Projection of Water Availability and Sustainability in Nigeria Due to Climate Change
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Sources
2.2.1. Gridded Data
2.2.2. General Circulation Models
3. Methodology
- (1)
- Use of historical GPCC and CRU data to calibrate and validate TWS prediction models using SVM and RF and selecting the better performing model;
- (2)
- Use of the selected GCM simulated rainfall and temperature for the four RCPs in the best TWS model for the projection of TWS for different RCPs;
- (3)
- Projection of changes in TWS under all RCPs for the selected GCMs and the generation of ensemble TWS projection for each RCP from the selected GCMs and comparison of the projections with the observed TWS in all climatic zones of Nigeria during the periods 2010–2039, 2040–2069, and 2070–2099;
- (4)
- Assessment of spatial changes in water availability for all RCPs for the future periods 2010–2039, 2040–2069, and 2070–2099 compared to the observed period;
- (5)
- Estimation of sustainability in water resources during the periods 2010–2039, 2040–2069, and 2070–2099 to assess climate change impacts on water sustainability.
4. Results
4.1. Climate Downscaling
4.2. Modeling Changes in Water Storage
4.2.1. Model Calibration and Validation
4.2.2. Seasonal Changes in Water Storage under Projected Climate
4.2.3. Annual Changes in Water Storage
4.2.4. Spatial Assessment of Changes in Future Sustainability in Water Resources
4.2.5. Mean Water Storage under Different RCPs
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kummu, M.; Guillaume, J.H.; de Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Van Oel, P.R.; Mulatu, D.W.; Odongo, V.O.; Meins, F.M.; Hogeboom, R.J.; Becht, R.; Stein, A.; Onyando, J.O.; van der Veen, A. The effects of groundwater and surface water use on total water availability and implications for water management: The case of Lake Naivasha, Kenya. Water Resour. Manag. 2013, 27, 3477–3492. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Chung, E.-S.; Ismail, T.; Wang, X.J. Spatial distribution of secular trends in annual and seasonal precipitation over Pakistan. Clim. Res. 2017, 74, 95–107. [Google Scholar] [CrossRef]
- Shiru, M.; Shahid, S.; Alias, N.; Chung, E.-S. Trend analysis of droughts during crop growing seasons of Nigeria. Sustainability 2018, 10, 871. [Google Scholar] [CrossRef] [Green Version]
- Thomas, V.; Ramón, L. Global increase in climate-related disasters. Asian Dev. Bank Econ. Working Paper Ser. 2015, 466. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, Z.; Shahid, S.; Ahmed, K.; Ismail, T.; Nawaz, N. Spatial distribution of the trends in precipitation and precipitation extremes in the sub-Himalayan region of Pakistan. Theor. Appl. Climatol. 2019, 137, 2755–2769. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Ismail, T.; Chung, E.-S.; Al-Abadi, A.M. Long-term trends in daily temperature extremes in Iraq. Atm. Res. 2017, 198, 97–107. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; bin Ismail, T.; Wang, X.J. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theor. Appl. Climatol. 2019, 136, 899–913. [Google Scholar] [CrossRef]
- Shiru, M.S.; Shahid, S.; Chung, E.-S.; Alias, N. Changing characteristics of meteorological droughts in Nigeria during 1901–2010. Atm. Res. 2019, 223, 60–73. [Google Scholar] [CrossRef]
- Chen, Y.; Zong, Y.; Li, B.; Li, S.; Aitchison, J.C. Shrinking lakes in Tibet linked to the weakening Asian monsoon in the past 8.2 ka. Quat. Res. 2013, 80, 189–198. [Google Scholar] [CrossRef]
