Determination of Soil Hydraulic Parameters and Evaluation of Water Dynamics and Nitrate Leaching in the Unsaturated Layered Zone: A Modeling Case Study in Central Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Locations and Soil Properties
2.2. Soil Hydraulic Parameters Estimation
2.3. Governing Flow and Transport Equations
2.4. Numerical Modeling Using HYDRUS 2D/3D: Initial and Boundary Conditions
3. Results
3.1. Variability of Soil Hydraulic Parameters
3.2. Water Flow and Nitrate Transport Modeling
4. Discussion
4.1. Variability of Soil Hydraulic Parameters and Layering Impact
4.2. Water Dynamics and Nitrate Leaching Potential
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Durner, W.; Flühler, H. Soil Hydraulic Properties. In Encyclopedia of Hydrological Sciences, 1st ed.; Anderson, M.G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Schelle, H.; Heise, L.; Jänicke, K.; Durner, W. Water retention characteristics of soils over the whole moisture range: A comparison of laboratory methods. Eur. J. Soil Sci. 2013, 64, 814–821. [Google Scholar] [CrossRef]
- Šimůnek, J. Models of Water Flow and Solute Transport in the Unsaturated Zone. In Encyclopedia of Hydrological Sciences, Part 6, 1st ed.; Anderson, M.G., Ed.; Wiley Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Durner, W.; Lipsius, K. Determining Soil Hydraulic Properties. In Encyclopedia of Hydrological Sciences, 1st ed.; Anderson, M.G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef] [Green Version]
- Vereecken, H.; Schnepf, A.; Hopmans, J.W.; Javaux, M.; Or, D.; Roose, T.; Vanderborght, J.; Young, M.H.; Amelung, W.; Aitkenhead, M.; et al. Modeling Soil Processes: Review, Key Challenges and New Perspectives. Vadose Zone J. 2016, 15, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Bodhinayake, W.; Si, B.C. Near saturated soil hydraulic properties under different land uses in the St Denis National Wildlife Area. Hydrol. Process 2004, 18, 2835–2850. [Google Scholar] [CrossRef]
- Indoria, A.K.; Sharma, K.L.; Reddy, K.S. Chapter 18—Hydraulic properties of soil under warming climate. In Climate Change and Soil Interactions; Prasad, M.N.V., Pietrzykowski, M., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; pp. 473–508. [Google Scholar] [CrossRef]
- Colombani, N.; Gervasio, M.P.; Castaldelli, G.; Mastrocicco, M. Soil conditioners effects of hydraulic properties, leaching processes and denitrification on a silty-clay soil. Sci. Total Environ. 2020, 733, 139342. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.; Kumar Ghosh, K.; Ravi, K. Impact of biochar produced from hardwood of mesquite on the hydraulic and physical properties of compacted soils for potential application in engineered structures. Geoderma 2021, 385, 114836. [Google Scholar] [CrossRef]
- Gonzalez-Sosa, E.; Braud, I.; Dehotin, J.; Lassabatère, L.; Angulo-Jaramillo, R.; Lagouy, M.; Branger, F.; Jacqueminet, C.; Kermadi, S.; Michel, K. Impact of land use on the hydraulic properties of the topsoil in a small French catchment. Hydrol. Process. 2010, 24, 2382–2399. [Google Scholar] [CrossRef] [Green Version]
- Patil, N.G.; Singh, S.K. Pedotransfer Functions for Estimating Soil Hydraulic Properties: A Review. Pedosphere 2016, 26, 417–430. [Google Scholar] [CrossRef]
- Liao, K.; Xu, S.; Wu, J.; Zhu, Q. Spatial estimation of surface soil texture using remote sensing data. Soil Sci. Plant Nutr. 2013, 59, 488–500. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J. Digital Mapping of Soil Properties Using Multivariate Statistical Analysis and ASTER Data in an Arid Region. Remote Sens. 2015, 7, 1181–1205. [Google Scholar] [CrossRef] [Green Version]
