The Use of Cool Pavements for the Regeneration of Industrial Districts
Abstract
:1. Introduction
1.1. Cool Materials for the Regeneration of Ground Surfaces: Techniques and Effects
1.1.1. Reflective Pavements
1.1.2. Evaporative Pavements
2. Background
2.1. Geography and Climate of Padua
2.2. Case Study Area
3. Materials and Methods
3.1. Microclimate Analyses: Objectives, Inputs, and Tools
- identification of the major microclimate features of the industrial district in its current configuration;
- assessment of the impacts and benefits of the application of cool materials on ground surfaces.
3.2. Simulation Inputs
3.3. Simulation Scenarios: Characterization of Urban Surfaces
3.3.1. Actual Scenario
3.3.2. Cool Pavements Scenario
3.4. Evaluation of Human Thermal Comfort Conditions
4. Results and Discussion
4.1. Surface Temperatures
4.1.1. Ground Surfaces
4.1.2. Building Surfaces
4.2. Air Temperature
4.3. Human Thermal Comfort
4.4. Effects on Buildings’ Indoor Temperatures
5. Limitations and Future Developments
- The model does not take into account the anthropogenic heat released from cooling systems and traffic [106]; this might lead to a potential underestimation of Tair.
- On the contrary, the model does not account for possible positive effects caused by local increments of wind speed at street level. Indeed, ENVI-met computes the WS starting from the mean value measured at 10 m height, but the turbulence in a street canyon is normally higher than at higher levels [60,107], and hence might favorite a local reduction of Tair.
- The model does not take into consideration the effect of multiple reflections and the consequent short- and long-wave radiation entrapment inside the urban canyons [19].
- Additionally, it is critical to consider the simplification related to the ENVI-met simulation of indoor air temperatures, which neglects heat from internal walls and anthropogenic sources such as computers, manufacturing machinery, and people [106].
- At the building scale, the indoor air temperature in points distant from the external surfaces should be analyzed to better quantify the impact of the regeneration of ground surfaces on indoor thermal comfort conditions and on building energy consumption for cooling.
- At the district scale, further simulations should be undertaken to investigate the effectiveness of other regeneration solutions (e.g., urban greening) or the combination of cool pavements with other technologies, also including their application on surfaces of the building envelopes. Furthermore, the analysis of the environmental conditions of the case study area in both scenarios should be extended to the entire summer period and other seasons, to expand the evaluation of the performance of cool paving solutions and to identify potential winter downsides. Another interesting aspect might be the estimation of the performance of cool pavements under future climatic conditions in which the cooling and water infiltration capacities of such solutions might play an even more relevant role as mitigation strategies [109,110].
- At the urban scale, focus will be placed on the evaluation of the impacts of the regeneration interventions over a larger domain, as previous studies demonstrated that the effect of albedo increase is not restricted to the area of its application, but it also influences the air temperature of the surrounding areas [14].
6. Conclusions
- The morphological configuration of the urban area plays a key role in the reduction of ground surface temperatures after implementing cool paving materials. Indeed, urban canyon orientation, aspect ratio, and sky view factor strongly affect the exposure of ground surfaces to direct solar radiation, and consequently impact the cooling potential of cool materials.
- At pedestrian level, the application of reflective pavements influences the radiative balance of the urban canyon surfaces and, consequently, the radiative exchange between the human body and the surrounding environment. Therefore, the achieved air temperature reduction might be counterbalanced by the increased reflection of solar radiation, negatively affecting the human thermal balance. On the contrary, the use of evaporative pavements produces limited, but constantly positive effects on the human thermal comfort. Hence, in the design of regeneration interventions with cool materials, particular attention should be placed on analyzing the impacts on thermal comfort conditions, and on avoiding their deterioration.
- The combination of reflective materials with trees and shading vegetation results in an effective solution for both cooling the air temperature and managing the increased reflected radiation due to the higher albedo. Indeed, the foliage not only contributes to release latent heat through evapotranspiration but also acts as shield for both direct and reflected solar radiation.
