Development and Validation of User Experience-Based E-Learning Acceptance Model for Sustainable Higher Education
Abstract
:1. Introduction
- (1)
- Videos of the Lectures (Course-wise)
- (2)
- Notes of the Lectures (Course-wise)
- (3)
- MCQs of the Lectures (Course-wise)
- (4)
- Progress of the Students in Graphs (Course-wise)
- (5)
- Chatroom
- (6)
- Forum
- (7)
- FAQs
- (8)
- Most Subscribed Courses
- (9)
- Top Rated Courses
- (10)
- Video Comments
- (11)
- Video Ratings
2. Theoretical Background and Research Hypotheses Development
2.1. Appeal (APP)
2.2. Pleasure (PL)
2.3. Perceived Ease of Use (PEoU)
2.4. Perceived Usefulness (PU)
2.5. Benefits (BEN)
2.6. Information Quality (IQ)
2.7. Social Influence (SI)
2.8. Self-Efficacy (SE)
2.9. Satisfaction (SAT)
2.10. Behavioral Intention (BI)
3. Research Methodology
4. Results
4.1. Structural Equation Modeling Analysis
4.2. Assessment of Measurement Model
4.3. Assessment of Structural Model
4.4. Mediating Effects
4.5. Influence of Moderator Variable
5. Discussion and Conclusions
Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Arain, A.A.; Hussain, Z.; Rizvi, W.H.; Vighio, M.S. An analysis of the influence of a mobile learning application on the learning outcomes of higher education students. Univers. Access Inf. Soc. 2017, 17, 325–334. [Google Scholar] [CrossRef]
- Soni, V.D. Global Impact of E-learning during COVID 19. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Zardari, B.A.; Hussain, Z.; Arain, A.A.; Rizvi, W.H.; Vighio, M.S. QUEST e-learning portal: Applying heuristic evaluation, usability testing and eye tracking. Univers. Access Inf. Soc. 2020, 1–13. [Google Scholar] [CrossRef]
- Groth, A.; Haslwanter, D. Efficiency, effectiveness, and satisfaction of responsive mobile tourism websites: A mobile usability study. Inf. Technol. Tour. 2016, 16, 201–228. [Google Scholar] [CrossRef]
- Arain, A.A.; Hussain, Z.; Rizvi, W.H.; Vighio, M.S. Extending UTAUT2 toward acceptance of mobile learning in the context of higher education. Univers. Access Inf. Soc. 2019, 18, 659–673. [Google Scholar] [CrossRef]
- Verkijika, S.F.; De Wet, L. Understanding word-of-mouth (WOM) intentions of mobile app users: The role of simplicity and emotions during the first interaction. Telemat. Inform. 2019, 41, 218–228. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Davis, F.D. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Mathieson, K. Predicting User Intentions: Comparing the Technology Acceptance Model with the Theory of Planned Behavior. Inf. Syst. Res. 1991, 2, 173–191. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization, ISO 9241-210:2010(en), Ergonomics of Human-System Interaction—Part 210: Human-Centred Design for Interactive Systems. Available online: https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-1:en (accessed on 9 May 2021).
- Norman, D.; Nielsen, J. The Definition of User Experience (UX). Available online: https://www.nngroup.com/articles/definition-user-experience/ (accessed on 9 May 2021).
- Hassenzahl, M. The Hedonic/Pragmatic Model of User Experience. Available online: https://www.academia.edu/2880396/The_hedonic_pragmatic_model_of_user_experience (accessed on 31 May 2021).
