The Nexus between Big Data and Sustainability: An Analysis of Current Trends and Developments
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
4. Results
4.1. Current Situation and Evolution of the Literature on Big Data and Sustainability
4.2. Top Cited Articles on BD&S
4.3. Leading Journals in BD&S
4.4. Keywords Analysis
4.5. Reference, Journal and Author Co-citation Analysis
4.6. Bibliographic Coupling of Authors
4.7. Country and University Co-Author Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Garrigos, F.; Lapiedra, R.; Barberá, T. Social networks and Web 3.0: Their impact on the management and marketing of organizations. Manag. Decis. 2012, 50, 1880–1889. [Google Scholar] [CrossRef]
- Garrigos-Simon, F.J.; Narangajavana-Kaosiri, Y.; Lengua-Lengua, I. Tourism and Sustainability: A Bibliometric and Visualization Analysis. Sustainability 2018, 10, 1976. [Google Scholar] [CrossRef]
- Broadus, R. Toward a definition of “bibliometrics”. Scientometrics 1987, 12, 373–379. [Google Scholar] [CrossRef]
- Ahmad, I.; Ahmed, G.; Shah, S.A.A.; Ahmed, E. A decade of big data literature: Analysis of trends in light of bibliometrics. J. Supercomput. 2018, 76, 3555–3571. [Google Scholar] [CrossRef]
- Gupta, D.; Rani, R. A study of big data evolution and research challenges. J. Inf. Sci. 2019, 45, 322–340. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Y. Discovering the interdisciplinary nature of Big Data research through social network analysis and visualization. Scientometrics 2017, 112, 91–109. [Google Scholar] [CrossRef]
- Hu, F.; Liu, W.; Tsai, S.-B.; Gao, J.; Bin, N.; Chen, Q. An Empirical Study on Visualizing the Intellectual Structure and Hotspots of Big Data Research from a Sustainable Perspective. Sustainability 2018, 10, 667. [Google Scholar] [CrossRef]
- Liu, X.; Sun, R.; Wang, S.; Wu, Y.J. The research landscape of big data: A bibliometric analysis. Libr. Hi Tech 2019, 38, 367–384. [Google Scholar] [CrossRef]
- Mazieri, M.; Soares, E. Conceptualization and theorization of the Big Data. Int. J. Innov. 2016, 4, 23–41. [Google Scholar] [CrossRef]
- Peng, Y.; Shi, J.; Fantinato, M.; Chen, J. A study on the author collaboration network in big data. Inf. Syst. Front. 2017, 19, 1329–1342. [Google Scholar] [CrossRef]
- Saheb, T.; Saheb, T. Understanding the development trends of big data technologies: An analysis of patents and the cited scholarly works. J. Big Data 2020, 7, 1–26. [Google Scholar] [CrossRef]
- Aboelmaged, M.; Mouakket, S. Influencing models and determinants in big data analytics research: A bibliometric analysis. Inf. Process. Manag. 2020, 57, 102234. [Google Scholar] [CrossRef]
- Inamdar, Z.; Raut, R.; Narwane, V.S.; Gardas, B.; Narkhede, B.; Sagnak, M. A systematic literature review with bibliometric analysis of big data analytics adoption from period 2014 to 2018. J. Enterp. Inf. Manag. 2020, 34, 101–139. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Porter, A.L.; Zhang, G.; Lu, J. Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study. Technol. Forecast. Soc. Chang. 2019, 146, 795–807. [Google Scholar] [CrossRef]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.-J. A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef]
