Evaluation of Thermal Comfort Performance of a Vertical Garden on a Glazed Façade and Its Effect on Building and Urban Scale, Case Study: An Office Building in Barcelona
Abstract
:1. Introduction
2. Methodology
2.1. Climate Characterization
2.2. Model Validation
2.3. Model Characterization
2.3.1. Evaluation of Daylight and Solar
- Threshold < 2.00 DF = 19.70% in bare façade;
- Threshold < 2.00 DF = 40.94% in green façade.
2.3.2. Predicted Mean Vote (PMV)
2.3.3. Mean Radiant Temperature
2.3.4. Air Temperature
3. Results and Discussion
3.1. Thermal Comfort
3.2. Energy Consumption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wong, N.H.; Tan, A.Y.K.; Chen, Y.; Sekar, K.; Tan, P.Y.; Chan, D.; Chiang, K.; Wong, N.C. Thermal evaluation of vertical greenery systems for building walls. Build. Environ. 2010, 45, 663–672. [Google Scholar] [CrossRef]
- Ottelé, M.; van Bohemen, H.D.; Fraaij, A.L. Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecol. Eng. 2010, 36, 154–162. [Google Scholar] [CrossRef]
- Hashemi, S.S.G.; Bin Mahmud, H.; Ashraf, M.A. Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review. Renew. Sustain. Energy Rev. 2015, 52, 669–679. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; Rossi, F.D.; Turni, G.; Vanoli, G.P. Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning? Appl. Energy 2013, 104, 845–859. [Google Scholar] [CrossRef]
- Ardente, F.; Beccali, M.; Cellura, M.; Mistretta, M. Energy and environmental benefits in public buildings as a result of retrofit actions. Renew. Sustain. Energy Rev. 2011, 15, 460–470. [Google Scholar] [CrossRef]
- Luederitz, C.; Lang, D.J.; Von Wehrden, H. A systematic review of guiding principles for sustainable urban neighborhood development. Landsc. Urban Plan. 2013, 118, 40–52. [Google Scholar] [CrossRef]
- CWSA. CWSA Annual Report; Central Water & Sewerage Authority: Kingstown, Caribbean, 2012; pp. 1–28. [Google Scholar]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Susorova, I.; Bahrami, P. Facade-integrated Vegetation as an Environmental Sustainable Solution for Energy-eicient Buildings. Build. Environ. 2014, 76, 113–124. [Google Scholar] [CrossRef]
- Djedjig, R.; Bozonnet, E.; Belarbi, R. Experimental study of the urban microclimate mitigation potential of green roofs and green walls in street canyons. Int. J. Low-Carbon Technol. 2013, 10, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Zinzi, M.; Agnoli, S. Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy Build. 2012, 55, 66–76. [Google Scholar] [CrossRef]
- Synnefa, A.; Dandou, A.; Santamouris, M.; Tombrou, M.; Soulakellis, N. On the Use of Cool Materials as a Heat Island Mitigation Strategy. J. Appl. Meteorol. Clim. 2008, 47, 2846–2856. [Google Scholar] [CrossRef]
- Hunter, A.M.; Williams, N.S.; Rayner, J.P.; Aye, L.; Hes, D.; Livesley, S.J. Quantifying the thermal performance of green façades: A critical review. Ecol. Eng. 2014, 63, 102–113. [Google Scholar] [CrossRef]
- Eumorfopoulou, E.; Kontoleon, K. Experimental approach to the contribution of plant-covered walls to the thermal behaviour of building envelopes. Build. Environ. 2009, 44, 1024–1038. [Google Scholar] [CrossRef]
- Cheng, C.; Cheung, K.K.; Chu, L. Thermal performance of a vegetated cladding system on facade walls. Build. Environ. 2010, 45, 1779–1787. [Google Scholar] [CrossRef]
- Ascione, F.; De Masi, R.F.; Mastellone, M.; Ruggiero, S.; Vanoli, G.P. Green Walls, a Critical Review: Knowledge Gaps, Design Parameters, Thermal Performances and Multi-Criteria Design Approaches. Energies 2020, 13, 2296. [Google Scholar] [CrossRef]
- Kontoleon, K.; Eumorfopoulou, E. The effect of the orientation and proportion of a plant-covered wall layer on the thermal performance of a building zone. Build. Environ. 2010, 45, 1287–1303. [Google Scholar] [CrossRef]
- Moghaddam, F.; Mir, J.F.; Yanguas, A.B.; Delgado, I.N.; Dominguez, E.R. Building Orientation in Green Facade Performance and Its Positive Effects on Urban Landscape Case Study: An Urban Block in Barcelona. Sustainability 2020, 12, 9273. [Google Scholar] [CrossRef]
- Djedjig, R.; Belarbi, R.; Bozonnet, E.; Crépeau, A.M.; Rochelle, L. Experimental Study of a Green Wall System Effects in Urban Canyon Scene. In Proceedings of the Clima 2013. 11th REHVA World Congress and 8th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings, Prague, Czech Republic, 16–19 June 2013; Volume 16, pp. 1–9. [Google Scholar]
- Susorova, I.; Angulo, M.; Bahrami, P.; Stephens, B. A model of vegetated exterior facades for evaluation of wall thermal performance. Build. Environ. 2013, 67, 1–13. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Pulselli, R.M.; Mazzali, U.; Peron, F.; Bastianoni, S. Emergy based evaluation of environmental performances of Living Wall and Grass Wall systems. Energy Build. 2014, 73, 200–211. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Martorell, I.; Cabeza, L.F. Vertical Greenery Systems (VGS) for energy saving in buildings: A review. Renew. Sustain. Energy Rev. 2014, 39, 139–165. [Google Scholar] [CrossRef] [Green Version]