- Harrati, N.; Bouchrika, I.; Tari, A.; Ladjailia, A. Exploring user satisfaction for e-learning systems via usage-based metrics and system usability scale analysis. Comput. Hum. Behav. 2016, 61, 463–471. [Google Scholar] [CrossRef]
- Yakit, O.; Ismailova, R. Learning Management System Implementation. Case Study on User Interface Configurations. MANAS J. Eng. 2018, 6, 164–176. [Google Scholar]
- Hassenzahl, M. The Thing and I: Understanding the Relationship between User and Product. In Funology; Human-Computer Interaction Series; Blythe, M.A., Overbeeke, K., Monk, A.F., Wright, P.C., Eds.; Springer: Dordrecht, The Netherlands, 2003; Volume 3. [Google Scholar] [CrossRef]
- Hornbæk, K.; Hertzum, M. Technology acceptance and user experience: A review of the experiential component in HCI. ACM Trans. Comput.-Hum. Interact. 2017, 24, 1–30. [Google Scholar] [CrossRef]
- Boensma, E.C.M. The Use of Gamification and Virtual Reality in e-Learning Tools Used in Preparation for Driving Exams: A Comparative Study. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2019. [Google Scholar]
- Stern, C. CUBI: A User Experience Model for Project Success (2014). Available online: https://uxmag.com/articles/cubi-a-user-experience-model-for-project-success (accessed on 20 March 2021).
- Thüring, M.; Mahlke, S. Usability, aesthetics and emotions in human–technology interaction. Int. J. Psychol. 2007, 42, 253–264. [Google Scholar] [CrossRef]
- Van Schaik, P.; Ling, J. An integrated model of interaction experience for information retrieval in a Web-based encyclopaedia. Interact. Comput. 2011, 23, 18–32. [Google Scholar] [CrossRef] [Green Version]
- Sagnier, C.; Loup-Escande, E.; Lourdeaux, D.; Thouvenin, I.; Valléry, G. User Acceptance of Virtual Reality: An Extended Technology Acceptance Model. Int. J. Hum.-Comput. Interact. 2020, 36, 993–1007. [Google Scholar] [CrossRef]
- Montoya-Weiss, M.M.; Voss, G.B.; Grewal, D. Determinants of Online Channel Use and Overall Satisfaction with a Relational, Multichannel Service Provider. J. Acad. Mark. Sci. 2003, 31, 448–458. [Google Scholar] [CrossRef]
- Chung, N.; Han, H.; Joun, Y. Tourists’ intention to visit a destination: The role of augmented reality (AR) application for a heritage site. Comput. Hum. Behav. 2015, 50, 588–599. [Google Scholar] [CrossRef]
- Rodríguez-Torrico, P.; San-Martín, S.; San José-Cabezudo, R. What drives M-shoppers to continue using mobile devices to buy? J. Mark. Theory Pract. 2019, 27, 83–102. [Google Scholar] [CrossRef]
- Ch, C.; Gupta, D. Factors influencing customer satisfaction with usage of shopping apps in India. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017; pp. 1483–1486. [Google Scholar]
- Lee, S.; Ha, S.; Widdows, R. Consumer responses to high-technology products: Product attributes, cognition, and emotions. J. Bus. Res. 2011, 64, 1195–1200. [Google Scholar] [CrossRef]
- Chang, S.-H.; Chih, W.-H.; Liou, D.-K.; Hwang, L.-R. The influence of web aesthetics on customers’ PAD. Comput. Hum. Behav. 2014, 36, 168–178. [Google Scholar] [CrossRef]