Author Contributions
Funding
Conflicts of Interest
References
- United Nations—Department of Economic and Social Affairs—Population Division. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Doherty, M.; Klima, K.; Hellmann, J.J. Environmental Science & Policy Climate Change in the Urban Environment: Advancing, Measuring and Achieving Resiliency. Environ. Sci. Policy 2016, 66, 310–313. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, Z. Projecting Population Growth as a Dynamic Measure of Regional Urban Warming. Sustain. Cities Soc. 2017, 32, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Hirano, Y.; Ihara, T.; Gomi, K.; Fujita, T. Simulation-Based Evaluation of the Effect of Green Roofs in Office Building Districts on Mitigating the Urban Heat Island Effect and Reducing CO2 Emissions. Sustainability 2019, 11, 2055. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Bae, W.; Kim, J. The Effects of the Layouts of Vegetation and Wind Flow in an Apartment Housing Complex to Mitigate Outdoor Microclimate Air Temperature. Sustainability 2019, 11, 3081. [Google Scholar] [CrossRef] [Green Version]
- Detommaso, M.; Gagliano, A.; Marletta, L.; Nocera, F. Sustainable Urban Greening and Cooling Strategies for Thermal Comfort at Pedestrian Level. Sustainability 2021, 13, 3138. [Google Scholar] [CrossRef]
- Sen, S.; Roesler, J.; Ruddell, B.; Middel, A. Cool Pavement Strategies for Urban Heat Island Mitigation in Suburban Phoenix, Arizona. Sustainability 2019, 11, 4452. [Google Scholar] [CrossRef] [Green Version]
- Tsoka, S.; Tsikaloudaki, K.; Theodosiou, T. Urban Space’s Morphology and Microclimatic Analysis: A Study for a Typical Urban District in the Mediterranean City of Thessaloniki, Greece. Energy Build. 2017, 156, 96–108. [Google Scholar] [CrossRef]
- Newman, P. The Environmental Impact of Cities. Environ. Urban. 2006, 18, 275–295. [Google Scholar] [CrossRef]
- Parris, K.M.; Amati, M.; Bekessy, S.A.; Dagenais, D.; Fryd, O.; Hahs, A.K.; Hes, D.; Imberger, S.J.; Livesley, S.J.; Marshall, A.J.; et al. The Seven Lamps of Planning for Biodiversity in the City. Cities 2018, 83, 44–53. [Google Scholar] [CrossRef]
- Mao, N. Analysis of Urban Street Microclimate Data Based on ENVI-Met BT—Big Data Analytics for Cyber-Physical System in Smart City; Atiquzzaman, M., Yen, N., Xu, Z., Eds.; Springer: Singapore, 2020; pp. 759–767. [Google Scholar]
- Xiao, X.D.; Dong, L.; Yan, H.; Yang, N.; Xiong, Y. The Influence of the Spatial Characteristics of Urban Green Space on the Urban Heat Island Effect in Suzhou Industrial Park. Sustain. Cities Soc. 2018, 40, 428–439. [Google Scholar] [CrossRef]
- El-Hattab, M.; Amany, S.M.; Lamia, G.E. Monitoring and Assessment of Urban Heat Islands over the Southern Region of Cairo Governorate, Egypt. Egypt. J. Remote Sens. Sp. Sci. 2018, 21, 311–323. [Google Scholar] [CrossRef]
- Morini, E.; Touchaei, A.G.; Castellani, B.; Rossi, F.; Cotana, F. The Impact of Albedo Increase to Mitigate the Urban Heat Island in Terni (Italy) Using the WRF Model. Sustainability 2016, 8, 999. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y. A Review on the Development of Cool Pavements to Mitigate Urban Heat Island Effect. Renew. Sustain. Energy Rev. 2015, 52, 445–459. [Google Scholar] [CrossRef]
- Tsoka, S.; Theodosiou, T.; Tsikaloudaki, K.; Flourentzou, F. Modeling the Performance of Cool Pavements and the Effect of Their Aging on Outdoor Surface and Air Temperatures. Sustain. Cities Soc. 2018, 42, 276–288. [Google Scholar] [CrossRef]
- Akbari, H.; Matthews, H.D. Global Cooling Updates: Reflective Roofs and Pavements. Energy Build. 2012, 55, 2–6. [Google Scholar] [CrossRef]
- Ferrari, A.; Kubilay, A.; Derome, D.; Carmeliet, J. The Use of Permeable and Reflective Pavements as a Potential Strategy for Urban Heat Island Mitigation. Urban Clim. 2020, 31, 100534. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-Met Microclimate Model’s Performance and Assessing Cool Materials and Urban Vegetation Applications—A Review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Shimazaki, Y.; Aoki, M.; Nitta, J.; Okajima, H.; Yoshida, A. Experimental Determination of Pedestrian Thermal Comfort on Water-Retaining Pavement for UHI Adaptation Strategy. Atmosphere 2021, 12, 127. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Zhu, H. Analytical Approach for Evaluating Temperature Field of Thermal Modified Asphalt Pavement and Urban Heat Island Effect. Appl. Therm. Eng. 2017, 113, 739–748. [Google Scholar] [CrossRef]
- Doulos, L.; Santamouris, M.; Livada, I. Passive Cooling of Outdoor Urban Spaces. The Role of Materials. Sol. Energy 2004, 77, 231–249. [Google Scholar] [CrossRef]