- Forkuor, G.; Hounkpatin, O.K.L.; Welp, G.; Thiel, M. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models. PLoS ONE 2017, 12, e0170478. [Google Scholar] [CrossRef] [PubMed]
- Van Looy, K.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; Pachepsky, Y.A.; Padarian, J.; et al. Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Rev. Geophys. 2017, 55, 1199–1256. [Google Scholar] [CrossRef] [Green Version]
- Becker, R.; Gebremichael, M.; Märker, M. Impact of soil surface and subsurface properties on soil saturated hydraulic conductivity in the semi-arid Walnut Gulch Experimental Watershed, Arizona, USA. Geoderma 2018, 322, 112–120. [Google Scholar] [CrossRef]
- Vigliotti, M.; Busico, G.; Ruberti, D. Assessment of the Vulnerability to Agricultural Nitrate in Two Highly Diversified Environmental Settings. Environments 2020, 7, 80. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies. Nutr. Cycl. Agroecosyst. 2002, 64, 237–256. [Google Scholar] [CrossRef]
- Wick, K.; Heumesser, C.; Schmid, E. Groundwater nitrate contamination: Factors and indicators. J. Environ. Manag. 2012, 111, 178–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letey, J.; Vaughan, P. Soil type, crop and irrigation technique affect nitrogen leaching to groundwater. Calif. Agric. 2013, 67, 231–241. [Google Scholar] [CrossRef]
- Vinod, P.N.; Chandramouli, P.N.; Koch, M. Estimation of Nitrater Leaching in Groundwater in an Agriculturally Used Area in the State Karnataka, India, Using Existing Model and GIS. Aquat. Procedia 2015, 4, 1047–1053. [Google Scholar] [CrossRef]
- Dresler, S.; Bednarek, W.; Tkaczyk, P. Effects of Soil Properties and Nitrogen Fertilization on Distribution of NO3−3 in Soils of Eastern Poland. Commun. Soil Sci. Plant Anal. 2011, 42, 2100–2111. [Google Scholar] [CrossRef]
- Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping system in Denmark. Eur. J. Agron. 2015, 62, 55–64. [Google Scholar] [CrossRef]
- Moreno, F.; Cabrera, F.; Murillo, J.M.; Fernandez, J.E.; Fernandez-Boy, E.; Cayuela, J.A. Nitrate Leaching under Irrigated Agriculture. In Sustainability of Irrigated Agriculture; Pereira, L.S., Feddes, R.A., Gilley, J.R., Lesaffre, B., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 407–415. [Google Scholar] [CrossRef]
- Hansen, E.M.; Djurhuus, J. Nitrate leaching as influenced by soil tillage and catch crop. Soil Tillage Res. 1997, 41, 203–219. [Google Scholar] [CrossRef]
- Meisinger, J.J.; Palmer, R.E.; Timlin, D.J. Effects of tillage practices on drainage and nitrate leaching from winter wheat in the Northern Atlantic Coastal-Plain USA. Soil Tillage Res. 2015, 151, 18–27. [Google Scholar] [CrossRef]
- Nolan, B.T.; Hitt, K.J.; Ruddy, B.C. Probability of Nitrate Contamination of Recently Recharged Groundwaters in the Conterminous United States. Environ. Sci. Technol. 2002, 36, 2138–2145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamdi, W.; Gamaoun, F.; Pelster, D.E.; Seffen, M. Nitrate Sorption in an Agricultural Soil Profile. Appl. Environ. Soil Sci. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, K.; Panday, D.; Mergoum, A.; Missaoui, A. Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem. Sustainability 2021, 13, 2400. [Google Scholar] [CrossRef]