- Onamuti, O.Y.; Okogbue, E.C.; Orimoloye, I.R. Remote sensing appraisal of Lake Chad shrinkage connotes severe impacts on green economics and socio-economics of the catchment area. R. Soc. Open Sci. 2017, 4, 171120. [Google Scholar] [CrossRef] [Green Version]
- Field, C.B. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Ahmed, K.; Shahid, S.; Demirel, M.C.; Nawaz, N.; Khan, N. The changing characteristics of groundwater sustainability in Pakistan from 2002 to 2016. Hydrogeol. J. 2019, 27, 2485–2496. [Google Scholar] [CrossRef]
- Nistor, M.-M.; Mîndrescu, M. Climate change effect on groundwater resources in Emilia-Romagna region: An improved assessment through NISTOR-CEGW method. Quat. Int. 2019, 504, 214–228. [Google Scholar] [CrossRef]
- Le Brocque, A.F.; Kath, J.; Reardon-Smith, K. Chronic groundwater decline: A multi-decadal analysis of groundwater trends under extreme climate cycles. J. Hydrol. 2018, 561, 976–986. [Google Scholar] [CrossRef]
- Sapriza-Azuri, G.; Jódar, J.; Carrera, J.; Gupta, H.V. Toward a comprehensive assessment of the combined impacts of climate change and groundwater pumping on catchment dynamics. J. Hydrol. 2015, 529, 1701–1712. [Google Scholar] [CrossRef]
- Salem, G.S.A.; Kazama, S.; Shahid, S.; Dey, N.C. Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region. Agric. Water Manag. 2018, 208, 33–42. [Google Scholar] [CrossRef]
- Carter, R.C.; Parker, A. Climate change, population trends and groundwater in Africa. Hydrol. Sci. J. 2009, 54, 676–689. [Google Scholar] [CrossRef] [Green Version]
- Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. World Population Prospects: The 2006 Revision and World Urbanization Prospects: The 2005 Revision. Available online: https://population.un.org/wpp/ (accessed on 1 April 2021).
- Taylor, R.G.; Koussis, A.D.; Tindimugaya, C. Groundwater and climate in Africa—A review. Hydrol. Sci. J. 2009, 54, 655–664. [Google Scholar] [CrossRef]
- Al-Gamal, S.A.; Sokona, Y.; Dodo, A.-K. Climatic changes and groundwater resources in Africa. Int. J. Clim. Chang. Strat. Manag. 2009, 1, 133–145. [Google Scholar] [CrossRef]
- Boughariou, E.; Allouche, N.; Jmal, I.; Mokadem, N.; Ayed, B.; Hajji, S.; Khanfir, H.; Bouri, S. Modeling aquifer behaviour under climate change and high consumption: Case study of the Sfax region, southeast Tunisia. J. Afr. Earth Sci. 2018, 141, 118–129. [Google Scholar] [CrossRef]
- Salem, G.S.A.; Kazama, S.; Komori, D.; Shahid, S.; Dey, N.C. Optimum abstraction of groundwater for sustaining groundwater level and reducing irrigation cost. Water Resour. Manag. 2017, 31, 1947–1959. [Google Scholar] [CrossRef]
- MacDonald, A.M.; Cobbing, J.; Davies, J. Developing Groundwater for Rural Water Supply in Nigeria: A Report of the May 2005 Training Course and Summary of Groundwater Issues in the Eight Focus States; British Geological Survey Commissioned Report, CR/05/219N; British Geological Survey: Keyworth, UK, 2005; pp. 1–32. [Google Scholar]
- Adelana, S.M.A.; Olasehinde, P.I.; Vrbka, P. A quantitative estimation of groundwater recharge in parts of Sokoto Basin, Nigeria. J. Environ. Hydrol. 2006, 14, 1–16. [Google Scholar]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Sediqi, M.N.; Shiru, M.S.; Nashwan, M.S.; Ali, R.; Wang, S.A.X.; Ahmed, K.; Shahid, S.; Asaduzzaman, M.; Manawi, S.M.A. Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan. Sustainability 2019, 11, 5836. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Ye, B.S.; Zhao, Q.D. Terrestrial Water storge changes in the Tangnaihai Basin measured by GRACE during 2003-2008, China. Appl. Mech. Mater. 2013, 316, 520–526. [Google Scholar] [CrossRef]