- Galetsi, P.; Katsaliaki, K. Big data analytics in health: An overview and bibliometric study of research activity. Health Inf. Libr. J. 2020, 37, 5–25. [Google Scholar] [CrossRef]
- Gu, D.; Li, J.; Li, X.; Liang, C. Visualizing the knowledge structure and evolution of big data research in healthcare informatics. Int. J. Med. Inform. 2017, 98, 22–32. [Google Scholar] [CrossRef]
- Hashem, I.A.T.; Anuar, N.B.; Gani, A.; Yaqoob, I.; Xia, F.; Khan, S.U. MapReduce: Review and open challenges. Scientometrics 2016, 109, 389–422. [Google Scholar] [CrossRef]
- Belmonte, J.L.; Segura-Robles, A.; Moreno-Guerrero, A.-J.; Parra-González, M.E. Machine Learning and Big Data in the Impact Literature. A Bibliometric Review with Scientific Mapping in Web of Science. Symmetry 2020, 12, 495. [Google Scholar] [CrossRef]
- Khanra, S.; Dhir, A.; Mäntymäki, M. Big data analytics and enterprises: A bibliometric synthesis of the literature. Enterp. Inf. Syst. 2020, 14, 737–768. [Google Scholar] [CrossRef]
- Aykroyd, R.G.; Leiva, V.; Ruggeri, F. Recent developments of control charts, identification of big data sources and future trends of current research. Technol. Forecast. Soc. Chang. 2019, 144, 221–232. [Google Scholar] [CrossRef]
- Wamba, S.F.; Mishra, D. Big data integration with business processes: A literature review. Bus. Process Manag. J. 2017, 23, 477–492. [Google Scholar] [CrossRef]
- Arunachalam, D.; Kumar, N.; Kawalek, J.P. Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice. Transp. Res. Part. E Logist. Transp. Rev. 2018, 114, 416–436. [Google Scholar] [CrossRef]
- Mishra, D.; Gunasekaran, A.; Papadopoulos, T.; Childe, S.J. Big Data and supply chain management: A review and bibliometric analysis. Ann. Oper. Res. 2018, 270, 313–336. [Google Scholar] [CrossRef]
- López-Robles, J.; Otegi-Olaso, J.; Gómez, I.P.; Cobo, M.J. 30 years of intelligence models in management and business: A bibliometric review. Int. J. Inf. Manag. 2019, 48, 22–38. [Google Scholar] [CrossRef]
- Chen, H.; Chiang, R.H.L.; Storey, V.C. Business Intelligence and Analytics: From Big Data to Big Impact. MIS Q. 2012, 36, 1165. [Google Scholar] [CrossRef]
- Liang, T.-P.; Liu, Y.-H. Research Landscape of Business Intelligence and Big Data analytics: A bibliometrics study. Expert Syst. Appl. 2018, 111, 2–10. [Google Scholar] [CrossRef]
- Batistič, S.; Van Der Laken, P. History, Evolution and Future of Big Data and Analytics: A Bibliometric Analysis of Its Relationship to Performance in Organizations. Br. J. Manag. 2019, 30, 229–251. [Google Scholar] [CrossRef]
- Rialti, R.; Marzi, G.; Ciappei, C.; Busso, D. Big data and dynamic capabilities: A bibliometric analysis and systematic literature review. Manag. Decis. 2019, 57, 2052–2068. [Google Scholar] [CrossRef]
- Vanhala, M.; Lu, C.; Peltonen, J.; Sundqvist, S.; Nummenmaa, J.; Järvelin, K. The usage of large data sets in online consumer behaviour: A bibliometric and computational text-mining–driven analysis of previous research. J. Bus. Res. 2020, 106, 46–59. [Google Scholar] [CrossRef]
