A Method of Evaluating Apple Juice Adulteration with Sucrose Based on Its Electrical Properties and RCC Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physicochemical Parameters
2.2. Electrical Measurements
- A glass container (L × In × H: 94 × 55 × 80 mm) equipped with two plate electrodes made of stainless steel, mounted on the two opposite smaller walls of the container;
- A stainless-steel container equipped with a water jacket that was coupled to a thermostat (PolyScience, USA);
- An HP 4263B LCR meter (Hewlett Packard, USA).
2.3. Statistical Analysis
3. Results and Discussion
3.1. Changes in the Physicochemical and Conductivity Parameters
3.2. Changes in Capacitance Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thavarajah, P.; Low, N.H. Adulteration of apple with pear juice: Emphasis on major carbohydrates, proline, and arbutin. J. Agric. Food Chem. 2006, 54, 4861–4867. [Google Scholar] [CrossRef] [PubMed]
- Magdas, D.A.; Cristea, G.; Puscas, R.; Tusa, F. The use of isotope ratios in commercial fruit juices authentication. Rom. J. Phys. 2014, 59, 355–359. [Google Scholar] [CrossRef]
- Spinelli, F.R.; Dutra, S.V.; Carnieli, G.; Leonardelli, S.; Drehmer, A.P.; Vanderlinde, R. Detection of addition of apple juice in purple grape juice. Food Control. 2016, 69, 1–4. [Google Scholar] [CrossRef]
- Prusova, P.; Kružik, V.; Seidl, J.; Čížková, H. Use of electrochemical impedance spectroscopy to verify orange juice authenticity. Chem. Listy 2017, 111, 258–263. [Google Scholar]
- Bocharova, O.V.; Reshta, S.P.; Bocharova, M.Y.; Eshtokin, V.I. Determination of apple juice authenticity using gas chromatography-mass spectrometry. volt-ampere and new conductometric methods. J. Sci. Food Agric. 2018, 98, 4692–4699. [Google Scholar] [CrossRef]
- Widodo, C.S.; Sugianto, W.; Effendi, A.M.; Saroja, G. Study on the effect of sugar canes and saccharin to the value of electrical impedance of apple cider manalagi (Malus sylvestris mill). In Proceedings of the 9th International Conference on Physics and Its Applications (ICOPIA), Surakarta, Indonesia, 14 August 2018. IOP Conf. Ser. J. Phys. 2019, 1153, 012121. [Google Scholar] [CrossRef]
- Dasenaki, M.E.; Thomaidis, N.S. Quality and authenticity control of fruit juices—A review. Molecules 2019, 24, 1014. [Google Scholar] [CrossRef] [Green Version]
- Vanoli, M.; Buccheri, M. Overview of the methods for assessing harvest maturity. Stewart Postharvest Rev. 2012, 8, 1–11. [Google Scholar] [CrossRef]
- Giuffrè, A.M. Bergamot (Citrus bergamia, Risso): The effects of cultivar and harvest date on functional properties of juice and cloudy juice. Antioxidants 2019, 8, 221. [Google Scholar] [CrossRef] [Green Version]
- Hegazi, N.M.; El-Shamy, S.; Fahmy, H.; Farag, M.A. Pomegranate juice as a super-food: A comprehensive review of its extraction, analysis, and quality assessment approaches. J. Food Compos. Anal. 2021, 97, 10377–10388. [Google Scholar] [CrossRef]
- Serra, S.; Anthony, B.; Masia, A.; Giovannini, D.; Musacchi, S. Determination of biochemical composition in peach (Prunus persica L. Batsch) accessions characterized by different flesh color and textural typologies. Foods 2020, 9, 1452. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.N.; Jaiswal, P.; Grewal, M.K.; Gupta, M.; Bhardwaj, R. Detection of adulterants and contaminants in liquid foods—A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1662–1684. [Google Scholar] [CrossRef] [PubMed]
- Moncayo, S.; Manzoor, S.; Rosales, J.; Anzano, J.; Caceres, J. Qualitative and quantitative analysis of milk for the detection of adulteration by Laser Induced Breakdown Spectroscopy. Food Chem. 2017, 232, 322–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Lecourt, J.; Bishop, G. Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—A review. Plants 2018, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Malvano, F.; Pilloton, R.; Albanese, D. Label-free impedimetric biosensors for the control of food safety—A review. Int. J. Environ. Anal. Chem. 2020, 100, 468–491. [Google Scholar] [CrossRef]
- Euring, F.; Russ, W.; Wilke, W.; Grupa, U. Development of an impedance measurement system for the detection of decay of apples. Procedia Food Sci. 2011, 1, 1188–1194. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, A.; Bera, T.K.; Ghoshal, D.; Chakraborty, B. Studying the electrical impedance variations in banana ripening using electrical impedance spectroscopy (EIS). In Proceedings of the 3rd Intelligent Conference Computing in Communication and Control (C3IT), Hoogly, India, 7–8 February 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Fernández, P.; Gabaldón, J.A.; Periago, M.J. Detection and quantification of Alicyclobacillus acidoterrestris by electrical impedance in apple juice. Food Microbiol. 2017, 68, 34–40. [Google Scholar] [CrossRef]