- Smolders, A.J.P.; Lucassen, E.C.H.E.T.; Bobbink, R.; Roelofs, J.G.M.; Lamers, L.P.M. How nitrate leaching from agricultural land provokes phosphate eutrophication in groundwater fed wetlands: The Sulphur bridge. Biogeochemistry 2010, 98, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lawniczak, A.E.; Zbierska, J.; Nowak, B.; Achtenberg, K.; Grześkowiak, A.; Kanas, K. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environ. Monit. Assess 2016, 188. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, A.H.; Patz, J.A. Reactive nitrogen and human health: Acute and long-term implications. Ambio J. Hum. Environ. 2002, 31, 120–125. [Google Scholar] [CrossRef]
- Hanson, B.; Hopmans, J.W.; Šimůnek, J. Leaching with Subsurface Drip Irrigation under Saline, Shallow Groundwater Conditions. Vadose Zone J. 2008, 7, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Grecco, K.L.; de Miranda, J.H.; Silveira, L.K.; van Genuchten, M.T. HYDRUS-2D simulations of water and potassium movement in drip irrigated tropical soil container cultivated with sugarcane. Agric. Water Manag. 2019, 221, 334–347. [Google Scholar] [CrossRef]
- Mekala, C.; Indumathi, M.; Nambi, I.M. Experimental and Simulation Studies on Nitrogen Dynamics in Unsaturated and Saturated Soil Using HYDRUS-2D. Proc. Technol. 2016, 25, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Gärdenäs, A.I.; Hopmans, J.W.; Hanson, B.R.; Šimůnek, J. Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agric. Water Manag. 2005, 74, 219–242. [Google Scholar] [CrossRef]
- Shekofteh, H.; Majid, A.; Hajabbasi, M.A.; Iversen, B.V.; Nezamabadi-Pour, H.; Abassi, F.; Sheikholeslam, F.; Shirani, H. Modeling of Nitrate Leaching from a Potato Field using HYDRUS-2D. Commun. Soil Sci. Plant Anal. 2013, 44, 2917–2931. [Google Scholar] [CrossRef]
- Filipović, V.; Kodešová, R.; Petošić, D. Experimental and mathematical modeling of water regime and nitrate dynamics on zero tension plate lysimeters in soil influenced by high groundwater table. Nutr. Cycl. Agroecosyst. 2013, 95, 23–42. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Šimůnek, J.; Shi, H.; Hu, Q.; Zhang, Y. Evaluating soil nitrate dynamics in an intercropping dripped ecosystem using HYDRUS-2D. Sci. Total Environ. 2020, 718, 137314. [Google Scholar] [CrossRef] [Green Version]
- Filipović, V.; Romić, D.; Romić, M.; Borošić, J.; Filipović, L.; Mallmann, F.J.K.; Robinson, D.A. Plastic mulch and nitrogen fertigation in growing vegetables modify soil temperature, water and nitrate dynamics: Experimental results and a modeling study. Agric. Water Manag. 2016, 176, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Državni Hidrometeorološki Zavod (engl. Croatian Meteorological and Hydrological Service). Available online: https://meteo.hr (accessed on 15 April 2021).
- Hrvatske Vode. Pragovi u Koritu Rijeke Save na Dionici Ivanja Reka–Jarun. Elaborat Zaštite Okoliša (Engl. Environmental Study). Available online: https://eko.zagreb.hr/UserDocsImages/arhiva/dokumenti/okoli%C5%A1/procjena%20utjecaja%20na%20okoli%C5%A1/pragovi%20na%20savi_ivanja%20reka-jarun/pragovi%20na%20savi_elaborat.pdf (accessed on 10 June 2021).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soil and Creating Legends for Soil Maps; World Soil Resources Report; FAO: Rome, Italy, 2014; p. 106. [Google Scholar]
- ISO 11272:1998. Soil Quality—Determination of Dry Bulk Density. Available online: https://www.iso.org/standard/19250.html (accessed on 10 June 2021).
- ISO 11277:2009. Soil quality—Determination of particle size distribution in mineral soil material—Method by sieving and sedimentation. Available online: https://www.iso.org/standard/54151.html (accessed on 10 June 2021).
- ISO 14235:1998. Soil quality—Determination of organic carbon by sulfochromic oxidation. Available online: https://www.iso.org/standard/23140.html (accessed on 10 June 2021).