- Song, M.; Kim, S.; Zhang, G.; Ding, Y.; Chambers, T. Productivity and influence in bioinformatics: A bibliometric analysis using PubMed central. J. Assoc. Inf. Sci. Technol. 2014, 65, 352–371. [Google Scholar] [CrossRef]
- Firdaus, A.; Ab Razak, M.F.; Feizollah, A.; Hashem, I.A.T.; Hazim, M.; Anuar, N.B. The rise of “blockchain”: Bibliometric analysis of blockchain study. Scientometrics 2019, 120, 1289–1331. [Google Scholar] [CrossRef]
- Ruiz-Rosero, J.; Ramirez-Gonzalez, G.; Williams, J.M.; Liu, H.; Khanna, R.; Pisharody, G. Internet of Things: A Scientometric Review. Symmetry 2017, 9, 301. [Google Scholar] [CrossRef]
- Zhang, Y.; Hua, W.; Yuan, S. Mapping the scientific research on open data: A bibliometric review. Learn. Publ. 2018, 31, 95–106. [Google Scholar] [CrossRef]
- Ivanov, D.; Tang, C.S.; Dolgui, A.; Battini, D.; Das, A. Researchers’ perspectives on Industry 4.0: Multi-disciplinary analysis and opportunities for operations management. Int. J. Prod. Res. 2021, 59, 2055–2078. [Google Scholar] [CrossRef]
- Kipper, L.M.; Furstenau, L.B.; Hoppe, D.; Frozza, R.; Iepsen, S. Scopus scientific mapping production in industry 4.0 (2011–2018): A bibliometric analysis. Int. J. Prod. Res. 2019, 58, 1605–1627. [Google Scholar] [CrossRef]
- Nazarov, D.; Klarin, A. Taxonomy of Industry 4.0 research: Mapping scholarship and industry insights. Syst. Res. Behav. Sci. 2020, 37, 535–556. [Google Scholar] [CrossRef]
- Da Costa, M.B.; dos Santos, L.M.A.L.; Schaefer, J.L.; Baierle, I.C.; Nara, E.O.B. Industry 4.0 technologies basic network identification. Scientometrics 2019, 121, 977–994. [Google Scholar] [CrossRef]
- Kulakli, A.; Osmanaj, V. Global Research on Big Data in Relation with Artificial Intelligence (A Bibliometric Study: 2008–2019). Int. J. Online Biomed. Eng. (iJOE) 2020, 16, 31–46. [Google Scholar] [CrossRef]
- Raban, D.R.; Gordon, A. The evolution of data science and big data research: A bibliometric analysis. Scientometrics 2020, 122, 1563–1581. [Google Scholar] [CrossRef]
- Nobre, G.C.; Tavares, E. Scientific literature analysis on big data and internet of things applications on circular economy: A bibliometric study. Scientometrics 2017, 111, 463–492. [Google Scholar] [CrossRef]
- Gobbo, J.A.; Busso, C.M.; Gobbo, S.C.O.; Carreão, H. Making the links among environmental protection, process safety, and industry 4.0. Process Saf. Environ. Prot. 2018, 117, 372–382. [Google Scholar] [CrossRef]
- Felsberger, A.; Reiner, G. Sustainable Industry 4.0 in Production and Operations Management: A Systematic Literature Review. Sustainability 2020, 12, 7982. [Google Scholar] [CrossRef]
- Della Corte, V.; Del Gaudio, G.; Sepe, F.; Sciarelli, F. Sustainable Tourism in the Open Innovation Realm: A Bibliometric Analysis. Sustainability 2019, 11, 6114. [Google Scholar] [CrossRef]
- Sharma, R.; Jabbour, C.J.C.; de Sousa Jabbour, A.B.L. Sustainable manufacturing and industry 4.0: What we know and what we don’t. J. Enterp. Inf. Manag. 2020, 34, 230–266. [Google Scholar] [CrossRef]
- Zhao, L.; Tang, Z.-Y.; Zou, X. Mapping the Knowledge Domain of Smart-City Research: A Bibliometric and Scientometric Analysis. Sustainability 2019, 11, 6648. [Google Scholar] [CrossRef]