- Isa, M.M.; Ibrahim, N.; Shamsudin, R.; Marhaban, M.H. Sugar content in watermelon juice based on dielectric properties at 10.45 GHz. In Proceedings of the IEEE Student Conference on Research and Development, Serdang, Malaysia, 16–18 November 2009; pp. 529–532. [Google Scholar] [CrossRef]
- Assawarachan, R. Estimation model for electrical conductivity of red grape juice. Int. J. Agric. Biol. Eng. 2010, 3, 52–57. [Google Scholar] [CrossRef]
- Żywica, R.; Banach, J.K. Simple linear correlation between concentration and electrical properties of apple juice. J. Food Eng. 2015, 158, 8–12. [Google Scholar] [CrossRef]
- Żywica, R.; Banach, J.K. Mathematical correlations between selected quality attributes and electrical parameters of apple juice. J. Food Process. Preserv. 2019, 43, e14107. [Google Scholar] [CrossRef]
- Khan, R.; Aissa, S.B.; Sherazi, T.A.; Catanante, G.; Hayat, A.; Marty, J.L. Development of an impedimetric aptasensor for label free detection of patulin in apple juice. Molecules 2019, 24, 1017. [Google Scholar] [CrossRef] [Green Version]
- Ibba, P.; Falco, A.; Abera, B.D.; Cantarella, G.; Petti, L.; Lugli, P. Bio-impedance and circuit parameters: An analysis for tracking fruit ripening. Postharvest Biol. Technol. 2020, 159, 110978–110986. [Google Scholar] [CrossRef]
- Muñoz-Huerta, R.F.; Ortiz-Melendez, A.D.J.; Guevara-Gonzalez, R.G.; Torres-Pacheco, I.; Herrera-Ruiz, G.; Contreras-Medina, L.M.; Prado-Olivarez, J.; Ocampo-Velazquez, R.V. An analysis of electrical impedance measurements applied for plant N status estimation in lettuce (Lactuca sativa). Sensors 2014, 14, 11492–11503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakonieczna, A.; Paszkowski, B.; Wilczek, A.; Szypłowska, A.; Skierucha, W. Electrical impedance measurements for detecting artificial chemical additives in liquid food products. Food Control 2016, 66, 116–129. [Google Scholar] [CrossRef]
- Grossi, M.; Riccò, B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review. J. Sens. Sens. Syst. 2017, 6, 303–325. [Google Scholar] [CrossRef] [Green Version]
- El Khaled, D.; Castellano, N.N.; Gazquez, J.A.; García Salvador, R.M.; Manzano-Agugliaro, F. Cleaner quality control system using bioimpedance methods: A review for fruits and vegetables. J. Clean. Prod. 2017, 14, 1749–1762. [Google Scholar] [CrossRef]
- Juansah, J.; Yulianti, W. Studies on electrical behavior of glucose using impedance spectroscopy. IOP Conf. Ser. Earth Environ. Sci. 2016, 31, 012039. [Google Scholar] [CrossRef]
- Cole, K.S. Permeability and impermeability of cel membranes for ions. Cold Spring Harb. Symp. Quant. Biol. 1940, 8, 110–122. [Google Scholar] [CrossRef]
- Hayden, R.I.; Moyse, C.A.; Calder, F.W.; Crawford, D.P.; Fensom, D.S. Electrical Impedance Studies on Potato and Alfalfa Tissue. J. Exp. Bot. 1969, 20, 177–200. [Google Scholar] [CrossRef]
- Zhang, M.I.N.; Willison, J.H.M. Electrical Impedance Analysis in Plant Tissues. J. Exp. Bot. 1991, 44, 1369–1375. [Google Scholar] [CrossRef]
- Żywica, R.; Pierzynowska-Korniak, G.; Wójcik, J. Application of food products electrical model parameters for evaluation of apple purée dilution. J. Food Eng. 2005, 67, 413–418. [Google Scholar] [CrossRef]
- Żywica, R.; Banach, J.K.; Modzelewska-Kapituła, M. Possibilities of the quality assessment of apple juice concentrate using its equivalent electrical model. Pol. J. Commod. Sci. 2015, 4, 80–86. [Google Scholar]
- Żywica, R.; Modzelewska-Kapituła, M.; Zadroga, I.; Tkacz, K. Influence of selected mineral components and dry matter contents on the electrical conductivity of apple juice. Pol. J. Commod. Sci. 2017, 3, 86–94. [Google Scholar] [CrossRef]
- Żywica, R.; Banach, J.K. Sposób prognozowania zawartości ekstraktu w sokach owocowych, zwłaszcza w soku jabłkowym (A method of predicting the extract content in fruit juices, especially in apple juice). Patent PL 224364, 15 December 2016. (In Polish). [Google Scholar]
- Czapski, J.; Tyma, P. Metody wykrywania zafałszowań przetworów owocowych (Methods of detecting adulteration of processed fruit). Przem. Spożyw. 1996, 10, 22–25. (In Polish) [Google Scholar]
- Security of Drinking Water Supply—Guidelines for Risk and Crisis Management—Part 2: Risk Management. PN-EN 15975-2:2013-12, 21 December 2016.