- Synnefa, A.; Karlessi, T.; Gaitani, N.; Santamouris, M.; Assimakopoulos, D.N.; Papakatsikas, C. Experimental Testing of Cool Colored Thin Layer Asphalt and Estimation of Its Potential to Improve the Urban Microclimate. Build. Environ. 2011, 46, 38–44. [Google Scholar] [CrossRef]
- Li, H.; Harvey, J.T.; Holland, T.J.; Kayhanian, M. The Use of Reflective and Permeable Pavements as a Potential Practice for Heat Island Mitigation and Stormwater Management. Environ. Res. Lett. 2013, 8, 15023. [Google Scholar] [CrossRef]
- Pomerantz, M.; Akbari, H.; Harvey, J.T. Cooler Reflective Pavements Give Benefits beyond Energy Savings: Durability and Illumination. Proc. ACEEE Summer Study Energy Effic. Build. 2000, 8, 789110. [Google Scholar]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using Advanced Cool Materials in the Urban Built Environment to Mitigate Heat Islands and Improve Thermal Comfort Conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Cheela, V.R.S.; John, M.; Biswas, W.; Sarker, P. Combating Urban Heat Island Effect—A Review of Reflective Pavements and Tree Shading Strategies. Buildings 2021, 11, 93. [Google Scholar] [CrossRef]
- Kinouchi, T.; Yoshinaka, T.; Fukae, N.; Kanda, M. Development of Cool Pavement with Dark Colored High Albedo Coating. In Proceedings of the 5th Symposium on the Urban Environment, Vancouver, BC, Canada, 23–26 August 2004; pp. 207–210. [Google Scholar]
- Karlessi, T.; Santamouris, M.; Apostolakis, K.; Synnefa, A.; Livada, I. Development and Testing of Thermochromic Coatings for Buildings and Urban Structures. Sol. Energy 2009, 83, 538–551. [Google Scholar] [CrossRef]
- Hedayati, H.R.; Sabbagh Alvani, A.A.; Sameie, H.; Salimi, R.; Moosakhani, S.; Tabatabaee, F.; Amiri Zarandi, A. Synthesis and Characterization of Co1−xZnxCr2−yAlyO4 as a Near-Infrared Reflective Color Tunable Nano-Pigment. Dyes Pigments 2015, 113, 588–595. [Google Scholar] [CrossRef]
- Boriboonsomsin, K.; Reza, F. Mix Design and Benefit Evaluation of High Solar Reflectance Concrete for Pavements. Transp. Res. Rec. 2007, 2011, 11–20. [Google Scholar] [CrossRef]
- Tran, N.; Powell, B.; Marks, H.; West, R.; Kvasnak, A. Strategies for Design and Construction of High-Reflectance Asphalt Pavements. Transp. Res. Rec. 2009, 2098, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Krispel, S.; Peyerl, M.; Maier, G.; Weihs, P. Reduction of Urban Heat Islands with Whitetopping. Bauphysik 2017, 39, 33–40. [Google Scholar] [CrossRef]
- Mizwar, I.K.; Napiah, M.; Sutanto, M.H. Thermal Properties of Cool Asphalt Concrete Containing Phase Change Material. IOP Conf. Ser. Mater. Sci. Eng. 2019, 527, 12049. [Google Scholar] [CrossRef]
- Hein, D.; Olidis, C.; Darter, M.; Von Quintus, H. Impact of Recent Technology Advancements on Pavement Life. In Proceedings of the TAC/ATC 2003–2003 Annual Conference Exhibition Transport Assocation Canada Transport Factor, St. John’s, Newfoundland and Labrador, Toronto, ON, Canada, 21–24 September 2003. [Google Scholar]
- Hassn, A.; Chiarelli, A.; Dawson, A.; Garcia, A. Thermal Properties of Asphalt Pavements under Dry and Wet Conditions. Mater. Des. 2016, 91, 432–439. [Google Scholar] [CrossRef]
- Higashiyama, H.; Sano, M.; Nakanishi, F.; Takahashi, O.; Tsukuma, S. Field Measurements of Road Surface Temperature of Several Asphalt Pavements with Temperature Rise Reducing Function. Case Stud. Constr. Mater. 2016, 4, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Takebayashi, H.; Moriyama, M. Study on Surface Heat Budget of Various Pavements for Urban Heat Island Mitigation. Adv. Mater. Sci. Eng. 2012, 2012, 523051. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, T.; Fujita, T. Cooling Effect of Water-Holding Pavements Made of New Materials on Water and Heat Budgets in Urban Areas. Landsc. Urban Plan. 2010, 96, 57–67. [Google Scholar] [CrossRef]
- Catherine, V.; Sophie, D.; Geneviève, P. Hydrologic Performance of Permeable Pavement as an Adaptive Measure in Urban Areas: Case Studies near Montreal, Canada. J. Hydrol. Eng. 2019, 24, 5019020. [Google Scholar] [CrossRef] [Green Version]
- Scholz, M.; Grabowiecki, P. Review of Permeable Pavement Systems. Build. Environ. 2007, 42, 3830–3836. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The Urban Heat Island Effect, Its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Stempihar, J.J.; Pourshams-Manzouri, T.; Kaloush, K.E.; Rodezno, M.C. Porous Asphalt Pavement Temperature Effects for Urban Heat Island Analysis. Transp. Res. Rec. 2012, 2293, 123–130. [Google Scholar] [CrossRef]