- Hoelscher, M.-T.; Nehls, T.; Jänicke, B.; Wessolek, G. Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy Build. 2016, 114, 283–290. [Google Scholar] [CrossRef]
- Safikhani, T.; Abdullah, A.M.; Ossen, D.R.; Baharvand, M. A review of energy characteristic of vertical greenery systems. Renew. Sustain. Energy Rev. 2014, 40, 450–462. [Google Scholar] [CrossRef]
- Liscum, E.; Askinosie, S.K.; Leuchtman, D.L.; Morrow, J.; Willenburg, K.T.; Coats, D.R. Phototropism: Growing towards an Understanding of Plant Movement. Plant Cell 2014, 26, 38–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Othman, A.R.; Sahidin, N. Vertical Greening Façade as Passive Approach in Sustainable Design. Procedia Soc. Behav. Sci. 2016, 222, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Susorova, I.; Azimi, P.; Stephens, B. The effects of climbing vegetation on the local microclimate, thermal performance, and air infiltration of four building facade orientations. Build. Environ. 2014, 76, 113–124. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Fraaij, A.; Haas, E.; Raiteri, R. Vertical greening systems and the effect on air flow and temperature on the building envelope. Build. Environ. 2011, 46, 2287–2294. [Google Scholar] [CrossRef]
- Cameron, R.W.; Taylor, J.E.; Emmett, M.R. What’s ‘cool’ in the world of green façades? How plant choice influences the cooling properties of green walls. Build. Environ. 2014, 73, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Alexandri, E.; Jones, P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ. 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Coma, J.; Pérez, G.; Solé, C.; Castell, A.; Cabeza, L.F. New Green Facades as Passive Systems for Energy Savings on Buildings. Energy Procedia 2014, 57, 1851–1859. [Google Scholar] [CrossRef] [Green Version]
- Mazzali, U.; Peron, F.; Romagnoni, P.; Pulselli, R.M.; Bastianoni, S. Experimental investigation on the energy performance of Living Walls in a temperate climate. Build. Environ. 2013, 64, 57–66. [Google Scholar] [CrossRef]
- Scarpa, M.; Mazzali, U.; Peron, F. Modeling the energy performance of living walls: Validation against field measurements in temperate climate. Energy Build. 2014, 79, 155–163. [Google Scholar] [CrossRef]
- Mazzali, U.; Peron, F.; Scarpa, M. Thermo-physical performances of living walls via field measurements and numerical analysis. Eco-Archit. IV 2012, 165, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Chu, L. Energy saving potential and life cycle environmental impacts of a vertical greenery system in Hong Kong: A case study. Build. Environ. 2016, 96, 293–300. [Google Scholar] [CrossRef]
- Davis, M.M.; Hirmer, S. The potential for vertical gardens as evaporative coolers: An adaptation of the ‘Penman Monteith Equation’. Build. Environ. 2015, 92, 135–141. [Google Scholar] [CrossRef]
- Hoffmann, S.; Jedek, C.; Arens, E. Assessing thermal comfort near glass facades with new tools. In Proceedings of the BEST 3 Building Enclosure Science and Technology Conference, Atlanta, GA, USA, 1 April 2012. [Google Scholar]
- Ottelé, M. The Green Building Envelope Vertical Greening; Delf University of Technology: Delft, The Netherlands, 2011. [Google Scholar]
- Perini, K.; Bazzocchi, F.; Croci, L.; Magliocco, A.; Cattaneo, E. The use of vertical greening systems to reduce the energy demand for air conditioning. Field monitoring in Mediterranean climate. Energy Build. 2017, 143, 35–42. [Google Scholar] [CrossRef]
- Olivieri, F.; Neila, J. Experimental study of the thermal-energy performance of an insulated vegetal façade under summer conditions in a continental mediterranean climate. Build. Environ. 2014, 77, 61–76. [Google Scholar] [CrossRef]
- Rosasco, P.; Perini, K. Evaluating the economic sustainability of a vertical greening system: A Cost-Benefit Analysis of a pilot project in mediterranean area. Build. Environ. 2018, 142, 524–533. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Solecki, W.; Parshall, L.; Gaffin, S.; Lynn, B.; Goldberg, R.; Cox, J.; Hodges, S. Mitigating New York City’s heat island with urban forestry, living roofs, and light surfaces. In Proceedings of the 86th AMS Annual Meeting, Atlanta, GA, USA, 30 January 2006. [Google Scholar]
- Chokhachian, A.; Perini, K.; Dong, S.; Auer, T. How Material Performance of Building Façade Affect Urban Microclimate. In Proceedings of the Powerskin 2017, Munich, Germany, 19 January 2017. [Google Scholar]
- Wong, N.; Cheong, D.; Yan, H.; Soh, J.; Ong, C.; Sia, A. The effects of rooftop garden on energy consumption of a commercial building in Singapore. Energy Build. 2003, 35, 353–364. [Google Scholar] [CrossRef]
- Thermal Installations in Buildings Regulations ‘Reglamento de Instalaciones Térmicas en los Edificios’ (RITE), Energy and Sustainable Development. 10 March. Available online: https://energia.gob.es/desarrollo/EficienciaEnergetica/RITE/Paginas/InstalacionesTermicas.aspx (accessed on 10 March 2021).