- Liu, W.; Guo, F.; Ye, G.; Liang, X. How homepage aesthetic design influences users’ satisfaction: Evidence from China. Displays 2016, 42, 25–35. [Google Scholar] [CrossRef]
- Eroglu, S.A.; Machleit, K.A.; Davis, L.M. Empirical testing of a model of online store atmospherics and shopper responses. Psychol. Mark. 2003, 20, 139–150. [Google Scholar] [CrossRef]
- Nordhoff, S.; van Arem, B.; Happee, R. Conceptual Model to Explain, Predict, and Improve User Acceptance of Driverless Podlike Vehicles. Transp. Res. Rec. J. Transp. Res. Board 2016, 2602, 60–67. [Google Scholar] [CrossRef]
- Wells, V.K.; Daunt, K.L. Eduscape: The effects of servicescapes and emotions in academic learning environments. J. Furth. High. Educ. 2015, 40, 486–508. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.-H. Modeling virtual exploratory and shopping dynamics: An environmental psychology approach. Inf. Manag. 2003, 41, 39–47. [Google Scholar] [CrossRef]
- Cho, W.C.; Lee, K.Y.; Yang, S.B. What makes you feel attached to smartwatches? The stimulus–organism–response (S–O–R) perspectives. Inf. Technol. People 2019, 32, 319–343. [Google Scholar] [CrossRef]
- Alhamad, A.Q.M. Acceptance of E-learning among university students in UAE: A practical study. Int. J. Electr. Comput. Eng. 2020, 10, 3660–3671. [Google Scholar] [CrossRef]
- Al Kurdi, B.; Alshurideh, M.; Salloum, S.A. Investigating a theoretical framework for e-learning technology acceptance. Int. J. Electr. Comput. Eng. 2020, 10, 6484–6496. [Google Scholar] [CrossRef]
- Baby, A.; Kannammal, A. Network Path Analysis for developing an enhanced TAM model: A user-centric e-learning perspective. Comput. Hum. Behav. 2020, 107, 106081. [Google Scholar] [CrossRef]
- Holden, H.; Rada, R. Understanding the Influence of Perceived Usability and Technology Self-Efficacy on Teachers’ Technology Acceptance. J. Res. Technol. Educ. 2011, 43, 343–367. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-H.; Hsiao, C.; Purnomo, S.H. An empirical examination of individual and system characteristics on enhancing e-learning acceptance. Australas. J. Educ. Technol. 2014, 30, 562–579. [Google Scholar] [CrossRef]
- Manganari, E.E.; Siomkos, G.J.; Rigopoulou, I.D.; Vrechopoulos, A.P. Virtual store layout effects on consumer behaviour: Applying an environmental psychology approach in the online travel industry. Internet Res. 2011, 21, 326–346. [Google Scholar] [CrossRef] [Green Version]
- Hassanzadeh, A.; Kanaani, F.; Elahi, S. A model for measuring e-learning systems success in universities. Expert Syst. Appl. 2012, 39, 10959–10966. [Google Scholar] [CrossRef]
- Holsapple, C.W.; Lee-Post, A. Defining, Assessing, and Promoting E-Learning Success: An Information Systems Perspective. Decis. Sci. J. Innov. Educ. 2006, 4, 67–85. [Google Scholar] [CrossRef]
- Petter, S.; Delone, W.; McLean, E. Measuring information systems success: Models, dimensions, measures, and interrelationships. Eur. J. Inf. Syst. 2008, 17, 236–263. [Google Scholar] [CrossRef]
- Wang, L.C.; Chuang, H.M.; Chen, Y.S.; Lin, C.K.; Wang, Y.S. A Study on the Acceptance Intention of “My Health Bank” from the Perspective of Health Belief Model. In International Conference on Frontier Computing; Springer: Singapore, 2016; pp. 905–910. [Google Scholar]