- Li, H. A Comparison of Thermal Performance of Different Pavement Materials; Pacheco-Torgal, F., Labrincha, J.A., Cabeza, L.F., Granqvist, C.-G., Eds.; Woodhead Publishing: Oxford, UK, 2015; pp. 63–124. [Google Scholar] [CrossRef]
- Li, H.; Harvey, J.; Ge, Z. Experimental Investigation on Evaporation Rate for Enhancing Evaporative Cooling Effect of Permeable Pavement Materials. Constr. Build. Mater. 2014, 65, 367–375. [Google Scholar] [CrossRef]
- Bao, T.; Liu, Z.L.; Zhang, X.; He, Y. A Drainable Water-Retaining Paver Block for Runoff Reduction and Evaporation Cooling. J. Clean. Prod. 2019, 228, 418–424. [Google Scholar] [CrossRef]
- Qin, Y.; He, Y.; Hiller, J.E.; Mei, G. A New Water-Retaining Paver Block for Reducing Runoff and Cooling Pavement. J. Clean. Prod. 2018, 199, 948–956. [Google Scholar] [CrossRef]
- Jiang, W.; Sha, A.; Xiao, J.; Wang, Z.; Apeagyei, A. Experimental Study on Materials Composition Design and Mixture Performance of Water-Retentive Asphalt Concrete. Constr. Build. Mater. 2016, 111, 128–138. [Google Scholar] [CrossRef]
- ISTAT. Population Data by Municipality. Available online: http://demo.istat.it/pop2019/index.html (accessed on 1 September 2020).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Noro, M.; Busato, F.; Lazzarin, R. UHI Effect in the City of Padua: Simulations and Mitigation Strategies Using the Rayman and Envimet Model. Geogr. Pol. 2014, 87, 517–530. [Google Scholar] [CrossRef]
- Spano, D.; Mereu, V.; Bacciu, V.; Marras, S.; Trabucco, A.; Adinolf, M.; Barbato, G.; Bosello, F.; Breil, M.; Chiriacò, M.V.; et al. Analisi Del Rischio. I Cambiamenti Climatici in Italia; CMCC: Lecce, Italy, 2010. [Google Scholar] [CrossRef]
- Pristeri, G.; Peroni, F.; Pappalardo, S.E.; Codato, D.; Castaldo, A.G.; Masi, A.; De Marchi, M. Mapping and Assessing Soil Sealing in Padua Municipality through Biotope Area Factor Index. Sustainability 2020, 12, 5167. [Google Scholar] [CrossRef]
- Noro, M.; Lazzarin, R.; Busato, F. The Urban Corridor of Venice and The Case of Padua. In Counteracting Urban Heat Island Effects in a Global Climate Change Scenario; Musco, F., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 201–219. [Google Scholar] [CrossRef]
- Noro, M.; Lazzarin, R. Urban Heat Island in Padua, Italy: Simulation Analysis and Mitigation Strategies. Urban Clim. 2015, 14, 187–196. [Google Scholar] [CrossRef]
- Busato, F.; Lazzarin, R.M.; Noro, M. Three Years of Study of the Urban Heat Island in Padua: Experimental Results. Sustain. Cities Soc. 2014, 10, 251–258. [Google Scholar] [CrossRef]
- Becker, G.; Mohren, R. The Biotope Area Factor as an Ecological Parameter. Principles for Its Determination and Identification of the Target; Landschaft Planen & Bauen: Berlin, Germany, 1990. [Google Scholar]
- Bruse, M.; Fleer, H. Simulating Surface–Plant–Air Interactions inside Urban Environments with a Three Dimensional Numerical Model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Bruse, M. ENVI-Met 4: A Microscale Urban Climate Model. 2015. Available online: www.envi-met.info (accessed on 20 January 2020).
- Huttner, S. Further Development and Application of the 3D Microclimate Simulation ENVI-Met. Ph.D. Thesis, Universitätsbibliothek Mainz, Mainz, Germany, 2012. [Google Scholar]
- Yang, X.; Zhao, L.; Bruse, M.; Meng, Q. Evaluation of a Microclimate Model for Predicting the Thermal Behavior of Different Ground Surfaces. Build. Environ. 2013, 60, 93–104. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Croce, S.; Vettorato, D.; Carlucci, S. A Holistic Approach to Assess the Exploitation of Renewable Energy Sources for Design Interventions Inthe Early Design Phases. Energy Build. 2018, 175, 235–256. [Google Scholar] [CrossRef]
- CTI. UNI/TS 11300-Technical Standards Reference on Savings and Energy Certification of Buildings. 2016. (accessed on 1 February 2020).
- ISO. ISO 10456:2007. Building Materials and Products: Hygrothermal Properties. Tabulated Design Values and Procedures for Determining Declared and Design Thermal Values. 2007. Available online: https://www.iso.org/standard/40966.html (accessed on 1 February 2020). [CrossRef]
- Synnefa, A.; Santamouris, M.; Korres, D. Investigation of the Solar and Thermal Properties of Materials Used in Outdoor Urban Spaces and Buildings. In Proceedings of the 27th AIVC 4th Epic Conference Technologies Sustainable Policies a Radical Decrease Energy Consumption Building, Lyon, France, 20–22 November 2006. [Google Scholar]
- Santamouris, M. Environmental Design of Urban Buildings. An Integrated Approach; Routledge: Oxfordshire, UK, 2019. [Google Scholar]