- FAO. Guidelines for Soil Profile Description, 4th ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; p. 97. [Google Scholar]
- Flint, L.E.; Flint, A.L. Total porosity. In Methods of Soil Analysis; Book Series No. 5; Part 4. Physical Methods; Soil Science Society of America: Madison, WI, USA, 2002; pp. 242–243. [Google Scholar]
- Schindler, U.; Müller, L. Soil hydraulic functions of international soils measured with the Extended Evaporation Method (EEM) and the HYPROP device. Open Data J. Agric. Res. 2017, 3, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Haghverdi, A.; Öztürk, H.S.; Durner, W. Measurement and Estimation of the Soil Water Retention Curve Using Evaporation Method and Pseudo Continuous Pedotransfer Function. J. Hydrol. 2018, 563, 251–259. [Google Scholar] [CrossRef]
- UMS. Manual HYPROP, Version 2015_01, 2015, 96 pp. UMS GmbH, Gmunder Straße 37, Munich, Germany. Available online: http://library.metergroup.com/Manuals/UMS/Hyprop_Manual.pdf (accessed on 18 February 2021).
- Schindler, U.; Durner, W.; von Unold, G.; Müller, L.; Wieland, R. The evaporation method: Extending the measurement range of soil hydraulic properties using the air-entry pressure of the ceramic cup. J. Plant Nutr. Soil Sci. 2010, 173, 563–572. [Google Scholar] [CrossRef]
- Pertassek, T.; Peters, A.; Durner, W. HYPROP Data Evaluation Software User’s Manual, V.1.0, 2011, UMS GmbH. Available online: http://library.metergroup.com/Manuals/UMS/HYPROP-FIT_Manual.pdf (accessed on 18 February 2021).
- Van Genuchten, M.T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Šimůnek, J.; Šejna, M.; Saito, H.; van Genuchten, M.T. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Version 4.0; Department of Environmental Sciences, University of California Riverside: Riverside, CA, USA, 2009. [Google Scholar]
- Agah, A.E.; Wyseure, G. Numerical Modeling of Transport and Transformation of Synthetic Wastewater in Irrigated Soils Using HYDRUS-1D. Int. J. Agric. Biol. 2013, 15, 541–546. [Google Scholar]
- Karandish, F.; Šimůnek, J. A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint. Agric. Water Manag. 2019, 213, 809–820. [Google Scholar] [CrossRef] [Green Version]
- Shan, G.; Sun, Y.; Zhou, H.; Lammers, P.S.; Grantz, D.A.; Xue, X.; Wang, Z. A horizontal mobile dielectric sensor to assess dynamic soil water content and flows: Direct measurements under drip irrigation compared with HYDRUS-2D model simulation. Biosyst. Eng. 2019, 179, 13–21. [Google Scholar] [CrossRef]
- Matteau, J.P.; Gumiere, S.J.; Gallichand, J.; Létourneau, G.; Khiari, L.; Gasser, M.O.; Michaud, A. Coupling of a nitrate production model with HYDRUS to predict nitrate leaching. Agric. Water Manag. 2019, 213, 616–626. [Google Scholar] [CrossRef]
- Robinson, D.A.; Hopmans, J.W.; Filipović, V.; van der Ploeg, M.; Lebron, I.; Jones, S.B.; Reinsch, S.; Jarvis, N.; Tuller, M. Global environmental changes impact soil hydraulic functions through biophysical feedbacks. Glob. Chang. Biol. 2019, 25, 1895–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Yang, R.; Guo, S.; Li, Q. Modeling fertilization impacts on nitrate leaching and groundwater contamination with HYDRUS-1D and MT3DMS. Paddy Water Environ. 2020, 44, 2917–2931. [Google Scholar] [CrossRef]
