distribution pattern of Eupatorium rugosum in various forest types and soils in Mt. Namsan. Korean J. Environ. Ecol. 2004, 27, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Kim, J.; Song, W. Current status of invasive disturbance species and its habitat characteristics in Urban Forest. J. Korea Soc. Environ. Restor. Technol. 2016, 19, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Höfle, R.; Dullinger, S.; Essl, F. Different factors affect the local distribution, persistence and spread of alien tree species in floodplain forests. Basic Appl. Ecol. 2014, 15, 426–434. [Google Scholar] [CrossRef]
- Lemke, D.; Hulme, P.E.; Brown, J.A.; Tadesse, W. Distribution modelling of japanese honeysuckle (Lonicera japonica) invasion in the Cumberland Plateau and Mountain Region, USA. For. Ecol. Manag. 2011, 262, 139–149. [Google Scholar] [CrossRef]
- Spear, D.; Foxcroft, L.C.; Bezuidenhout, H.; McGeoch, M.A. Human population density explains alien species richness in protected areas. Biol. Conserv. 2013, 159, 137–147. [Google Scholar] [CrossRef]
- Hortal, J.; Borges, P.A.V.; Jiménez-Valverde, A.; de Azevedo, E.B.; Silva, L. Assessing the areas under risk of invasion within islands through potential distribution modelling: The case of Pittosporum undulatum in São Miguel, Azores. J. Nat. Conserv. 2010, 18, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Badalamenti, E.; Gristina, L.; La Mantia, T.; Novara, A.; Pasta, S.; Lauteri, M.; Fernandes, P.; Correia, O.; Máguas, C. Relationship between recruitment and mother plant vitality in the alien species Acacia cyclops A. Cunn. ex G. Don. For. Ecol. Manag. 2014, 331, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.; Kumar, L. Potential distribution of an invasive species under climate change scenarios using CLIMEX and soil drainage: A case study of Lantana camara L. in Queensland, Australia. J. Environ. Manag. 2013, 114, 414–422. [Google Scholar] [CrossRef]
- Bigirimana, J.; Bogaert, J.; De Canniere Charles, C.; Lejoly, J.; Parmentier, I. Alien plant species dominate the vegetation in a city of Sub-Saharan Africa. Landsc. Urban. Plan. 2011, 100, 251–267. [Google Scholar] [CrossRef]
- Shanubhogue, A.; Gore, A.P. Using logistic regression in ecology. Curr. Sci. 1987, 56, 933–935. [Google Scholar]
- Song, Y.; Ying, L.U. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130–135. [Google Scholar] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- U.S. Fish and Wildlife Service and California Invasive Plant Council. Land Manager’s Guide to Developing an Invasive Plant Management Plan; Cal-IPC Publication, 2018-01; National Wildlife Refuge System, Pacific Southwest Region, Inventory and Monitoring Initiative: Sacramento, CA, USA; California Invasive Plant Council: Berkeley, CA, USA, 2018.