- Levinson, R.; Akbari, H. Effects of Composition and Exposure on the Solar Reflectance of Portland Cement Concrete; Elsevier: Amsterdam, The Netherlands, 2002; Volume 32. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the Effects of Urban Heat Island Mitigation Strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Carlucci, S.; Croce, S.; Paparella, R.; Finocchiaro, L. Boosting Solar Accessibility and Potential of Urban Districts in the Nordic Climate: A Case Study in Trondheim. Sol. Energy 2017, 149, 347–369. [Google Scholar] [CrossRef]
- Budaiwi, I.; Abdou, A. The Impact of Thermal Conductivity Change of Moist Fibrous Insulation on Energy Performance of Buildings under Hot-Humid Conditions. Energy Build. 2013, 60, 388–399. [Google Scholar] [CrossRef]
- Santamouris, M.; Gaitani, N.; Spanou, A.; Saliari, M.; Giannopoulou, K.; Vasilakopoulou, K.; Kardomateas, T. Using Cool Paving Materials to Improve Microclimate of Urban Areas—Design Realization and Results of the Flisvos Project. Build. Environ. 2012, 53, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Prado, R.T.A.; Ferreira, F.L. Measurement of Albedo and Analysis of Its Influence the Surface Temperature of Building Roof Materials. Energy Build. 2005, 37, 295–300. [Google Scholar] [CrossRef]
- Krimpalis, S.; Karamanis, D. A Novel Approach to Measuring the Solar Reflectance of Conventional and Innovative Building Components. Energy Build. 2015, 97, 137–145. [Google Scholar] [CrossRef]
- Suksawang, N.; Alsabbagh, A.; Shaban, A.; Wtaife, S. Using Post-Cracking Strength to Determine Flexural Capacity of Ultra-Thin Whitetopping (UTW) Pavements. Constr. Build. Mater. 2020, 240, 117831. [Google Scholar] [CrossRef]
- Thompson, A.M.; Kim, K.; Vandermuss, A.J. Thermal Characteristics of Stormwater Runoff from Asphalt and Sod Surfaces1. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 1325–1336. [Google Scholar] [CrossRef]
- Bartesaghi-Koc, C.; Haddad, S.; Pignatta, G.; Paolini, R.; Prasad, D.; Santamouris, M. Can Urban Heat Be Mitigated in a Single Urban Street? Monitoring, Strategies, and Performance Results from a Real Scale Redevelopment Project. Sol. Energy 2021, 216, 564–588. [Google Scholar] [CrossRef]
- Satishkumar, C.H.N.; Siva Rama Krishna, U. Ultra-Thinwhite Topping Concrete Mix with Sustainable Concrete Materials—A Literature Review. Int. J. Pavement Eng. 2019, 20, 136–142. [Google Scholar] [CrossRef]
- Sonebi, M.; Bassuoni, M.; Yahia, A. Pervious Concrete: Mix Design, Properties and Applications. RILEM Tech. Lett. 2016, 1, 109. [Google Scholar] [CrossRef]
- Synnefa, A.; Santamouris, M.; Apostolakis, K. On the Development, Optical Properties and Thermal Performance of Cool Colored Coatings for the Urban Environment. Sol. Energy 2007, 81, 488–497. [Google Scholar] [CrossRef]
- Rosso, F.; Golasi, I.; Castaldo, V.L.; Piselli, C.; Pisello, A.L.; Salata, F.; Ferrero, M.; Cotana, F.; de Lieto Vollaro, A. On the Impact of Innovative Materials on Outdoor Thermal Comfort of Pedestrians in Historical Urban Canyons. Renew. Energy 2018, 118, 825–839. [Google Scholar] [CrossRef]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A Review of Mitigating Strategies to Improve the Thermal Environment and Thermal Comfort in Urban Outdoor Spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef]
- Bröde, P.; Fiala, D.; Blazejczyk, K. Calculating UTCI Equivalent Temperature. In Proceedings of the 13 th International Conference on Environmental Ergonomics, Boston, MA, USA, 2–7 August 2009; pp. 1–5. [Google Scholar]
- Pappenberger, F.; Jendritzky, G.; Staiger, H.; Dutra, E.; Di Giuseppe, F.; Richardson, D.S.; Cloke, H.L. Global Forecasting of Thermal Health Hazards: The Skill of Probabilistic Predictions of the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2015, 59, 311–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why Another Thermal Index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Staiger, H.; Laschewski, G.; Matzarakis, A. Selection of Appropriate Thermal Indices for Applications in Human Biometeorological Studies. Atmosphere 2019, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Tuller, S.E.; Jo, M. Application of Universal Thermal Climate Index (UTCI) for Microclimatic Analysis in Urban Thermal Environments. Landsc. Urban Plan. 2014, 125, 146–155. [Google Scholar] [CrossRef]
- VDI. VDI 3787. Environmental Meteorology. Methods for the Human Biometeorological Evaluation of Climate and Air Quality for Urban and Regional Planning at Regional Level. Part I: Climate, Blatt 2/Part 2. 2008. Available online: https://infostore.saiglobal.com/en-us/standards/vdi-3787-2-2008-1116175_saig_vdi_vdi_2592309/ (accessed on 15 March 2020).