- Kong, L.; Liu, Z.; Wu, J. A systematic review of big data-based urban sustainability research: State-of-the-science and future directions. J. Clean. Prod. 2020, 273, 123142. [Google Scholar] [CrossRef]
- Chalmeta, R.; Santos-Deleón, N.J. Sustainable Supply Chain in the Era of Industry 4.0 and Big Data: A Systematic Analysis of Literature and Research. Sustainability 2020, 12, 4108. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Y.; Zhang, N. Sustainable supply chain management under big data: A bibliometric analysis. J. Enterp. Inf. Manag. 2020, 34, 427–445. [Google Scholar] [CrossRef]
- Cappa, F.; Oriani, R.; Peruffo, E.; McCarthy, I. Big Data for Creating and Capturing Value in the Digitalized Environment: Unpacking the Effects of Volume, Variety, and Veracity on Firm Performance. J. Prod. Innov. Manag. 2021, 38, 49–67. [Google Scholar] [CrossRef]
- Sanchez-Planelles, J.; Segarra-Oña, M.; Peiro-Signes, A. Building a Theoretical Framework for Corporate Sustainability. Sustainability 2021, 13, 273. [Google Scholar] [CrossRef]
- Jin, X.; Wah, B.W.; Cheng, X.; Wang, Y. Significance and Challenges of Big Data Research. Big Data Res. 2015, 2, 59–64. [Google Scholar] [CrossRef]
- Guo, W. Using Semantic Web technologies for ubiquitous computing. In Proceedings of the 2008 First IEEE International Conference on Ubi-Media Computing, Lanzhou, China, 31 July–1 August 2008; pp. 377–381. [Google Scholar]
- Singh, S.; Puradkar, S.; Lee, Y. Ubiquitous computing: Connecting Pervasive computing through Semantic Web. Inf. Syst. e-Business Manag. 2006, 4, 421–439. [Google Scholar] [CrossRef]
- Alfouzan, H.I. Big Data In Business. Int. J. Sci. Eng. Res. 2015, 6, 1351–1352. [Google Scholar]
- Alsghaier, H.; Akour, M.; Shehabat, I.; Aldiabat, S. The Importance of Big Data Analytics in Business: A Case Study. Am. J. Softw. Eng. Appl. 2017, 6, 111. [Google Scholar] [CrossRef]
- Franco, S. The influence of the external and internal environments of multinational enterprises on the sustainability commitment of their subsidiaries: A cluster analysis. J. Clean. Prod. 2021, 297, 126654. [Google Scholar] [CrossRef]
- Parviainen, P.; Tihinen, M.; Kääriäinen, J.; Teppola, S. Tackling the digitalization challenge: How to benefit from digitalization in practice. Int. J. Inf. Syst. Project Manag. 2017, 5, 63–77. [Google Scholar]
- Galdon-Salvador, J.L.; Garrigos-Simon, F.J.; Gil-Pechuan, I. Improving hotel industry processes through crowdsourcing techniques. In Open Tourism: Open Innovation, Crowdsourcing and Co-Creation Challenging the Tourism Industry; Egger, R., Gula, I., Walcher, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 95–107. [Google Scholar]
- Garrigos-Simon, F.J.; Narangajavana, Y.; Galdón-Salvador, J.L. Crowdsourcing as a competitive advantage for new business models. In Strategies in E-Business; Gil-Pechuán, I., Palacios-Marqués, D., Peris Ortiz, M.P., Eds.; Springer: Boston, MA, USA, 2014; pp. 29–37. [Google Scholar]
- Garrigos-Simon, F.J.; Narangajavana, Y. From Crowdsourcing to the Use of Masscapital. The Common Perspective of the Success of Apple, Facebook, Google, Lego, TripAdvisor, and Zara. In Advances in Crowdsourcing; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–13. [Google Scholar]
