Gender and Bankruptcy: A Hotel Survival Econometric Analysis
Abstract
:1. Introduction
Hypotheses Formulation
2. Materials and Methods
2.1. Data
2.2. Methodology
2.2.1. Survival and Hazard Rate in Discrete Time
2.2.2. Discrete Hazard Rate and Survival Function
2.2.3. Complementary Log-Log
3. Results
4. Discussion
5. Conclusions
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Limitations and Future Lines of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1. Ln Sales | 1.000 | |||||
2. Cash Flows | 0.011 | 1.000 | ||||
3. Experience | 0.118 | −0.001 | 1.000 | |||
4. Performance Rotation | −0.009 | 0.000 | −0.005 | −0.004 | ||
5. Working Capital Ratio | 0.044 | −0.021 | −0.021 | 0.004 | 1.000 | |
6. Good Practices | 0.226 | 0.002 | 0.039 | 0.013 | 0.000 | 1.000 |
References
- UNWTO World Tourism Organization. International Tourism and Covid-19 UNWTO. Available online: https://www.unwto.org/international-tourism-and-covid-19 (accessed on 19 April 2021).
- Richard, B. Hotel chains: Survival strategies for a dynamic future. J. Tour. Future 2017, 3, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Michael Hall, C. Crisis events in tourism: Subjects of crisis in tourism. Curr. Issues Tour. 2010, 13, 401–417. [Google Scholar] [CrossRef]
- Gössling, S.; Scott, D.; Hall, C.M. Pandemics, tourism and global change: A rapid assessment of COVID-19. J. Sustain. Tour. 2021, 29, 1–20. [Google Scholar] [CrossRef]
- Hall, C.M. Degrowing tourism: Décroissance, sustainable consumption and steady-state tourism. Anatolia 2009, 20, 46–61. [Google Scholar] [CrossRef]
- Mair, J.; Ritchie, B.W.; Walters, G. Towards a research agenda for post-disaster and post-crisis recovery strategies for tourist destinations: A narrative review. Curr. Issues Tour. 2016, 19, 1–26. [Google Scholar] [CrossRef]
- Ramón-Dangla, R. La huella de la crisis y la estrategia de supervivencia en la industria hotelera Española: Una aproximación a través de los estados financieros. Tour. Manag. Stud. 2016, 12, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Zenker, S.; Kock, F. The coronavirus pandemic—A critical discussion of a tourism research agenda. Tour. Manag. 2020, 81, 104164. [Google Scholar] [CrossRef] [PubMed]
- Ravi Kumar, P.; Ravi, V. Bankruptcy prediction in banks and firms via statistical and intelligent techniques—A review. Eur. J. Oper. Res. 2007, 180, 1–28. [Google Scholar] [CrossRef]
- Veganzones, D.; Severin, E. Corporate failure prediction models in the twenty-first century: A review. Eur. Bus. Rev. 2020, 33, 204–226. [Google Scholar] [CrossRef]
- Campbell, K.; Mínguez-Vera, A. Gender diversity in the boardroom and firm financial performance. J. Bus. Ethics 2008, 83, 435–451. [Google Scholar] [CrossRef]
- Joecks, J.; Pull, K.; Vetter, K. Gender Diversity in the Boardroom and Firm Performance: What Exactly Constitutes a “Critical Mass”? J. Bus. Ethics 2013, 118, 61–72. [Google Scholar] [CrossRef]
- Mooney, S.; Ryan, I. A woman’s place in hotel management: Upstairs or downstairs? Gend. Manag. 2009, 24, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Kliestik, T.; Misankova, M.; Valaskova, K.; Svabova, L. Bankruptcy Prevention: New Effort to Reflect on Legal and Social Changes. Sci. Eng. Ethics 2018, 24, 791–803. [Google Scholar] [CrossRef]
- Ohlson, J.A. Financial Ratios and the Probabilistic Prediction of Bankruptcy. J. Account. Res. 1980, 18, 109. [Google Scholar] [CrossRef] [Green Version]
- Amankwah-Amoah, J. A unified framework for incorporating decision making into explanations of business failure. Ind. Manag. Data Syst. 2015, 115, 1341–1357. [Google Scholar] [CrossRef]