- Thomas, B.F.; Caineta, J.; Nanteza, J. Global assessment of groundwater sustainability based on storage anomalies. Geophy. Res. Lett. 2017, 44, 11–445. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Liu, X.; Bai, P. Assessment of hydrological drought and its recovery time for eight tributaries of the Yangtze River (China) based on downscaled GRACE data. J. Hydrol. 2019, 568, 592–603. [Google Scholar] [CrossRef]
- Loucks, D.P. Sustainable water resources management. Water Int. 2000, 25, 3–10. [Google Scholar] [CrossRef]
- Jia, Z.; Cai, Y.; Chen, Y.; Zeng, W. Regionalization of water environmental carrying capacity for supporting the sustainable water resources management and development in China. Resour. Conserv. Recycl. 2018, 134, 282–293. [Google Scholar] [CrossRef]
- Asefa, T.; Clayton, J.; Adams, A.; Anderson, D. Performance evaluation of a water resources system under varying climatic conditions: Reliability, Resilience, Vulnerability and beyond. J. Hydrol. 2014, 508, 53–65. [Google Scholar] [CrossRef]
- Sung, J.; Chung, E.-S.; Shahid, S. Reliability–Resiliency–Vulnerability approach for drought analysis in South Korea using 28 GCMs. Sustainability 2018, 10, 3043. [Google Scholar] [CrossRef] [Green Version]
- Shiru, M.S.; Shahid, S.; Chung, E.-S.; Alias, N.; Scherer, L. A MCDM-based framework for selection of general circulation models and projection of spatio-temporal rainfall changes: A case study of Nigeria. Atm. Res. 2019, 225, 1–16. [Google Scholar] [CrossRef]
- Shiru, M.S.; Chung, E.-S.; Shahid, S.; Alias, N. GCM selection and temperature projection of Nigeria under different RCPs of the CMIP5 GCMS. Theor. Appl. Clim. 2020, 141, 1611–1627. [Google Scholar] [CrossRef]
- Homsi, R.; Shiru, M.S.; Shahid, S.; Tarmizi Ismail, S.B.H.; Al-Ansari, N.; Chau, K.-W.; Yaseen, Z.M. Precipitation projection using a CMIP5 GCM ensemble model: A regional investigation of Syria. Eng. Appl. Comp. Fluid Mech. 2020, 14, 90–106. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Afan, H.A.; Shiru, M.S.; Al-Ansari, N.; Yaseen, Z.M. Changes in Climatic Water Availability and Crop Water Demand for Iraq Region. Sustainability 2020, 12, 3437. [Google Scholar] [CrossRef] [Green Version]
- Manawi, S.M.A.; Nasir, K.A.M.; Shiru, M.S.; Hotaki, S.F.; Sediqi, M.N. Urban Flooding in the Northern Part of Kabul City: Causes and Mitigation. Earth Sys. Environ. 2020, 4, 1–12. [Google Scholar] [CrossRef]
- Oteze, G.E. Water resources in Nigeria. Environ. Geol. 1981, 3, 177–184. [Google Scholar] [CrossRef]
- Swenson, S.C. GRACE Monthly Land Water Mass Grids NETCDF Release 5.0; The Physical Oceanography Distributed Active Archive Center: Pasadena, CA, USA, 2012.
- Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U.; Ziese, M. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 2013, 5, 71–99. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.P.D.J.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3. 10 Dataset. Int. J. Clim. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Castellazzi, P.; Martel, R.; Galloway, D.L.; Longuevergne, L.; Rivera, A. Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations. Groundwater 2016, 54, 768–780. [Google Scholar] [CrossRef] [Green Version]
- Bonsor, H.C.; Shamsudduha, M.; Marchant, B.P.; Macdonald, A.M.; Taylor, R.G. Seasonal and decadal groundwater changes in African sedimentary aquifers estimated using GRACE products and LSMs. Remote Sens. 2018, 10, 904. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.; Jin, S. Water storage changes and balances in Africa observed by GRACE and hydrologic models. Geod. Geodyn. 2016, 7, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Clim. 2014, 34, 2792–2804. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Connor, S.J.; Ceccato, P.; Ropelewski, C.F. Comparison of global gridded precipitation products over a mountainous region of Africa. Int. J. Clim. 2008, 28, 1627–1638. [Google Scholar] [CrossRef]