- Garrigos-Simon, F.J.; Gil-Pechuán, I.; Estelles-Miguel, S. (Eds.) Advances in Crowdsourcing; Springer: Cham, Switzerland, 2015; pp. 1–183. [Google Scholar]
- Garrigos-Simon, F.J.G.; Llorente, R.; Morant, M.; Narangajavana, Y. Pervasive information gathering and data mining for efficient business administration. J. Vacat. Mark. 2016, 22, 295–306. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, Y. Big Data Analytics for Improving Financial Performance and Sustainability. J. Syst. Sci. Inf. 2021, 9, 175–191. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Papadopoulos, T.; Luo, Z.; Wamba, S.F.; Roubaud, D. Can big data and predictive analytics improve social and environmental sustainability? Technol. Forecast. Soc. Chang. 2019, 144, 534–545. [Google Scholar] [CrossRef]
- Duvnjak, K.; Gregorić, M.; Gorše, M. Sustainable development–an artificial intelligence approach. Manag. Res. Pract. 2020, 12, 18–28. [Google Scholar]
- Visconti, R.M.; Morea, D. Big Data for the Sustainability of Healthcare Project Financing. Sustainability 2019, 11, 3748. [Google Scholar] [CrossRef]
- Runting, R.K.; Phinn, S.; Xie, Z.; Venter, O.; Watson, J.E.M. Opportunities for big data in conservation and sustainability. Nat. Commun. 2020, 11, 2003. [Google Scholar] [CrossRef] [PubMed]
- Merigó, J.M.; Yang, J.B. Accounting Research: A Bibliometric Analysis. Aust. Account. Rev. 2017, 27, 71–100. [Google Scholar] [CrossRef]
- Delgado López-Cózar, E.; Robinson-García, N.; Torres-Salinas, D. The G oogle scholar experiment: How to index false papers and manipulate bibliometric indicators. J. Assoc. Inf. Sci. Technol. 2014, 65, 446–454. [Google Scholar] [CrossRef]
- Garrigos-Simon, F.J.; Narangajavana-Kaosiri, Y.; Narangajavana, Y. Quality in Tourism Literature: A Bibliometric Review. Sustainability 2019, 11, 3859. [Google Scholar] [CrossRef]
- Blanco-Mesa, F.R.B.; Merigó, J.M.; Gil Lafuente, A.M. Fuzzy decision making: A bibliometric-based review. J. Intell. Fuzzy Syst. 2017, 32, 2033–2050. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Kessler, M.M. Bibliographic coupling between scientific papers. Am. Doc. 1963, 14, 10–25. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef]
- Toole, J.L.; Eagle, N.; Plotkin, J.B. Spatiotemporal correlations in criminal offense records. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–18. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Al Nuaimi, E.; Al Neyadi, H.; Mohamed, N.; Al-Jaroodi, J. Applications of big data to smart cities. J. Internet Serv. Appl. 2015, 6, 25. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Trans. Smart Grid 2019, 10, 3125–3148. [Google Scholar] [CrossRef]
- Wang, G.; Gunasekaran, A.; Ngai, E.W.; Papadopoulos, T. Big data analytics in logistics and supply chain management: Certain investigations for research and applications. Int. J. Prod. Econ. 2016, 176, 98–110. [Google Scholar] [CrossRef]
- McAfee, A.; Brynjolfsson, E.; Davenport, T.H.; Patil, D.J.; Barton, D. Big data: The management revolution. Harv. Bus. Rev. 2012, 90, 60–68. [Google Scholar] [PubMed]
- Kitchin, R. The real-time city? Big data and smart urbanism. GeoJournal 2014, 79, 1–14. [Google Scholar] [CrossRef]