- Landenberger, R.E.; Ostergren, D.A. Eupatorium rugosum (Asteraceae) flowering as an indicator of edge effect from clearcutting in mixed-mesophytic forest. For. Ecol. Manag. 2002, 155, 55–68. [Google Scholar] [CrossRef]
- Sharma, O.P.; Dawra, R.K.; Kurade, N.P.; Sharma, P.D. A review of the toxicosis and biological properties of the genus Eupatorium. Nat. Toxins 1998, 6, 1–14. [Google Scholar] [CrossRef]
- Kil, J.H.; Shim, K.C.; Lee, H.J. Allelopathic effect of volatile extracts from Eupatorium rugosum. Korean J. Ecol. 2005, 28, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Kumar Rai, P.; Singh, J.S. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Liu, Y.; Ng, W.L.; Liao, P.C.; Huang, B.H.; Li, W.; Li, C.; Shi, X.; Huang, Y. Comparative transcriptome analysis of the invasive weed Mikania micrantha with its native congeners provides insights into genetic basis underlying successful invasion. BMC Genom. 2018, 19, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Colautti, R.I.; Macisaac, H.J. A neutral terminology to define ‘invasive’ species. Divers. Distrib. 2004, 10, 135–141. [Google Scholar] [CrossRef]
Classification | Variables | Sub-Variables |
---|---|---|
Forest edges | Vegetation (10) | Rate of broadleaf trees (RBT), rate of broadleaf subtrees (RBST), rate of broadleaf shrubs (RBS), tree canopy (TC), subtree canopy (STC), shrub canopy (SC), number of tree species (NTS), number of subtree species (NSTS), number of shrub species (NSS), herbaceous ground cover (HGC) |
Topography (5) | Elevation (ELE), slope (SLO), soil drainage (SD), soil hardness (SH), solar radiation (SR) | |
Land use and landscape ecology (7) | Size of forested areas (SFA), shape index (SI), edge density (ED), distance from urbanized areas (DUA), distance from roads (DR), rate of urbanized areas within a 500-m radius (RU500), rate of agricultural areas within a 500-m radius (RA500) | |
Forest interior | Vegetation (10) | Rate of broadleaf trees (RBT), rate of broadleaf subtrees (RBST), rate of broadleaf shrubs (RBS), tree canopy (TC), subtree canopy (STC), shrub canopy (SC), number of tree species (NTS), number of subtree species (NSTS), number of shrub species (NSS), herbaceous ground cover (HGC) |
Topography (6) | Distance from forest edges (DFE), Elevation (ELE), slope (SLO), soil drainage (SD), soil hardness (SH), solar radiation (SR) | |
Land use and landscape ecology (5) | Size of forested areas (SFA), shape index (SI), edge density (ED), distance from urbanized areas (DUA), distance from roads (DR) |
Estimate | Std. Error | t Value | Pr (>|t|) | |
---|---|---|---|---|
(Intercept) | 18.544 | 7.414 | 2.501 | 0.012 ** |
SC | −0.056 | 0.047 | −1.196 | 0.232 |
ELE | −0.106 | 0.048 | −2.211 | 0.027 * |
SH | −1.066 | 0.470 | −2.269 | 0.023 * |
SI | 0.587 | 0.241 | 2.439 | 0.015 * |
RA500 | −18.741 | 12.664 | −1.480 | 0.139 |
Estimate | Std. Error | t Value | Pr (>|t|) | |
---|---|---|---|---|
(Intercept) | 47.370 | 14.110 | 3.356 | 0.001 ** |
RBT | 4.612 | 1.939 | 2.379 | 0.017 * |
TC | −0.154 | 0.059 | −2.608 | 0.009 ** |
STC | −0.080 | 0.035 | −2.293 | 0.022 * |
ELE | −0.170 | 0.040 | −4.214 | 0.000 ** |
SD | 1.483 | 0.371 | 4.002 | 0.000 ** |
SR | −0.000 | −0.000 | −2.475 | 0.013 * |
SI | −0.623 | −0.181 | −3.438 | 0.001 ** |
ED | −462.300 | −167.500 | −2.759 | 0.006 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.; Choi, J.; Song, W. Introduction and Spread of the Invasive Alien Species Ageratina altissima in a Disturbed Forest Ecosystem. Sustainability 2021, 13, 6152. https://doi.org/10.3390/su13116152
Kim E, Choi J, Song W. Introduction and Spread of the Invasive Alien Species Ageratina altissima in a Disturbed Forest Ecosystem. Sustainability. 2021; 13(11):6152. https://doi.org/10.3390/su13116152
Chicago/Turabian StyleKim, Eunyoung, Jaeyong Choi, and Wonkyong Song. 2021. "Introduction and Spread of the Invasive Alien Species Ageratina altissima in a Disturbed Forest Ecosystem" Sustainability 13, no. 11: 6152. https://doi.org/10.3390/su13116152
APA StyleKim, E., Choi, J., & Song, W. (2021). Introduction and Spread of the Invasive Alien Species Ageratina altissima in a Disturbed Forest Ecosystem. Sustainability, 13(11), 6152. https://doi.org/10.3390/su13116152