- IFU. Available online: https://ifu-fruitjuice.com/page/ListofIFUMethods (accessed on 7 June 2021).
- Fruit and Vegetable Juices—Determination of Titrable Acidity. PN-EN 12147:2000, 11 January 2000.
- Fruit and Vegetable Juices—Estimation of Soluble Solids Content—Refractometric Method. PN-EN 12143:2000, PN-EN 12143:2000, 11 January 2000.
- Fruit and Vegetable Juices—Determination of the Relative Density. PN-EN 1131:1999, 23 September 1999.
- Fruit and Vegetable Juices—Determination of the pH-Value. PN-EN 1132:1999, 23 September 1999.
- Pierzynowska-Korniak, G.; Żywica, R.; Wójcik, J. Electric properties of apple purée and apple juices. Eur. Food Res. Technol. 2003, 216, 385–389. [Google Scholar] [CrossRef]
- Lee, H.S.; Wrolstad, R.E. Apple Juice Composition: Sugar, nonvolatile acid, and phenolic profiles. J. Assoc. Off. Anal. Chem. 1988, 71, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Widodo, C.S.; Santosa, D.R.; Juswono, U.P. Double layer impedance analysis on the electrical impedance measurement of solution using a parallel plate. JEEST 2016, 3, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Beier, W. Biophysik: Eine Einführung in die physikalische Analyse biologischer Systeme; Thieme: Leipzig, Germany, 1968. [Google Scholar]
- Nadolna, I. Wartość żywieniowa krajowych soków warzywnych i owocowych (Nutritional value of domestic vegetable and fruit juices). In Soki Warzywne i Owocowe a Zdrowie; Wydawnictwo Borgis: Warsaw, Poland, 1998. (In Polish) [Google Scholar]
- Mabrook, M.F.; Petty, M.C. Effect of composition on the electrical conductance of milk. J. Food Eng. 2003, 60, 321–325. [Google Scholar] [CrossRef]
- Mabrook, M.F.; Petty, M.C. A novel technique for the detection of added water to full fat milk using single frequency admittance measurements. Sens. Actuator B 2003, 96, 215–218. [Google Scholar] [CrossRef]
- Żywica, R.; Banach, J.K.; Kiełczewska, K. Sposób prognozowania zawartości tłuszczu w mleku surowym i śmietance (Method for Forecasting Fat Content in Raw Milk and Cream). Patent PL 207656, 28 December 2006. (In Polish). [Google Scholar]
Sucrose Content in the Extract (%) | Physicochemical Parameters | Electrical Parameters, f = 100 Hz | ||||
---|---|---|---|---|---|---|
TSS (°Bx) | pH | OA (g·100 g−1) | D (g·cm−3) | Z (Ω) | Y (mS) | |
0 | 10.56 ± 0.16 a | 3.36 ± 0.09 a | 0.48 ± 0.02 a | 1.0441 ± 0.0007 a | 187.14 ± 0.98 a | 5.345 ± 0.027 a |
15 | 10.56 ± 0.11 a | 3.36 ± 0.08 a | 0.40 ± 0.01 b | 1.0438 ± 0.0006 a | 210.79 ± 1.54 b | 4.745 ± 0.034 b |
20 | 10.51 ± 0.11 a | 3.35 ± 0.08 a | 0.37 ± 0.01 c | 1.0439 ± 0.0009 a | 220.73 ± 2.24 c | 4.532 ± 0.046 c |
25 | 10.51 ± 0.09 a | 3.35 ± 0.08 a | 0.35 ± 0.01 d | 1.0436 ± 0.0007 a | 232.56 ± 1.79 d | 4.301 ± 0.033 d |