- Gunasekaran, A.; Papadopoulos, T.; Dubey, R.; Wamba, S.F.; Childe, S.J.; Hazen, B.; Akter, S. Big data and predictive analytics for supply chain and organizational performance. J. Bus. Res. 2017, 70, 308–317. [Google Scholar] [CrossRef]
- Stock, T.; Seliger, G. Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia CIRP 2016, 40, 536–541. [Google Scholar] [CrossRef]
- Reyes-Gonzalez, L.; Gonzalez-Brambila, C.N.; Veloso, F. Using co-authorship and citation analysis to identify research groups: A new way to assess performance. Scientometrics 2016, 108, 1171–1191. [Google Scholar] [CrossRef]
Nº of Citations | Nº of Articles | Accumulated Nº of Articles | % Articles | % Accumulated Articles |
---|---|---|---|---|
≥250 | 2 | 2 | 0.28 | 0.28 |
≥200 | 1 | 3 | 0.14 | 0.41 |
≥100 | 12 | 15 | 1.65 | 2.07 |
≥50 | 31 | 46 | 4.27 | 6.34 |
≥25 | 61 | 107 | 8.40 | 14.74 |
≥10 | 107 | 214 | 14.74 | 29.48 |
<10 | 512 | 726 | 70.52 | 100.00 |
Total | 726 |
R | Journal | TC | Article | Authors | Year | CY |
---|---|---|---|---|---|---|
1 | IJMT | 346 | Digital twin-driven product design, manufacturing and service with big data | Tao, Fei; Cheng, Jiangfeng; Qi, Qinglin; et ál. | 2018 | 114.33 |
2 | SCS | 266 | Smart sustainable cities of the future: An extensive interdisciplinary literature review | Bibri, Simon Elias; Krogstie, John | 2017 | 65.75 |
3 | JISA | 215 | Applications of big data to smart cities | Al Nuaimi, Eiman; Al Neyadi, Hind; Mohamed, Nader; et ál. | 2015 | 35.83 |
4 | AC | 174 | Enhancing environmental sustainability over building life cycles through green BIM: A review | Wong, Johnny; Kwok Wai; Zhou, Jason | 2015 | 28.50 |
5 | JCP | 155 | The role of Big Data in explaining disaster resilience in supply chains for sustainability | Papadopoulos, Thanos; Gunasekaran, Angappa; Dubey, Rameshwar; et ál. | 2017 | 38.75 |
6 | PSEP | 142 | Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives | Kamble, Sachin S.; Gunasekaran, Angappa; Gawankar, Shradha A. | 2018 | 46.33 |
7 | ISJ | 129 | Big Data Meet Green Challenges: Big Data Toward Green Applications | Wu, Jinsong; Guo, Song; Li, Jie; et ál. | 2016 | 25.80 |
8 | S | 129 | What Drives the Implementation of Industry 4.0? The Role of Opportunities and Challenges in the Context of Sustainability | Mueller, Julian Marius; Kiel, Daniel; Voigt, Kai-Ingo | 2018 | 42.33 |
9 | BDR | 122 | Big Data Analytics for Dynamic Energy Management in Smart Grids | Diamantoulakis, Panagiotis D.; Kapinas, Vasileios M.; Karagiannidis, George K. | 2015 | 20.33 |
10 | AAAJ | 119 | Achieving the United Nations Sustainable Development Goals: An enabling role for accounting research | Bebbington, Jan; Unerman, Jeffrey | 2018 | 39.67 |
11 | JDMM | 119 | Big data analytics for knowledge generation in tourism destinations—A case from Sweden | Fuchs, Matthias; Hoepken, Wolfram; Lexhagen, Maria | 2014 | 17.00 |
12 | AFM | 117 | Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine | Tricoli, Antonio; Nasiri, Noushin; De, Sayan | 2017 | 29.25 |
13 | ITCC | 113 | A Secure Cloud Computing Based Framework for Big Data Information Management of Smart Grid | Baek, Joonsang; Quang, Hieu Vu; Liu, Joseph K.; et ál. | 2015 | 18.83 |