- Reichert, J.M.; Albuquerque, J.A.; Peraza, J.E.S.; da Costa, A. Estimating water retention and availability in cultivated soils of southern Brazil. Geoderma Reg. 2020, 21, e00277. [Google Scholar] [CrossRef]
- Mashalaba, L.; Galleguillos, M.; Seguel, O.; Poblete-Olivares, J. Predicting spatial variability of selected soil properties using digital soil mapping in a rainfed vineyard of central Chile. Geoderma Reg. 2020, 22, e00289. [Google Scholar] [CrossRef]
- Vereecken, H.; Weihermüller, L.; Assouline, S.; Šimůnek, J.; Verhoef, A.; Herbst, M.; Archer, N.; Mohanty, B.; Montzka, C.; Vanderborght, J.; et al. Infiltration from the Pedon to Global Grid Scales: An Overview and Outlook for Land Surface Modeling. Vadose Zone J. 2019, 18, 1–53. [Google Scholar] [CrossRef]
- Capowiez, Y.; Gilbert, F.; Vallat, A.; Poggiale, J.C.; Bonzom, J.M. Depth distribution of soil organic matter and burrowing activity of earthworms—mesocosm study using X-ray tomography and luminophores. Biol. Fertil. Soils 2021, 57, 337–346. [Google Scholar] [CrossRef]
- Sokołowska, J.; Józefowska, A.; Woźnica, K.; Zaleski, T. Interrelationship between soil depth and soil properties of Pieniny National Park forest (Poland). J. Mt. Sci. 2019, 16, 1534–1545. [Google Scholar] [CrossRef]
- Fu, Y.; Tian, Z.; Amoozegar, A.; Heitman, J. Measuring dynamic changes of soil porosity during compaction. Soil Tillage Res. 2019, 193, 114–121. [Google Scholar] [CrossRef]
- Ranjit Kumar, M.; Meenambal, T.; Kumar, V. Macropore flow as a groundwater component in hydrologic simulation: Modelling, applications and results. Curr. Sci. 2017, 112, 1197–1207. [Google Scholar] [CrossRef]
- Perrone, J.; Madramootoo, C.A. Characterizing bulk density and hydraulic conductivity changes in a potato cropped field. Soil Technol. 1994, 7, 261–268. [Google Scholar] [CrossRef]
- Kool, D.; Tong, B.; Tian, Z.; Heitman, J.L.; Sauer, T.J.; Horton, R. Soil water retention and hydraulic conductivity dynamics following tillage. Soil Tillage Res. 2019, 193, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Rousseva, S.; Torri, D.; Pagliai, M. Effect of rain on the macroporosity at the soil surface. Eur. J. Soil Sci. 2002, 53, 83–93. [Google Scholar] [CrossRef]
- Hwang, H.T.; Jeen, S.W.; Suleiman, A.; Lee, K.K. Comparison of Saturated Hydraulic Conductivity Estimated by Three Different Methods. Water 2017, 9, 942. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shao, M.; Liu, Z.; Horton, R. Regional-scale variation and distribution patterns of soil saturated hydraulic conductivities in surface and subsurface layers in the loessial soils of China. J. Hydrol. 2013, 487, 13–23. [Google Scholar] [CrossRef]