- Vinitha, K.; Vasantha, S. Determinants of Customer intention to use Digital payment system. J. Adv. Res. Dyn. Control Syst. 2020, 12, 168–174. [Google Scholar]
- Lee, Z.W.Y.; Chan, T.K.; Balaji, M.; Chong, A.Y.-L. Why people participate in the sharing economy: An empirical investigation of Uber. Internet Res. 2018, 28, 829–850. [Google Scholar] [CrossRef]
- Lwoga, T.E. Measuring the success of library 2.0 technologies in the African context: The suitability of the DeLone and McLean’s model. Campus-Wide Inf. Syst. 2013, 30, 288–307. [Google Scholar] [CrossRef]
- Zhou, T. Understanding users’ initial trust in mobile banking: An elaboration likelihood perspective. Comput. Hum. Behav. 2012, 28, 1518–1525. [Google Scholar] [CrossRef]
- Kim, K.; Trimi, S.; Park, H.; Rhee, S. The Impact of CMS Quality on the Outcomes of E-learning Systems in Higher Education: An Empirical Study. Decis. Sci. J. Innov. Educ. 2012, 10, 575–587. [Google Scholar] [CrossRef]
- Wang, H.C.; Chiu, Y.F. Assessing e-learning 2.0 system success. Comput. Educ. 2011, 57, 1790–1800. [Google Scholar] [CrossRef]
- Mohammadi, H. RETRACTED: Factors affecting the e-learning outcomes: An integration of TAM and IS success model. Telemat. Inform. 2015, 32, 701–719. [Google Scholar] [CrossRef]
- Delone, W.H.; McLean, E.R. The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. J. Manag. Inf. Syst. 2003, 19, 9–30. [Google Scholar] [CrossRef]
- Bandura, A. Social Foundations of Thought and Action; Prentice Hall: Englewood Cliffs, NJ, USA, 1986; pp. 23–28. [Google Scholar]
- Pellas, N. The influence of computer self-efficacy, metacognitive self-regulation and self-esteem on student engagement in online learning programs: Evidence from the virtual world of Second Life. Comput. Hum. Behav. 2014, 35, 157–170. [Google Scholar] [CrossRef]
- Ahmad, N.; Umar, N.U.; Kadar, R.; Othman, J. Factors Affecting Students’ Acceptance of e-Learning System in Higher Education. J. Comput. Res. Innov. 2020, 5, 54–65. [Google Scholar] [CrossRef]
- Kelley, H.; Compeau, D.; Higgins, C. Attribution analysis of computer self-efficacy. In Proceedings of the AMCIS 1999 Proceedings, Milwaukee, WI, USA, 13–15 August 1999; p. 270. [Google Scholar]
- Isman, A.; Celikli, G.E. How Does Student Ability and Self-Efficacy Affect the Usage of Computer Technology? Turk. Online J. Educ. Technol. 2009, 8, 33–38. [Google Scholar]
- Sanchez-Franco, M.J. The Moderating Effects of Involvement on the Relationships between Satisfaction, Trust and Commitment in e-Banking. J. Interact. Mark. 2009, 23, 247–258. [Google Scholar] [CrossRef]
- Revythi, A.; Tselios, N. Extension of technology acceptance model by using system usability scale to assess behavioral intention to use e-learning. Educ. Inf. Technol. 2019, 24, 2341–2355. [Google Scholar] [CrossRef] [Green Version]
- Chang, C. Exploring the determinants of e-learning systems continuance intention in academic libraries. Libr. Manag. 2013, 34, 40–55. [Google Scholar] [CrossRef]
- Kim, J.; Ma, Y.J.; Park, J. Are US consumers ready to adopt mobile technology for fashion goods? J. Fash. Mark. Manag. Int. J. 2009, 13, 215–230. [Google Scholar] [CrossRef]