- Wang, J.; Santamouris, M.; Meng, Q.; He, B.-J.; Zhang, L.; Zhang, Y. Predicting the Solar Evaporative Cooling Performance of Pervious Materials Based on Hygrothermal Properties. Sol. Energy 2019, 191, 311–322. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Q.; Zhang, L.; Zhang, Y.; He, B.J.; Zheng, S.; Santamouris, M. Impacts of the Water Absorption Capability on the Evaporative Cooling Effect of Pervious Paving Materials. Build. Environ. 2019, 151, 187–197. [Google Scholar] [CrossRef]
- Taha, H. Urban Climates and Heat Islands: Albedo, Evapotranspiration, and Anthropogenic Heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Jiang, Y.; Li, Q.; Deng, C.; Ji, X.; Xue, J. Development of Super Road Heat-Reflective Coating and Its Field Application. Coatings 2019, 9, 802. [Google Scholar] [CrossRef] [Green Version]
- Lynn, B.H.; Carlson, T.N.; Rosenzweig, C.; Goldberg, R.; Druyan, L.; Cox, J.; Gaffin, S.; Parshall, L.; Civerolo, K. A Modification to the NOAH LSM to Simulate Heat Mitigation Strategies in the New York City Metropolitan Area. J. Appl. Meteorol. Climatol. 2009, 48, 199–216. [Google Scholar] [CrossRef]
- Erell, E.; Pearlmutter, D.; Boneh, D. Effect of High-Albedo Materials on Pedestrian Thermal Comfort in Urban Canyons. In Proceedings of the ICUC8—8 th International Conference on Urban Climate, Dublin, Ireland, 6–10 August 2012. No. 8–11. [Google Scholar]
- Pigliautile, I.; Pisello, A.L.; Bou-Zeid, E. Humans in the City: Representing Outdoor Thermal Comfort in Urban Canopy Models. Renew. Sustain. Energy Rev. 2020, 133, 110103. [Google Scholar] [CrossRef]
- Bretz, S.; Akbari, H.; Rosenfeld, A. Practical Issues for Using Solar-Reflective Materials to Mitigate Urban Heat Islands. Atmos. Environ. 1998, 32, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Akbari, H.; Konopacki, S. Calculating Energy-Saving Potentials of Heat-Island Reduction Strategies. Energy Policy 2005, 33, 721–756. [Google Scholar] [CrossRef]
- Dominnguez, S.; de la Flor, F.S. The Effect of Evaporative Techniques in Reducing Urban Heat. In Urban Climate Mitigation Techniques; Santamouris, M., Kolokotsa, D., Eds.; Routledge: London, UK, 2016. [Google Scholar]
- Zinzi, M.; Fasano, G. Properties and Performance of Advanced Reflective Paints to Reduce the Cooling Loads in Buildings and Mitigate the Heat Island Effect in Urban Areas. Int. J. Sustain. Energy 2009, 28, 123–139. [Google Scholar] [CrossRef]
- Castaldo, V.L.; Coccia, V.; Cotana, F.; Pignatta, G.; Pisello, A.L. Thermal-Energy Analysis of Natural “Cool” Stone Aggregates as Passive Cooling and Global Warming Mitigation Technique. Urban Clim. 2015, 14, 301–314. [Google Scholar] [CrossRef]
- Acero, J.A.; Arrizabalaga, J. Evaluating the Performance of ENVI-Met Model in Diurnal Cycles for Different Meteorological Conditions. Theor. Appl. Climatol. 2018, 131, 455–469. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Petitti, D.; de Lieto Vollaro, E.; Coppi, M.; de Lieto Vollaro, A. Relating Microclimate, Human Thermal Comfort and Health during Heat Waves: An Analysis of Heat Island Mitigation Strategies through a Case Study in an Urban Outdoor Environment. Sustain. Cities Soc. 2017, 30, 79–96. [Google Scholar] [CrossRef]
- Duarte, D.H.S.; Shinzato, P.; Gusson, C.d.S.; Alves, C.A. The Impact of Vegetation on Urban Microclimate to Counterbalance Built Density in a Subtropical Changing Climate. Urban Clim. 2015, 14, 224–239. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Brazel, A.J. Assessing Xeriscaping as a Sustainable Heat Island Mitigation Approach for a Desert City. Build. Environ. 2012, 47, 170–181. [Google Scholar] [CrossRef]
- Jänicke, B.; Meier, F.; Hoelscher, M.-T.; Scherer, D. Evaluating the Effects of Façade Greening on Human Bioclimate in a Complex Urban Environment. Adv. Meteorol. 2015, 2015, 747259. [Google Scholar] [CrossRef]
- Emmanuel, R.; Loconsole, A. Green Infrastructure as an Adaptation Approach to Tackling Urban Overheating in the Glasgow Clyde Valley Region, UK. Landsc. Urban Plan. 2015, 138, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Gros, A.; Bozonnet, E.; Inard, C. Cool Materials Impact at District Scale—Coupling Building Energy and Microclimate Models. Sustain. Cities Soc. 2014, 13, 254–266. [Google Scholar] [CrossRef]
- Zölch, T.; Rahman, M.A.; Pfleiderer, E.; Wagner, G.; Pauleit, S. Designing Public Squares with Green Infrastructure to Optimize Human Thermal Comfort. Build. Environ. 2019, 149, 640–654. [Google Scholar] [CrossRef]