- Calleja, H. NTP 501: Ambiente térmico: Inconfort térmico local; Instituto Nacional de Seguridad e Higiene en el Trabajo (INSHT): Madrid, Spain, 1998. [Google Scholar]
- Pardo, J.E.; Mejías, A.; Sartal, A. Assessing the Importance of Biomass-Based Heating Systems for More Sustainable Buildings: A Case Study Based in Spain. Energies 2020, 13, 1025. [Google Scholar] [CrossRef] [Green Version]
- CIBSE/SLL. Code for Lighting; Butterworth-Heinemann: Oxford, UK, 2002. [Google Scholar]
- Altan, H.; Ward, I.; Mohelnáková, J.; Vajkay, F. Daylight, Solar Gains and Overheating Studies in a Glazed Office Building. Int. J. Energy Environ. 2008, 2, 129–138. [Google Scholar]
- CEN European Daylight Standard. (EN 17037) EPBD 2018: Daylight Must Be Considered; no. En 17037; EC: Copenhagen, Denmark, 2018. [Google Scholar]
- Sarbu, I.; Sebarchievici, C. Aspects of indoor environmental quality assessment in buildings. Energy Build. 2013, 60, 410–419. [Google Scholar] [CrossRef]
- Atmaca, I.; Kaynakli, O.; Yigit, A. Effects of radiant temperature on thermal comfort. Build. Environ. 2007, 42, 3210–3220. [Google Scholar] [CrossRef]
- Kang, D.H.; Mo, P.H.; Choi, D.H.; Song, S.Y.; Yeo, M.S.; Kim, K.W. Effect of MRT variation on the energy consumption in a PMV-controlled office. Build. Environ. 2010, 45, 1914–1922. [Google Scholar] [CrossRef]
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hours of light | 10 | 11 | 12 | 13 | 15 | 15 | 15 | 14 | 12 | 11 | 10 | 9 |
Hours of twilight/night | 14 | 13 | 12 | 11 | 9 | 9 | 9 | 10 | 12 | 13 | 14 | 15 |
December | June | |||
---|---|---|---|---|
Min | Max | Min | Max | |
Bare Façade | 16 °C | 23.5 °C | 23.4 °C | 31.3 °C |
Green Façade | 17.5 °C | 23.5 °C | 22 °C | 26 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagheri Moghaddam, F.; Fort Mir, J.M.; Navarro Delgado, I.; Redondo Dominguez, E. Evaluation of Thermal Comfort Performance of a Vertical Garden on a Glazed Façade and Its Effect on Building and Urban Scale, Case Study: An Office Building in Barcelona. Sustainability 2021, 13, 6706. https://doi.org/10.3390/su13126706
Bagheri Moghaddam F, Fort Mir JM, Navarro Delgado I, Redondo Dominguez E. Evaluation of Thermal Comfort Performance of a Vertical Garden on a Glazed Façade and Its Effect on Building and Urban Scale, Case Study: An Office Building in Barcelona. Sustainability. 2021; 13(12):6706. https://doi.org/10.3390/su13126706
Chicago/Turabian StyleBagheri Moghaddam, Faezeh, Josep Maria Fort Mir, Isidro Navarro Delgado, and Ernesto Redondo Dominguez. 2021. "Evaluation of Thermal Comfort Performance of a Vertical Garden on a Glazed Façade and Its Effect on Building and Urban Scale, Case Study: An Office Building in Barcelona" Sustainability 13, no. 12: 6706. https://doi.org/10.3390/su13126706
APA StyleBagheri Moghaddam, F., Fort Mir, J. M., Navarro Delgado, I., & Redondo Dominguez, E. (2021). Evaluation of Thermal Comfort Performance of a Vertical Garden on a Glazed Façade and Its Effect on Building and Urban Scale, Case Study: An Office Building in Barcelona. Sustainability, 13(12), 6706. https://doi.org/10.3390/su13126706