- Nemes, A.; Rawls, W.J.; Pachepsky, Y.A. Influence of Organic Matter on the Estimation of Saturated Hydraulic Conductivity. Soil Sci. Soc. Am. J. 2005, 69, 1330–1337. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Yolcu, G.; Uysal, H.; Lado, M.; Paz, A. Soil structure changes: Aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions. Aust. J. Soil Res. 2009, 47, 688–696. [Google Scholar] [CrossRef]
- Kuncoro, P.H.; Koga, K.; Satta, N.; Muto, Y. A study on the effect of compaction on transport properties of soil and water I: Relative gas diffusivity, air permeability, and saturated hydraulic conductivity. Soil Tillage Res. 2014, 143, 172–179. [Google Scholar] [CrossRef]
- Côté, J.; Fillion, M.H.; Konrad, J.M. Estimating Hydraulic and Thermal Conductivities of Crushed Granite Using Porosity and Equivalent Particle Size. J. Geotech. Geoenviron. Eng. 2011, 137, 834–842. [Google Scholar] [CrossRef]
- Keren, R.; Ben-Hur, M. Interaction effects of clay swelling and dispersion and CaCO3 content on saturated hydraulic conductivity. Aust. J. Soil Res. 2003, 41, 979–989. [Google Scholar] [CrossRef]
- Zeng, L.; Hu, S.; Xiang, D.; Zhang, X.; Li, D.; Li, L.; Zhang, T. Multilayer Soil Moisture Mapping at a Regional Scale from Multisource Dana via a Machine Learning Method. Remote Sens. 2019, 11, 284. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.D.; Albuquerque, J.A.; Costa, A.; Pértile, P.; Silva, F.R. Water retention and availability in soils of the State of Santa Catarina-Brazil: Effect of textural classes, soil classes and lithology. Rev. Bras. Ciênc. Solo 2013, 37, 1535–1548. [Google Scholar] [CrossRef] [Green Version]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson Education: New York, NY, USA, 2017. [Google Scholar]
- Hallaq, A.H.A. Impact of Soil Texture on Nitrates Leaching into the North Governorate, Gaza Strip, Groundwater. J. Soc. Sci. 2010, 38, 1–37. [Google Scholar]
- Prakash, K.; Sridharan, A. Permeability of Layered Soils: An Extended Study. Geotech. Geol. Eng. 2013, 31, 1639–1644. [Google Scholar] [CrossRef]
- Liu, S.; Qin, T.; Dong, B.; Shi, X.; Lv, Z.; Zhang, G. The Influence of Climate, Soil Properties and Vegetation on Soil Nitrogen in Sloping Farmland. Sustainability 2021, 13, 1480. [Google Scholar] [CrossRef]
Locations | Depth [cm] | Texture | Munsell Color Chart | CaCO3 Content [%] | Porosity [% vol.] | Bulk Density [g cm−3] | Corg [g kg−1] | |||
---|---|---|---|---|---|---|---|---|---|---|
Coarse Sand | Fine Sand | Silt | Clay | |||||||
P−1 | 0–25 | 1.9 | 6.3 | 74.3 | 17.5 | 2.5Y5/3 | - | 52.2 | 1.22 | 24.01 |
25–55 | 0.8 | 7.7 | 73.9 | 17.6 | 2.5Y6/3 | 7.3 | 49.3 | 1.33 | 11.43 | |
55–100 | 1.2 | 9.2 | 75.9 | 13.7 | 2.5Y6/6 | 5.7 | 47.6 | 1.38 | 8.12 | |
P−2 | 0–30 | 0.6 | 2.2 | 77.8 | 19.4 | 2.5Y6/2 | 22.7 | 49.8 | 1.31 | 22.97 |
30–85 | 1.6 | 1.1 | 82.8 | 14.5 | 2.5Y6/3 | 26.2 | 43.9 | 1.43 | 8.87 | |
85–110 | 1.3 | 6.1 | 81.7 | 10.9 | 2.5Y7/4 | 27.7 | 46.3 | 1.45 | 7.08 | |
P−3 | 0–30 | 8.0 | 16.4 | 62.0 | 13.6 | 2.5Y5/3 | 19.9 | 49.4 | 1.33 | 16.36 |
30–78 | 0.8 | 3.9 | 75.9 | 19.4 | 2.5Y7/3 | 22.0 | 44.3 | 1.47 | 10.67 | |
78–110 | 0.6 | 34.8 | 57 | 7.6 | 2.5Y6/3 | 25.0 | 49.1 | 1.38 | 4.52 | |