- Gilbert, H.E.; Rosado, P.J.; Ban-Weiss, G.; Harvey, J.T.; Li, H.; Mandel, B.H.; Millstein, D.; Mohegh, A.; Saboori, A.; Levinson, R.M. Energy and Environmental Consequences of a Cool Pavement Campaign. Energy Build. 2017, 157, 53–77. [Google Scholar] [CrossRef] [Green Version]
- Mauree, D.; Coccolo, S.; Perera, A.T.D.; Nik, V.; Scartezzini, J.L.; Naboni, E. A New Framework to Evaluate Urban Design Using Urban Microclimatic Modeling in Future Climatic Conditions. Sustainability 2018, 10, 1134. [Google Scholar] [CrossRef] [Green Version]
- Naboni, E.; Natanian, J.; Brizzi, G.; Florio, P.; Chokhachian, A.; Galanos, T.; Rastogi, P. A Digital Workflow to Quantify Regenerative Urban Design in the Context of a Changing Climate. Renew. Sustain. Energy Rev. 2019, 113, 109255. [Google Scholar] [CrossRef]
Technology/Solution | Description | Albedo | Application | Ref. | |
---|---|---|---|---|---|
A | CP | ||||
Reflective paints | • Dark infrared reflective paint with hollow ceramic particles | 0.50 | ✓ | - | [28] |
• Near-infrared colored reflective paints | 0.27–0.70 | ✓ | ✓ | [29,30] | |
• High-reflective white paint | 0.80–0.90 | - | ✓ | ||
Heat reflective paints | • Covering all aggregates | 0.46–0.57 | ✓ | - | [27,31] |
• Covering surface aggregates | 0.25–0.60 | ✓ | - | [27] | |
Chip seals | High-albedo aggregates bond in liquid asphalt. It is only used on roads with low traffic volumes, and is most effective when applied on large, exposed areas, such as parking lots. | 0.29–0.44 | ✓ | ✓ | [27,32] |
Slurry seals | Mix containing asphalt emulsion, graded aggregate, additives, and water, acting as a hardwearing cover for the existing pavement. It is mainly suitable for low- volume traffic roads. | 0.30–0.45 | ✓ | ✓ | [27,32] |
Whitetopping | Resurfacing of aged pavements by a layer—around 10 cm—of light colored Portland cement concrete, often containing fibers for added strength. Appropriate method for roads with medium to high traffic volumes, and parking lots, as it is characterized by elevated structural capacity and good grip, which favors road safety. | 0.30–0.45 | ✓ | ✓ | [15,27,33,34] |
Microsurfacing | Rehabilitation technique that consists of a thin sealing layer of bituminous mixture. Light-colored materials can be used to increase the solar reflectance of asphalt. It provides a durable, highly skid-resistant surface, reduces maintenance costs, and increases the pavement life. Appropriate for roads with all conditions of vehicular traffic. | 0.35–0.65 | ✓ | - | [27,32,35] |
Technology/Solution | Description | Application | Ref. |
---|---|---|---|
Porous pavers | Present a higher porosity than conventional impermeable pavements. The presence of holes and connected pores allows water to flow through the material and to be stored when wet. The pavers generally present an interlocking structure, which can be filled with soil, gravel, or grass, the latter having the most significant cooling effect. | Non-road surfaces | [15,42] |
Permeable pavements | Are constituted by concrete or clay bricks; the blocks themselves are impermeable but are disposed to leave small openings that allow water flow. Benefits include not only the mitigation of urban temperatures, but also the reduction of stormwater runoff, and the improvement of vehicles safety thanks to the increased friction properties. | Roads and non-roads surfaces | [15,43,44] |
Pervious pavements | Special type of concrete pavements with high porosity level, which allow the flow of water. These include porous asphalt concrete, which can also be used on roads by laying a layer over the impermeable surface; this allows absorbing rainwater and diverting it to the side. Benefits encompass a cooling effect during dry periods, and road safety. | Roads and highways | [15,45] |
Water-retentive pavements | Cement- or asphalt-based pavers in which the rainwater is kept in the layer close to their upper surface by water-retentive fillers. | Roads and non-road surfaces | [37,46,47,48] |
Start date and duration of simulation | Start date | 24 July at 02:00 |
Total simulation time (h) | 30 | |
Initial meteorological conditions | Wind speed (Ws) at 10 m height (m/s) | 2.20 |
Wind direction | West–South–West | |
Simple forcing setup | Tair ( °C) | min(Tair @ 7:00) = 25.0 max(Tair @ 18:00) = 36.0 |
RH (%) | min(RH @ 18:00) = 32 max(RH @ 7:00) = 73 | |