- Altalhi, M. Toward a model for acceptance of MOOCs in higher education: The modified UTAUT model for Saudi Arabia. Educ. Inf. Technol. 2021, 26, 1589–1605. [Google Scholar] [CrossRef]
- Tabachnik, B.G.; Fidell, L.S. Using Multivariate Statistics, 5th ed.; Allyn & Bacon: Boston, MA, USA, 2007; Volume 5, p. 2007. [Google Scholar]
- Krejcie, R.V.; Morgan, D.W. Determining sample size for research activities. Educ. Psychol. Meas. 1970, 30, 607–610. [Google Scholar] [CrossRef]
- Hassenzahl, M. The Effect of Perceived Hedonic Quality on Product Appealingness. Int. J. Hum.-Comput. Interact. 2001, 13, 481–499. [Google Scholar] [CrossRef]
- Koo, D.-M.; Lee, J.-H. Inter-relationships among dominance, energetic and tense arousal, and pleasure, and differences in their impacts under online vs. offline environment. Comput. Hum. Behav. 2011, 27, 1740–1750. [Google Scholar] [CrossRef]
- Zhou, T. Understanding continuance usage of mobile sites. Ind. Manag. Data Syst. 2013, 113, 1286–1299. [Google Scholar] [CrossRef]
- Chiu, C.-M.; Sun, S.-Y.; Sun, P.-C.; Ju, T.L. An empirical analysis of the antecedents of web-based learning continuance. Comput. Educ. 2007, 49, 1224–1245. [Google Scholar] [CrossRef]
- Mohammadi, H. Investigating users’ perspectives on e-learning: An integration of TAM and IS success model. Comput. Hum. Behav. 2015, 45, 359–374. [Google Scholar] [CrossRef]
- Kim, H.W.; Xu, Y.; Koh, J. A comparison of online trust building factors between potential customers and repeat customers. J. Assoc. Inf. Syst. 2004, 5, 13. [Google Scholar] [CrossRef]
- Salloum, S.A.; Alhamad, A.Q.M.; Al-Emran, M.; Monem, A.A.; Shaalan, K. Exploring Students’ Acceptance of E-Learning through the Development of a Comprehensive Technology Acceptance Model. IEEE Access 2019, 7, 128445–128462. [Google Scholar] [CrossRef]
- Al-Fraihat, D.; Joy, M.; Masa’Deh, R.; Sinclair, J. Evaluating E-learning systems success: An empirical study. Comput. Hum. Behav. 2020, 102, 67–86. [Google Scholar] [CrossRef]
- Cordeiro, C.; Machás, A.; Neves, M.M. A Case Study of a Customer Satisfaction Problem: Bootstrap and Imputation Techniques. In Handbook of Partial Least Squares; Springer: Berlin/Heidelberg, Germany, 2010; pp. 279–287. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Mahalanobis, P.C. On the Generalized Distance in Statistics; National Institute of Science of India: Bengaluru, India, 1936; pp. 49–55. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Market. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Latip, M.S.A.; Noh, I.; Tamrin, M.; Latip, S.N.N.A. Students’ Acceptance for e-Learning and the Effects of Self-Efficacy in Malaysia. Int. J. Acad. Res. Bus. Soc. Sci. 2020, 10, 658–674. [Google Scholar] [CrossRef]
S# | Construct | Item Abbreviation | Item | Factor Loading |
---|---|---|---|---|
1. | Appeal (α = 0.919, CR = 0.910, AVE = 0.705) | |||
APP [67] | APP1 | The e-learning portal is visually attractive [67]. | 0.847 | |
APP2 | The e-learning portal is esthetically appealing [67]. | 0.884 | ||
APP3 | The look and feel of the e-learning portal is good [67]. | 0.910 | ||