14 | ITSG | 111 | Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges | Wang, Yi; Chen, Qixin; Hong, Tao; et ál. | 2019 | 55.50 |
15 | SCS | 111 | The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability | Bibri, Simon Elias | 2018 | 37.00 |
16 | IJIM | 95 | Big data reduction framework for value creation in sustainable enterprises | Rehman, Muhammad Habib Ur; Chang, Victor; Batool, Aisha; et ál. | 2016 | 19.00 |
17 | CIE | 94 | Big data analytics in supply chain management between 2010 and 2016: Insights to industries | Tiwari, Sunil; Wee, H. M.; Daryanto, Yosef | 2018 | 31.33 |
18 | JCP | 93 | Toward sustainability: using big data to explore the decisive attributes of supply chain risks and uncertainties | Wu, Kuo-Jui; Liao, Ching-Jong; Tseng, Ming-Lang; et ál. | 2017 | 23.25 |
19 | ISJ | 91 | Big Data Meet Green Challenges: Greening Big Data | Wu, Jinsong; Guo, Song; Li, Jie; et ál. | 2016 | 18.20 |
20 | SCS | 90 | Can cities become smart without being sustainable? A systematic review of the literature | Yigitcanlar, Tan; Kamruzzaman, Md.; Foth, Marcus; et ál. | 2019 | 45.00 |
R | Journal | APBS | H-BS | TAP | TCBS | ACBS | PCBS | %APBS | IF | ≥200 | ≥100 | ≥50 | ≥20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | S | 111 | 13 | 28,156 | 840 | 680 | 7.57 | 0.39 | 2.58 | 1 | 5 | 9 | |
2 | JCP | 40 | 17 | 20,733 | 885 | 778 | 22.13 | 0.19 | 7.25 | 1 | 3 | 15 | |
3 | SCS | 18 | 7 | 2476 | 600 | 462 | 33.33 | 0.73 | 5.27 | 1 | 2 | 4 | 5 |
4 | IA | 13 | 5 | 43,099 | 135 | 135 | 10.38 | 0.03 | 3.75 | 2 | |||
5 | ASTI | 11 | 1 | 87 | 2 | 2 | 0.18 | 12.64 | - | - | |||
6 | PPC | 11 | 6 | 975 | 87 | 78 | 7.91 | 1.13 | 3.61 | 1 | |||
7 | E | 8 | 6 | 20,164 | 162 | 158 | 10.88 | 0.82 | 2.70 | 2 | 5 | ||
8 | JEIM | 8 | 2 | 360 | 8 | 7 | 1.00 | 2.22 | 2.66 | 0 | |||
9 | CIE | 7 | 5 | 3849 | 279 | 263 | 39.86 | 0.18 | 4.14 | 3 | 4 | ||
10 | IJPE | 7 | 5 | 3192 | 157 | 153 | 22.43 | 0.22 | 5.13 | 1 | 3 | ||
11 | MD | 7 | 3 | 1326 | 40 | 39 | 5.71 | 0.53 | 2.72 | 1 | |||
12 | FGCS | 6 | 3 | 3589 | 106 | 106 | 17.67 | 0.17 | 6.13 | 1 | 2 | ||
13 | ISF | 6 | 2 | 807 | 31 | 30 | 5.17 | 0.74 | 3.63 | - | |||
14 | CI | 5 | 4 | 959 | 128 | 125 | 25.60 | 0.52 | 3.95 | 1 | 2 | ||
15 | IJIM | 5 | 5 | 1065 | 248 | 234 | 49.60 | 0.47 | 8.21 | 2 | 4 | ||
16 | IJLM | 5 | 3 | 398 | 65 | 60 | 13.00 | 1.26 | 3.33 | 2 | |||
17 | IJPR | 5 | 4 | 4655 | 111 | 103 | 22.20 | 0.11 | 4.58 | 3 | |||
18 | SS | 5 | 2 | 656 | 17 | 17 | 3.40 | 0.76 | 5.30 | - | |||
19 | TFSC | 5 | 4 | 2774 | 192 | 166 | 38.40 | 0.18 | 5.85 | 2 | 4 |
R | Keyword | Oc | Co |
---|---|---|---|
1 | Big Data | 407 | 1628 |
2 | Sustainability | 289 | 1338 |
3 | Management | 143 | 733 |
4 | Framework | 110 | 588 |
5 | Challenges | 80 | 458 |
6 | Big Data Analytics | 77 | 411 |
7 | Performance | 73 | 397 |
8 | Future | 70 | 424 |
9 | Model | 62 | 266 |
10 | Internet | 61 | 362 |
11 | Impact | 56 | 272 |
12 | Innovation | 56 | 303 |
13 | Design | 52 | 265 |
14 | Supply Chain Management | 49 | 292 |
15 | Technology | 49 | 251 |
16 | Industry 4.0 | 48 | 318 |
17 | Predictive Analytics | 48 | 301 |
18 | Analytics | 45 | 200 |