- Yang, W.; Seager, R.; Cane, M.A.; Lyon, B. The East African long rains in observations and models. J. Clim. 2014, 27, 7185–7202. [Google Scholar] [CrossRef]
- Shiru, M.S.; Shahid, S.; Dewan, A.; Chung, E.-S.; Alias, N.; Ahmed, K.; Hassan, Q.K. Projection of meteorological droughts in Nigeria during growing seasons under climate change scenarios. Sci. Rep. 2020, 10, 1–18. [Google Scholar]
- Wolski, P.; Todd, M.C.; Murray-Hudson, M.A.; Tadross, M. Multi-decadal oscillations in the hydro-climate of the Okavango River system during the past and under a changing climate. J. Hydrol. 2012, 475, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Omondi, P.A.; Awange, J.L.; Forootan, E.; Ogallo, L.A.; Barakiza, R.; Girmaw, G.B.; Fesseha, I.; Kululetera, V.; Kilembe, C.; Mbati, M.M. Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int. J. Clim. 2014, 34, 1262–1277. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456, 12–29. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Clim. 2010, 99, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Leander, R.; Buishand, T.A. Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol. 2007, 332, 487–496. [Google Scholar] [CrossRef]
- Moron, V.; Robertson, A.W.; Ward, M.N.; Ndiaye, O. Weather types and rainfall over Senegal. Part II: Downscaling of GCM simulations. J. Clim. 2008, 21, 288–307. [Google Scholar] [CrossRef]
- Leander, R.; Buishand, T.A.; van den Hurk, B.J.J.M.; de Wit, M.J.M. Estimated changes in flood quantiles of the river Meuse from resampling of regional climate model output. J. Hydrol. 2008, 351, 331–343. [Google Scholar] [CrossRef]
- Schmidli, J.; Frei, C.; Vidale, P.L. Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Clim. 2006, 26, 679–689. [Google Scholar] [CrossRef]
- Hay, L.E.; Clark, M.P. Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol. 2003, 282, 56–75. [Google Scholar] [CrossRef]
- Hay, L.E.; Wilby, R.L.; Leavesley, G.H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States 1. JAWRA J. Am. Water Resour. Assoc. 2000, 36, 387–397. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Thomas, B.F.; Famiglietti, J.S.; Landerer, F.W.; Wiese, D.N.; Molotch, N.P.; Argus, D.F. GRACE groundwater drought index: Evaluation of California Central Valley groundwater drought. Remote Sens. Environ. 2017, 198, 384–392. [Google Scholar] [CrossRef]
- Shiru, M.S.; Shahid, S.; Shiru, S.; Chung, E.-S.; Alias, N.; Ahmed, K.; Dioha, E.C.; Sa’adi, Z.; Salman, S.; Noor, M. Challenges in water resources of Lagos mega city of Nigeria in the context of climate change. J. Water Clim. Chang. 2020, 11, 1067–1083. [Google Scholar] [CrossRef]
- Sun, A.Y.; Scanlon, B.R.; Save, H.; Rateb, A. Reconstruction of GRACE total water storage through automated machine learning. Water Resour. Res. 2020, 57, e2020WR028666. [Google Scholar]
- Jia, B.; Cai, X.; Zhao, F.; Liu, J.; Chen, S.; Luo, X.; Xie, Z.; Xu, J. Potential future changes of terrestrial water storage based on climate projections by ensemble model simulations. Adv. Water Resour. 2020, 142, 103635. [Google Scholar] [CrossRef]
- Ahi, G.O.; Cekim, H.O. Long-term temporal prediction of terrestrial water storage changes over global basins using GRACE and limited GRACE-FO data. Acta Geod. Geophys. 2021, 1–24. [Google Scholar] [CrossRef]
- Hasan, E.; Tarhule, A.; Kirstetter, P.E. Twentieth and Twenty-First Century Water Storage Changes in the Nile River Basin from GRACE/GRACE-FO and Modeling. Remote Sens. 2021, 13, 953. [Google Scholar] [CrossRef]