APP4 | The e-learning portal is motivating [67]. | 0.944 | ||
APP5 | The e-learning portal is inviting [67]. | 0.934 | ||
APP6 | The e-learning portal is desirable [67]. | 0.929 | ||
2. | Pleasure (α = 0.965, CR = 0.932, AVE = 0.753) | |||
PL [6,68] | PL1 | I felt pleasure after using the e-learning portal [6]. | 0.781 | |
PL2 | I felt joyful after using the e-learning portal [6]. | 0.771 | ||
PL3 | I felt gratified after using the e-learning portal [6]. | 0.751 | ||
PL4 | I felt cheerful after using the e-learning portal [68]. | 0.715 | ||
PL5 | I felt pleased after using the e-learning portal [68]. | 0.744 | ||
PL6 | I felt happy after using the e-learning portal [68]. | 0.751 | ||
3. | Satisfaction (α = 0.837, CR = 0.824, AVE = 0.607) | |||
SAT [5,69,70] | SAT1 | I feel satisfied with using this e-learning portal [69]. | 0.839 | |
SAT2 | I feel contented with using this e-learning portal [69]. | 0.880 | ||
SAT3 | I like this e-learning portal [5]. | 0.865 | ||
SAT4 | I think this e-learning portal is a good idea [70]. | 0.854 | ||
SAT5 | My decision to use this e-learning portal is a wise one [70]. | 0.907 | ||
4. | Perceived Ease of Use (α = 0.900, CR = 0.879, AVE = 0.681) | |||
PEoU [71] | PEoU1 | The e-learning portal is easy to use [71]. | 0.883 | |
PEoU2 | The e-learning portal is easy to learn [71]. | 0.876 | ||
PEoU3 | The e-learning portal is easy to access [71]. | 0.873 | ||
PEoU4 | The e-learning portal is easy to understand [71]. | 0.895 | ||
PEoU5 | The e-learning portal is convenient [71]. | 0.909 | ||
5. | Perceived Usefulness (α = 0.938, CR = 0.921, AVE = 0.755) | |||
PU [71] | PU1 | The e-learning portal is effective [71]. | 0.916 | |
PU2 | The e-learning portal is efficient [71]. | 0.928 | ||
PU3 | The e-learning portal helps to save time [71]. | 0.904 | ||
PU4 | The e-learning portal helps to improve my knowledge [71]. | 0.837 | ||
PU5 | The e-learning portal helps to improve my performance [71]. | 0.857 | ||
6. | Behavioral Intention (α = 0.939, CR = 0.920, AVE = 0.824) | |||
BI [9] | BI1 | I intend to continue using the e-learning portal in the future [9]. | 0.864 | |
BI2 | I will always try to use the e-learning portal in my academic life [9]. | 0.843 | ||
BI3 | I plan to continue to use the e-learning portal frequently [9]. | 0.860 | ||
7. | Information Quality (α = 0.848, CR = 0.879, AVE = 0.677) | |||
IQ [72] | IQ1 | The e-learning portal has information relevant to my needs [72]. | 0.877 | |
IQ2 | Information at the e-learning portal is easy to understand [72]. | 0.904 | ||
IQ3 | The e-learning portal has reliable information [72]. | 0.886 | ||
IQ4 | The e-learning portal has sufficient information [72]. | 0.859 | ||
IQ5 | The e-learning portal has useful information [72]. | 0.755 | ||
8. | Self-Efficacy (α = 0.917, CR = 0.914, AVE = 0.741) | |||
SE [73] | SE1 | I feel confident in the utilization of the e-learning portal even when no one is there for assistance [73]. | 0.800 | |
SE2 | I have sufficient skills to use the e-learning portal [73]. | 0.818 | ||
SE3 | I feel confident when using the e-learning portal even if I have only the online instructions [73]. | 0.788 | ||