- Udenio, M.; Fransoo, J.C.; Peels, R. Destocking, the bullwhip effect, and the credit crisis: Empirical modeling of supply chain dynamics. Int. J. Prod. Econ. 2015, 160, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Chiu, W.C.; Peña, J.I.; Wang, C.W. Do structural constraints of the industry matter for corporate failure prediction? Invest. Anal. J. 2013, 78, 65–81. [Google Scholar] [CrossRef]
- Tobbacka, E.; Moeyersoms, J.; Stankova, M.; Martens, D. Bankruptcy prediction for SME’s using relational data. Decis. Support Syst. 2017, 102, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, P.J. A Comparison of the Ratios of Successful Industrial Enterprises with Those of Failed Companies; The Accountants Publishing Company: Washington, DC, USA, 1932. [Google Scholar]
- Beaver, W.H. Financial Ratios as Predictors of Failure. J. Account. Res. 1966, 4, 71–111. [Google Scholar] [CrossRef]
- Altman, E.I. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. J. Financ. 1968, 23, 589–609. [Google Scholar] [CrossRef]
- García-Gallego, A.; Mures-Quintana, M.J. Principal components and canonical correlation analyses as complementary tools. Application to the processing of financial information. Econ. Comput. Econ. Cybern. Stud. Res. 2016, 50, 249–266. [Google Scholar]
- Li, Z.; Crook, J.; Andreeva, G. Dynamic prediction of financial distress using Malmquist DEA. Expert Syst. Appl. 2017, 80, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Olson, D.L.; Delen, D.; Meng, Y. Comparative analysis of data mining methods for bankruptcy prediction. Decis. Support Syst. 2012, 52, 464–473. [Google Scholar] [CrossRef]
- Kim, S.; Mun, B.M.; Bae, S.J. Data depth based support vector machines for predicting corporate bankruptcy. Appl. Intell. 2018, 48, 791–804. [Google Scholar] [CrossRef]
- Wennberg, K.; Wiklund, J.; DeTienne, D.R.; Cardon, M.S. Reconceptualizing Entrepreneurial Exit: Different Exit Routes and Their Drivers. J. Bus. Ventur. 2010, 25, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Delmar, F.; McKelvie, A.; Wennberg, K. Untangling the Relationships Mong Growth, Profitability and Survival in New Firms. Technovation 2013, 33, 276–291. [Google Scholar] [CrossRef] [Green Version]
- Renski, H. External economies of localization, urbanization and industrial diversity and new firm survival. Pap. Reg. Sci. 2010, 90. [Google Scholar] [CrossRef]
- Rauch, A.; Rijsdijk, S.A. The Effects of General and Specific Human Capital on Long-Term Growth and Failure of Newly Founded Businesses. Entrep. Theory Pract. 2013, 37, 923–941. [Google Scholar] [CrossRef]
- Kato, M.; Honjo, Y. Entrepreneurial human capital and the survival of new firms in high- and low-tech sectors. J. Evol. Econ. 2015, 25, 925–957. [Google Scholar] [CrossRef]
- Everett, J.; Watson, J. Small Business Failure and External Risk Factors. Small Bus. Econ. 1998, 11, 371–390. [Google Scholar] [CrossRef]
- Watson, J. Networking: Gender differences and the association with firm performance. Int. Small Bus. J. 2012, 30, 536–558. [Google Scholar] [CrossRef]
- Goto, H.; Takayasu, H.; Takayasu, M. Estimating risk propagation between interacting firms on inter-firm complex network. PLoS ONE 2017, 12, e185712. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sui, X. Contagion risk in endogenous financial networks. Chaos Solitons Fractals 2016, 91, 591–597. [Google Scholar] [CrossRef]
- Brüderl, J.; Preisendörfer, P.; Ziegler, R. Survival Chances of Newly Founded Business Organizations. Am. Sociol. Rev. 2013, 57, 227–242. [Google Scholar] [CrossRef]
- Chen, X.; Zou, H.; Wang, D.T. How do new ventures grow? Firm capabilities, growth strategies and performance. Int. J. Res. Mark. 2009, 26, 294–303. [Google Scholar] [CrossRef]
- Valls Martínez, M.d.C.; Cruz Rambaud, S. Women on corporate boards and firm’s financial performance. Womens Stud. Int. Forum 2019, 76, 102251. [Google Scholar] [CrossRef]