Solar radiation and clouds | Adjustment factor for solar radiation | 1.00 |
Cover of medium clouds (octas) | 2.00 | |
Outputs of the analysis | Air temperature Relative humidity Wind speed | Tair (°C) RH (%) Ws (m/s) |
Wind direction | Wdir (°) | |
Short-wave solar radiation | IrrSW (W/m2) | |
Mean radiant temperature | Tmrt (°C) | |
Surface temperature | Ts (°C) |
Type of Pavement | Albedo | Emissivity | Volumetric Heat Capacity (J/mc K 10−6) | Thermal Conductivity (W/m K) | Ref. |
---|---|---|---|---|---|
Aged concrete | 0.18 | 0.90 | 2.083 | 1.63 | [42,65,66,67,68] |
Aged asphalt | 0.15 | 0.90 | 2.251 | 0.90 |
Type of Material | Thickness (cm) | Albedo | Emissivity | Specific Heat (J/kg K) | Thermal Conduct. (W/m K) | Density (kg/mc) | Ref | |
---|---|---|---|---|---|---|---|---|
Roofs | Bituminous membranes (new) | 0.3 | 0.50 | 0.90 | 900 | 0.23 | 1200 | [64,66,70,71,72] |
Bituminous membranes (aged) | 0.3 | 0.15 | 0.90 | 900 | 0.23 | 1200 | ||
Thermoplastic membranes—red | 0.3 | 0.40 | 0.90 | 900 | 0.23 | 1200 | ||
EPDM membranes | 0.3 | 0.65 | 0.80 | 900 | 0.23 | 1200 | ||
Metal roofing—grey | 2.0 | 0.40 | 0.10 | 4800 | 45.00 | 800 | ||
Metal roofing—white | 2.0 | 0.60 | 0.10 | 4800 | 45.00 | 800 | ||
Metal roofing—reflective | 2.0 | 0.80 | 0.10 | 4800 | 45.00 | 800 | ||
Clay tiles | 5.0 | 0.55 | 0.90 | 840 | 0.70 | 2100 | ||
Concrete | 3.0 | 0.30 | 0.90 | 840 | 1.30 | 2100 | ||
Façades | White plaster | 2.0 | 0.55 | 0.90 | 840 | 0.70 | 2100 | [64,65,66,73] |
Yellow/Pink plaster | 2.0 | 0.40 | 0.90 | 840 | 0.70 | 2100 | ||
Red/Green plaster | 2.0 | 0.30 | 0.90 | 840 | 0.70 | 2100 |
Type of Pavement | Albedo | Emissivity | Volumetric Heat Capacity (J/mc K 10−6) | Heat Conductivity (W/m K) | Ref. |
---|---|---|---|---|---|
Whitetopping | 0.40 | 0.90 | 2.083 | 1.63 | [34,64,68,77] |
Pervious concrete | 0.30 | 0.90 | 1.750 | 2.33 | [15,64,78] |
Colored asphalt | 0.27 | 0.90 | 2.214 | 1.16 | [64,79,80] |
Permeable interlocking concrete blocks | 0.50 | 0.90 | 2.000 | 2.00 | [15,64] |
Point | Ground Surface Cover | AS: Ts ( °C) | CPS: ΔTs ( °C) | |||||
---|---|---|---|---|---|---|---|---|
AS | CPS | 12:00 | 18:00 | 24:00 | 12:00 | 18:00 | 24:00 | |
P1 | Aged asphalt (N–S) | Whitetopping | 52.4 | 38.9 | 30.3 | −14.8 | −3.9 | −0.5 |
P2 | Aged asphalt (E–W, no trees) | Whitetopping | 47.1 | 40.3 | 30.1 | −12.2 | −4.8 | −0.4 |
P3 | Aged asphalt (E–W, tree line) | Whitetopping | 47.6 | 40.5 | 30.1 | −11.4 | −4.5 | −0.7 |
P4 | Aged asphalt | Pervious concrete | 47.7 | 39.4 | 30.6 | −2.9 | −0.6 | +0.2 |
P5 | Aged asphalt | Grass pavers | 47.7 | 39.5 | 30.5 | −4.3 | −3.4 | −2.2 |
P6 | Aged concrete | Colored asphalt | 49.8 | 38.9 | 30.8 | −2.3 | −1.4 | −0.9 |
P7 | Aged concrete | Permeable interlock. concrete blocks | 59.2 | 40.8 | 30.5 | −5.7 | −2.8 | −0.6 |
P8 | Grass | Grass | 42.7 | 37.2 | 27.8 | −0.5 | −0.3 | - |
Point | Roofing Material | AS—Ts ( °C) | CPS—ΔTs ( °C) | ||||
---|---|---|---|---|---|---|---|
15:00 | 18:00 | 03:00 | 15:00 | 18:00 | 03:00 | ||
R1 | Bituminous membrane (new) | 76.5 | 63.7 | 27.6 | −10.1 | −17.9 | −0.8 |
R2 | Bituminous membrane (aged) | 74.6 | 62.6 | 27.4 | −9.6 | −17.1 | −0.8 |
R3 | Clay tiles | 60.4 | 54.1 | 28.0 | −6.7 | −11.7 | −0.9 |
R4 | Concrete | 59.4 | 53.9 | 29.9 | −6.4 | −11.3 | −1.3 |
R5 | EPDM membrane | 48.9 | 44.1 | 26.6 | −4.1 | −7.2 | −0.3 |
R6 | Metal roofing—grey | 44.6 | 46.2 | 34.8 | −3.9 | −6.3 | −2.5 |
R7 | Metal roofing—white | 44.5 | 46.0 | 34.8 | −3.8 | −6.1 | −2.2 |
R8 | Metal roofing—reflective | 32.1 | 33.4 | 29.3 | −1.3 | −2.2 | −0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Croce, S.; D’Agnolo, E.; Caini, M.; Paparella, R. The Use of Cool Pavements for the Regeneration of Industrial Districts. Sustainability 2021, 13, 6322. https://doi.org/10.3390/su13116322
Croce S, D’Agnolo E, Caini M, Paparella R. The Use of Cool Pavements for the Regeneration of Industrial Districts. Sustainability. 2021; 13(11):6322. https://doi.org/10.3390/su13116322
Chicago/Turabian StyleCroce, Silvia, Elisa D’Agnolo, Mauro Caini, and Rossana Paparella. 2021. "The Use of Cool Pavements for the Regeneration of Industrial Districts" Sustainability 13, no. 11: 6322. https://doi.org/10.3390/su13116322
APA StyleCroce, S., D’Agnolo, E., Caini, M., & Paparella, R. (2021). The Use of Cool Pavements for the Regeneration of Industrial Districts. Sustainability, 13(11), 6322. https://doi.org/10.3390/su13116322