SE4 | I feel confident when using the e-learning portal features [73]. | 0.709 | ||
SE5 | I feel confident when using the online learning content in the e-learning portal [73]. | 0.854 | ||
9. | Social Influence (α = 0.859, CR = 0.824, AVE = 0.693) | |||
SI [9] | SI1 | People who are important to me think that I should use the e-learning portal [9]. | 0.864 | |
SI2 | People who influence my behavior think that I should use the e-learning portal [9]. | 0.854 | ||
SI3 | People whose opinions that I value prefer that I should use the e-learning portal [9]. | 0.809 | ||
10. | Benefits (α = 0.922, CR = 0.904, AVE = 0.723) | |||
BEN [43,74] | BEN1 | Using the e-learning portal has increased my knowledge and helped me to be successful in my studies [43,74]. | 0.782 | |
BEN2 | The e-learning portal has helped me to improve my learning process [43,74]. | 0.788 | ||
BEN3 | The e-learning portal makes communication easier with the instructor and other classmates [74]. | 0.776 | ||
BEN4 | The e-learning portal saves my time in searching for materials and cuts down expenditure such as paper cost [74]. | 0.861 | ||
BEN5 | The e-learning portal has helped me to achieve the learning goals of my course(s) [43,74]. | 0.847 |
APP | PL | SAT | PEoU | PU | BI | IQ | SE | SI | BEN | |
---|---|---|---|---|---|---|---|---|---|---|
APP | 0.909 | |||||||||
PL | 0.344 | 0.752 | ||||||||
SAT | 0.299 | 0.206 | 0.869 | |||||||
PEoU | 0.111 | 0.312 | 0.126 | 0.887 | ||||||
PU | −0.013 | 0.054 | −0.012 | 0.184 | 0.899 | |||||
BI | 0.157 | 0.174 | 0.384 | 0.178 | −0.023 | 0.855 | ||||
IQ | 0.121 | 0.033 | 0.099 | 0.048 | 0.120 | 0.291 | 0.877 | |||
SE | 0.250 | 0.172 | 0.337 | 0.144 | 0.034 | 0.375 | 0.258 | 0.775 | ||
SI | −0.015 | −0.023 | −0.007 | 0.056 | 0.404 | 0.077 | −0.012 | 0.044 | 0.857 | |
BEN | 0.163 | 0.200 | 0.260 | 0.114 | 0.069 | 0.253 | 0.132 | 0.233 | 0.091 | 0.804 |
Measures | Fit Indices | Obtained Values | Recommended Criteria |
---|---|---|---|
Absolute fit measures | χ2 | 1430.435 | - |
Df | 1019 | - | |
χ2/df | 1.404 | 1 < χ2/df < 3 | |
GFI | 0.899 | ≥0.90 | |
RMSEA | 0.028 | <0.05 | |
Incremental fit measures | NFI | 0.935 | ≥0.90 |
CFI | 0.980 | ≥0.90 | |
Parsimony fit measures | AGFI | 0.883 | ≥0.90 |
Hypothesis | Relationship | Critical Ratio or (t Value) | Supported | Result |
---|---|---|---|---|
H1 | APP → SAT | 5.473 | Yes *** | Accepted |
H2 | APP → PL | 5.911 | Yes *** | Accepted |
H3 | PL → SAT | 2.336 | Yes * | Accepted |
H4 | PEoU → PL | 5.674 | Yes *** | Accepted |
H5 | PEoU → BI | 2.621 | Yes * | Accepted |
H6 | PEoU → PU | 4.114 | Yes *** | Accepted |
H7 | PU →BI | −2.769 | Yes * | Accepted |
H8 | BEN → BI | 2.217 | Yes * | Accepted |
H9 | IQ → BI | 4.854 | Yes *** | Accepted |
H10 | SI → BI | 2.373 | Yes * | Accepted |
H11 | SE → BI | 3.977 | Yes *** | Accepted |
H12 | SAT → BI | 6.272 | Yes *** | Accepted |
Variables | Test Statistics | Standard Error | p-Value |
---|---|---|---|
Appeal → Satisfaction → Behavioral Intention | 5.23796080 | 0.02127278 | 0.00000016 *** |
Pleasure → Satisfaction → Behavioral Intention | 3.81421022 | 0.01713592 | 0.00013662 *** |