19 | Cities | 44 | 206 |
20 | Information | 43 | 197 |
21 | Systems | 40 | 211 |
22 | System | 35 | 151 |
23 | Smart Cities | 32 | 145 |
24 | Internet of Things | 31 | 167 |
25 | Sustainable Development | 31 | 167 |
26 | Data Analytics | 30 | 169 |
27 | Supply Chain | 30 | 174 |
28 | Circular Economy | 29 | 195 |
29 | IoT | 29 | 183 |
30 | Smart City | 9 | 23 |
Analysis | Main Clusters (Main Streams) | Nº of Items |
---|---|---|
Co-occurrence network of “all keywords” | Sustainability | 21 |
Big data | 18 | |
Management | 14 | |
Framework | 14 | |
Industry 4.0 | 6 | |
Reference co-citation analysis | Big Data management | 24 |
Sustainability issues with geographical scopes (cities, urbanism | 14 | |
Sustainable manufacturing in industry 4.0 (technological perspective) | 9 | |
Journal co-citation analysis | Sustainability and Empirical sciences (Sustainability of cities) | 34 |
Management (Information System, decisions and Operations) | 29 | |
Production Management | 16 | |
New technologies in energy | 9 | |
Authors’ co-citation analysis | Big Data (logistics and supply chain management) | 35 |
Smart sustainable cities and smart urbanism | 29 | |
Sustainable manufacturing in industry 4.0 | 25 | |
Mathematical and engineering perspective | 3 | |
Bibliographic coupling of authors | Industry 4.0 | 18 |
Smart sustainable cities | 18 | |
Big Data analytics (logistics and supply chain management) | 6 | |
Technological use of big data (mobile computing) | 5 | |
Management (big data analytics and sustainability in emerging markets) | 3 | |
Country co-author analysis | European countries | 16 |
USA-China-India-Australia | 11 | |
Malaysian and Asian Countries | 9 | |
Brazil-Chile-Japan | 3 | |
Canada-Belgium-Romania | 3 | |
England-Taiwan | 2 | |
University co-author analysis | U.Hong Kong-Chinese A.Sc. | 21 |
Norwegian U.Sc.-French universities | 21 | |
USA Universities (MIT, Stanford) | 18 | |
USA-Australian Universities (Tennessee) | 15 | |
U.Johannesbourg-Hong Kong P.U. | 13 | |
English institutions (U. Cambridge)-N.U. | 10 | |
Singapore | ||
U.Chile-U.Manchester | 9 | |
U.Melbourne | 7 | |
U.Illinois | 6 | |
Hong Kong U.Sc.T. | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrigós-Simón, F.; Sanz-Blas, S.; Narangajavana, Y.; Buzova, D. The Nexus between Big Data and Sustainability: An Analysis of Current Trends and Developments. Sustainability 2021, 13, 6632. https://doi.org/10.3390/su13126632
Garrigós-Simón F, Sanz-Blas S, Narangajavana Y, Buzova D. The Nexus between Big Data and Sustainability: An Analysis of Current Trends and Developments. Sustainability. 2021; 13(12):6632. https://doi.org/10.3390/su13126632
Chicago/Turabian StyleGarrigós-Simón, Fernando, Silvia Sanz-Blas, Yeamduan Narangajavana, and Daniela Buzova. 2021. "The Nexus between Big Data and Sustainability: An Analysis of Current Trends and Developments" Sustainability 13, no. 12: 6632. https://doi.org/10.3390/su13126632
APA StyleGarrigós-Simón, F., Sanz-Blas, S., Narangajavana, Y., & Buzova, D. (2021). The Nexus between Big Data and Sustainability: An Analysis of Current Trends and Developments. Sustainability, 13(12), 6632. https://doi.org/10.3390/su13126632