- Davies-Barnard, T.; Valdes, P.J.; Singarayer, J.S.; Pacifico, F.M.; Jones, C.D. Full effects of land use change in the representative concentration pathways. Environ. Res. Lett. 2014, 9, 114014. [Google Scholar] [CrossRef] [Green Version]
- Hurtt, G.C.; Chini, L.P.; Frolking, S.; Betts, R.A.; Feddema, J.; Fischer, G.; Fisk, J.P.; Hibbard, K.; Houghton, R.A.; Janetos, A.; et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Chang. 2011, 109, 117–161. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Donaldson, S. The Effects of Urbanization on the Water Cycle; Nevada Cooperative Extension: Reno, NV, USA, 2004; pp. 4–43. [Google Scholar]
- Welty, C. The Water Environment of Cities: The Urban Water Budget; Springer: Boston, MA, USA, 2009; pp. 17–28. [Google Scholar]
- Pour, S.H.; Abd Wahab, A.K.; Shahid, S.; Dewan, A. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustain. Cities Soc. 2020, 62, 102373. [Google Scholar] [CrossRef]
No | Institution | Model Name | Resolution (Lon × Lat) |
---|---|---|---|
1 | National Center for Atmospheric Research, USA | CESM1-CAM5 | 1.25 × 0.95 |
2 | Commonwealth Scientific and Industrial Research Organization, Australia | CSIRO-Mk3-6-0 | 1.875 × 1.875 |
3 | Met Office Hadley Centre, UK | HadGEM2-ES | 1.875 × 1.25 |
4 | Meteorological Research Institute | MRI-CGCM3 | 1.25 × 1.25 |
GCM | Bias Correction Method | NRMSE | PBIAS | NSE | RSD | MD |
---|---|---|---|---|---|---|
CESM1-CAM5 | Linear Scaling | 38.5 | 0 | 0.85 | 0.99 | 0.84 |
General Quantile Mapping | 100.2 | −100 | −0.01 | 0 | 0.66 | |
Power Transform | 53.2 | 0 | 0.72 | 1.04 | 0.76 | |
Gamma Quantile Mapping | 45.8 | 0.4 | 0.79 | 0.97 | 0.82 | |
GCM | 79.6 | −18.1 | 0.36 | 1.14 | 0.68 | |
CSIRO-Mk3.6.0 | Linear Scaling | 44 | 0 | 0.81 | 0.95 | 0.82 |
General Quantile Mapping | 100 | −100 | 0 | 0 | 0.66 | |
Power Transform | 47.5 | 0 | 0.77 | 1.06 | 0.79 | |
Gamma Quantile Mapping | 40.6 | 0.8 | 0.83 | 0.98 | 0.84 | |
GCM | 82.1 | −42.9 | 0.33 | 0.65 | 0.65 | |
HadGEM2-ES | Linear Scaling | 34.6 | 0 | 0.88 | 1 | 0.86 |
General Quantile Mapping | 100 | −100 | 0 | 0 | 0.67 | |
Power Transform | 0 | 0 | 0.73 | 1.04 | 0.77 | |
Gamma Quantile Mapping | 44.7 | 1.2 | 0.8 | 0.97 | 0.82 | |
GCM | 42.9 | −7 | 0.82 | 1.06 | 0.83 | |
MRI-CGCM3 | Linear Scaling | 30.7 | 0 | 0.91 | 1.01 | 0.88 |
General Quantile Mapping | 100 | −100 | 0 | 0 | 0.66 | |
Power Transform | 48.8 | 0 | 0.76 | 1.06 | 0.78 | |
Gamma Quantile Mapping | 41.1 | 4.3 | 0.83 | 0.95 | 0.83 | |
GCM | 59 | 23 | 0.65 | 1.2 | 0.8 |
2010–2039 | 2040–2069 | 2070–2099 | |
---|---|---|---|
RCP 2.6 | 0.876 | 2.099 | 1.367 |
RCP 4.5 | 0.759 | 1.895 | 1.628 |
RCP 6.0 | 2.166 | 3.121 | 3.131 |
RCP 8.5 | 1.165 | 2.583 | 2.798 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiru, M.S.; Shahid, S.; Park, I. Projection of Water Availability and Sustainability in Nigeria Due to Climate Change. Sustainability 2021, 13, 6284. https://doi.org/10.3390/su13116284
Shiru MS, Shahid S, Park I. Projection of Water Availability and Sustainability in Nigeria Due to Climate Change. Sustainability. 2021; 13(11):6284. https://doi.org/10.3390/su13116284
Chicago/Turabian StyleShiru, Mohammed Sanusi, Shamsuddin Shahid, and Inhwan Park. 2021. "Projection of Water Availability and Sustainability in Nigeria Due to Climate Change" Sustainability 13, no. 11: 6284. https://doi.org/10.3390/su13116284
APA StyleShiru, M. S., Shahid, S., & Park, I. (2021). Projection of Water Availability and Sustainability in Nigeria Due to Climate Change. Sustainability, 13(11), 6284. https://doi.org/10.3390/su13116284