P−4 | 0–42 | 1.2 | 15.6 | 67.0 | 16.2 | 2.5Y5/3 | 12.4 | 46.3 | 1.43 | 14.09 |
42–82 | 0.3 | 9.5 | 75.8 | 14.4 | 2.5Y7/4 | 20.4 | 44.1 | 1.50 | 5.57 | |
82–110 | 0.9 | 3.7 | 81.1 | 14.3 | 2.5Y7/3 | 28.3 | 43.8 | 1.50 | 4.52 |
Profile | Sampling Depth [cm] | Depth [cm] | θr [cm3 cm−3] | θs [cm3 cm−3] | α [1 cm−1] | n | Ks [cm day−1] | RMSE_θ | RMSE_K | R2_θ | R2_K |
---|---|---|---|---|---|---|---|---|---|---|---|
P−1 | 10−15 | 0−25 | 0.000 | 0.535 | 0.10310 | 1.200 | 909.2 | 0.0100 | 0.3246 | 0.9301 | 0.9369 |
10−15 | 0−25 | ||||||||||
75−80 | 55−100 | 0.000 | 0.486 | 0.01150 | 1.278 | 17.2 | 0.0073 | 0.1320 | 0.8777 | 0.8665 | |
75−80 | 55−100 | ||||||||||
P−2 | 15−20 | 0−30 | 0.000 | 0.459 | 0.00959 | 1.200 | 5.8 | 0.0088 | 0.3562 | 0.8561 | 0.8883 |
15−20 | 0−30 | ||||||||||
95−100 | 85−110 | 0.000 | 0.471 | 0.00778 | 1.288 | 6.2 | 0.0042 | 0.0808 | 0.8663 | 0.8531 | |
95−100 | 85−110 | ||||||||||
P−3 | 15−20 | 0−30 | 0.000 | 0.499 | 0.08460 | 1.200 | 990.9 | 0.0033 | 0.1877 | 0.9220 | 0.9367 |
90−95 | 78−110 | 0.123 | 0.452 | 0.01350 | 1.736 | 13.8 | 0.0034 | 0.1386 | 0.8469 | 0.8392 | |
90−95 | 78−110 | ||||||||||
P−4 | 25−30 | 0−42 | 0.000 | 0.428 | 0.47400 | 1.200 | 113.3 | 0.0066 | 0.3957 | 0.9098 | 0.9232 |
25−30 | 0−42 | ||||||||||
90−95 | 82−110 | 0.000 | 0.422 | 0.00218 | 1.210 | 3.0 | 0.0087 | 0.2609 | 0.8137 | 0.8245 | |
90−95 | 82−110 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Defterdarović, J.; Filipović, L.; Kranjčec, F.; Ondrašek, G.; Kikić, D.; Novosel, A.; Mustać, I.; Krevh, V.; Magdić, I.; Rubinić, V.; et al. Determination of Soil Hydraulic Parameters and Evaluation of Water Dynamics and Nitrate Leaching in the Unsaturated Layered Zone: A Modeling Case Study in Central Croatia. Sustainability 2021, 13, 6688. https://doi.org/10.3390/su13126688
Defterdarović J, Filipović L, Kranjčec F, Ondrašek G, Kikić D, Novosel A, Mustać I, Krevh V, Magdić I, Rubinić V, et al. Determination of Soil Hydraulic Parameters and Evaluation of Water Dynamics and Nitrate Leaching in the Unsaturated Layered Zone: A Modeling Case Study in Central Croatia. Sustainability. 2021; 13(12):6688. https://doi.org/10.3390/su13126688
Chicago/Turabian StyleDefterdarović, Jasmina, Lana Filipović, Filip Kranjčec, Gabrijel Ondrašek, Diana Kikić, Alen Novosel, Ivan Mustać, Vedran Krevh, Ivan Magdić, Vedran Rubinić, and et al. 2021. "Determination of Soil Hydraulic Parameters and Evaluation of Water Dynamics and Nitrate Leaching in the Unsaturated Layered Zone: A Modeling Case Study in Central Croatia" Sustainability 13, no. 12: 6688. https://doi.org/10.3390/su13126688
APA StyleDefterdarović, J., Filipović, L., Kranjčec, F., Ondrašek, G., Kikić, D., Novosel, A., Mustać, I., Krevh, V., Magdić, I., Rubinić, V., Bogunović, I., Dugan, I., Čopec, K., He, H., & Filipović, V. (2021). Determination of Soil Hydraulic Parameters and Evaluation of Water Dynamics and Nitrate Leaching in the Unsaturated Layered Zone: A Modeling Case Study in Central Croatia. Sustainability, 13(12), 6688. https://doi.org/10.3390/su13126688