Individual Variable (IV) | Mediator (M) | Dependent Variable (DV) | IV → DV | IV → M | IV + M → DV | |||||
---|---|---|---|---|---|---|---|---|---|---|
β | S.E | β | S.E | IV | M | |||||
β | S.E | β | S.E | |||||||
Appeal (APP) | Satisfaction (SAT) | Behavioral Intention (BI) | 0.178 *** | 0.048 | 0.294 *** | 0.042 | 0.067 | 0.047 | 0.379 *** | 0.048 |
Pleasure (PL) | Satisfaction (SAT) | Behavioral Intention (BI) | 0.159 *** | 0.044 | 0.172 *** | 0.040 | 0.093 *** | 0.043 | 0.380 *** | 0.046 |
Hypothesis | Relationship | z-Value | Male | Female | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Standardized Regression Coefficients (β) | Standard Error (S.E) | Critical Ratio (t-Value) | Supported | Significant | Standardized Regression Coefficients (β) | Standard Error (S.E) | Critical Ratio (t-Value) | Supported | Significant | |||
H1 | APP → SAT | 1.185 | 0.28 | 0.045 | 6.155 | *** | Yes | 0.413 | 0.103 | 4.003 | *** | Yes |
H2 | APP → PL | 0.590 | 0.355 | 0.048 | 7.332 | *** | Yes | 0.275 | 0.128 | 2.154 | 0.031 | Yes |
H3 | PL → SAT | 1.014 | 0.188 | 0.043 | 4.391 | *** | Yes | 0.072 | 0.106 | 0.676 | 0.499 | No |
H4 | PEoU → PL | 0.312 | 0.338 | 0.047 | 7.212 | *** | Yes | 0.293 | 0.134 | 2.186 | 0.029 | Yes |
H5 | PEoU → BI | 1.148 | 0.206 | 0.05 | 4.128 | *** | Yes | 0.044 | 0.132 | 0.337 | 0.736 | No |
H6 | PEoU → PU | 1.208 | 0.199 | 0.046 | 4.299 | *** | Yes | 0.046 | 0.118 | 0.385 | 0.700 | No |
H7 | PU → BI | 1.028 | −0.052 | 0.051 | −1.014 | 0.311 | No | 0.097 | 0.136 | 0.717 | 0.473 | No |
H8 | BEN → BI | 0.687 | 0.229 | 0.049 | 4.662 | *** | Yes | 0.328 | 0.134 | 2.444 | 0.015 | Yes |
H9 | IQ → BI | 0.843 | 0.309 | 0.049 | 6.258 | *** | Yes | 0.208 | 0.109 | 1.901 | 0.057 | No |
H10 | SI → BI | 0.750 | 0.102 | 0.055 | 1.858 | 0.063 | No | −0.031 | 0.169 | −0.183 | 0.855 | No |
H11 | SE → BI | 0.799 | 0.412 | 0.054 | 7.644 | *** | Yes | 0.298 | 0.132 | 2.254 | 0.024 | Yes |
H12 | SAT → BI | 0.48 | 0.391 | 0.049 | 7.908 | *** | Yes | 0.454 | 0.121 | 3.749 | *** | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zardari, B.A.; Hussain, Z.; Arain, A.A.; Rizvi, W.H.; Vighio, M.S. Development and Validation of User Experience-Based E-Learning Acceptance Model for Sustainable Higher Education. Sustainability 2021, 13, 6201. https://doi.org/10.3390/su13116201
Zardari BA, Hussain Z, Arain AA, Rizvi WH, Vighio MS. Development and Validation of User Experience-Based E-Learning Acceptance Model for Sustainable Higher Education. Sustainability. 2021; 13(11):6201. https://doi.org/10.3390/su13116201
Chicago/Turabian StyleZardari, Baqar Ali, Zahid Hussain, Aijaz Ahmed Arain, Wajid H. Rizvi, and Muhammad Saleem Vighio. 2021. "Development and Validation of User Experience-Based E-Learning Acceptance Model for Sustainable Higher Education" Sustainability 13, no. 11: 6201. https://doi.org/10.3390/su13116201
APA StyleZardari, B. A., Hussain, Z., Arain, A. A., Rizvi, W. H., & Vighio, M. S. (2021). Development and Validation of User Experience-Based E-Learning Acceptance Model for Sustainable Higher Education. Sustainability, 13(11), 6201. https://doi.org/10.3390/su13116201