30 | 10.51± 0.12 a | 3.35 ± 0.08 a | 0.32 ± 0.01 e | 1.0435 ± 0.0007 a | 244.78 ± 1.90 e | 4.086 ± 0.031 e |
Regression Equation | r | p | Calculated Values | Established/Measured Values | ||
---|---|---|---|---|---|---|
TSSConc (%) = 195.267 − 0.517*Z100Hz | −0.990 | ≤ 0.01 | 98.57 | 68.78 | 100 | 70 |
TSSConc (%) = −26.926 + 23.669*Y100Hz | 0.997 | ≤ 0.01 | 99.90 | 69.79 | ||
OA (g⋅100 g−1) = 0.998 − 0.003*Z100Hz | −0.962 | ≤ 0.01 | 0.47 | 0.31 | 0.48 | 0.32 |
OA (g⋅100 g−1) = (−0.205) + 0.129*Y100Hz | 0.972 | ≤ 0.01 | 0.48 | 0.32 |
Sucrose Content in the Extract (%) | Cp (nF) | Cs (μF) | ||||
---|---|---|---|---|---|---|
100Hz | 1 kHz | 100 kHz | 100 Hz | 1 kHz | 100 kHz | |
0 | 298.38 ± 6.91 aA | 5.128 ± 0.123 aB | 0.022 ± 0.001 aC | 243.48 ± 5.60 aA | 146.20 ±3.36 aB | 3.485 ± 0.189 aC |
15 | 232.09 ± 5.40 bA | 4.035 ± 0.096 bB | 0.021 ± 0.001 aC | 246.67 ± 5.68 aA | 144.50 ± 2.95 aB | 2.851 ± 0.132 bC |
20 | 206.86 ± 4.54 cA | 3.632 ± 0.089 cB | 0.021 ± 0.001 abC | 252.22 ± 6.14 abA | 146.31 ± 2.82 aB | 2.625 ± 0.144 cC |
25 | 184.43 ± 4.53 dA | 3.253 ± 0.064 dB | 0.020 ± 0.001 aacC | 254.97 ± 6.04 acdA | 146.99 ± 2.74 aB | 2.421 ± 0.107 dC |
30 | 165.81 ± 3.94 eA | 2.934 ± 0.050 eB | 0.020 ± 0.001 aadeC | 255.72 ± 6.91 aaefA | 146.81 ± 2.70 aB | 2.216 ± 0.075 eC |
Regression Equation | r | p | Calculated Values | Established/Measured Values | ||
---|---|---|---|---|---|---|
TSSConc (%) = 33.981 + 0.221*Cp100Hz | 0.994 | ≤0.01 | 99.85 | 70.59 | 100 | 70 |
TSSConc (%) = 31.252 + 13.368*Cp1kHz | 0.994 | ≤0.01 | 99.80 | 70.47 | ||
TSSCon (%) = 22.805 + 21.766*Cs100kHz | 0.962 | ≤0.01 | 98.67 | 71.03 | ||
OA (g·100 g−1) = 0.1244 + 0.0012*Cp100Hz | 0.975 | ≤0.01 | 0.48 | 0.32 | 0.48 | 0.32 |
OA (g·100 g−1) = 0.1084 + 0.0731*Cp1kHz | 0.977 | ≤0.01 | 0.48 | 0.32 | ||
OA (g·100 g−1) = 0.0543 + 0.1219*Cs100kHz | 0.969 | ≤0.01 | 0.48 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banach, J.K.; Żywica, R. A Method of Evaluating Apple Juice Adulteration with Sucrose Based on Its Electrical Properties and RCC Model. Sustainability 2021, 13, 6716. https://doi.org/10.3390/su13126716
Banach JK, Żywica R. A Method of Evaluating Apple Juice Adulteration with Sucrose Based on Its Electrical Properties and RCC Model. Sustainability. 2021; 13(12):6716. https://doi.org/10.3390/su13126716
Chicago/Turabian StyleBanach, Joanna Katarzyna, and Ryszard Żywica. 2021. "A Method of Evaluating Apple Juice Adulteration with Sucrose Based on Its Electrical Properties and RCC Model" Sustainability 13, no. 12: 6716. https://doi.org/10.3390/su13126716
APA StyleBanach, J. K., & Żywica, R. (2021). A Method of Evaluating Apple Juice Adulteration with Sucrose Based on Its Electrical Properties and RCC Model. Sustainability, 13(12), 6716. https://doi.org/10.3390/su13126716