- Reguera-Alvarado, N.; de Fuentes, P.; Laffarga, J. Does Board Gender Diversity Influence Financial Performance? Evidence from Spain. J. Bus. Ethics 2017, 141, 337–350. [Google Scholar] [CrossRef]
- Kanter, R.M. Men and Women of the Corporation Revisited: Interview with Rosabeth Moss Kanter. Hum. Resour. Manag. 1987, 26, 257–263. [Google Scholar] [CrossRef]
- Carter, D.A.; D’Souza, F.; Simkins, B.J.; Simpson, W.G. The gender and ethnic diversity of US boards and board committees and firm financial performance. Corp. Gov. An Int. Rev. 2010, 18, 396–414. [Google Scholar] [CrossRef]
- Lin, S.C.; Kim, Y.R. Diversification strategies and failure rates in the Texas lodging industry: Franchised versus company-operated hotels. Int. J. Hosp. Manag. 2020, 88, 102525. [Google Scholar] [CrossRef]
- Türkcan, K.; Erkuş-Öztürk, H. The impact of economic and political crises on the survival of tourism-related firms: Evidence from Antalya. Tour. Econ. 2019. [Google Scholar] [CrossRef]
- Vivel-Búa, M.; Lado-Sestayo, R.; Otero-González, L. Influence of firm characteristics and the environment on hotel survival across MSMES segments during the 2007–2015 period. Tour. Manag. 2019, 75, 477–490. [Google Scholar] [CrossRef]
- Hamilton, E.A. An exploration of the relationship between loss of legitimacy and the sudden death of organizations. Gr. Organ. Manag. 2006, 31, 327–358. [Google Scholar] [CrossRef]
- Heracleous, L.; Werres, K. On the Road to Disaster: Strategic Misalignments and Corporate Failure. Long Range Plan. 2016, 49, 491–506. [Google Scholar] [CrossRef]
- Bruderl, J.; Schussler, R. Organizational Mortality: The Liabilities of Newness and Adolescence. Adm. Sci. Q. 1990, 35, 530–547. [Google Scholar] [CrossRef]
- Li, H.; Sun, J. Forecasting business failure: The use of nearest-neighbour support vectors and correcting imbalanced samples—Evidence from the Chinese hotel industry. Tour. Manag. 2012, 33, 622–634. [Google Scholar] [CrossRef]
- Gemar, G.; Soler, I.P.; Guzman-Parra, V.F. Predicting bankruptcy in resort hotels: A survival analysis. Int. J. Contemp. Hosp. Manag. 2019, 31, 1546–1566. [Google Scholar] [CrossRef]
- Winter, M.; Danes, S.M.; Koh, S.K.; Fredericks, K.; Paul, J.J. Tracking family businesses and their owners over time: Panel attrition, manager departure and business demise. J. Bus. Ventur. 2004, 19, 535–559. [Google Scholar] [CrossRef]
- Watson, J.; Robinson, S. Adjusting for risk in comparing the performances of male- and female-controlled SMEs. J. Bus. Ventur. 2003, 18, 773–788. [Google Scholar] [CrossRef]
- Bennouri, M.; Chtioui, T.; Nagati, H.; Nekhili, M. Female board directorship and firm performance: What really matters? J. Bank. Financ. 2018, 88, 267–291. [Google Scholar] [CrossRef]
- Khan, W.A.; Vieito, J.P. Ceo gender and firm performance. J. Econ. Bus. 2013, 67, 55–66. [Google Scholar] [CrossRef]
- Vieito, J.P.T. Gender, top management compensation gap, and company performance: Tournament versus behavioral theory. Corp. Gov. An Int. Rev. 2012, 20, 46–63. [Google Scholar] [CrossRef]
- Faccio, M.; Marchica, M.T.; Mura, R. CEO gender, corporate risk-taking, and the efficiency of capital allocation. J. Corp. Financ. 2016, 39, 193–209. [Google Scholar] [CrossRef] [Green Version]
- Yeh, C.M.; Trejos, B. The influence of governance on tourism firm performance. Curr. Issues Tour. 2015, 18, 299–314. [Google Scholar] [CrossRef]
- Stein, G.; Plaza, S.; Susaeta, L. Estudio sobre la rotación del CEO en las grandes sociedades cotizadas españolas (2001–2010). IESE Bus. Sch. Univ. Navarra 2011, 3. [Google Scholar]
- Gémar, G.; Moniche, L.; Morales, A.J. Survival analysis of the Spanish hotel industry. Tour. Manag. 2016, 54, 428–438. [Google Scholar] [CrossRef]
- Jenkins, S.P. Survival Analysis; 2005; Available online: https://www.iser.essex.ac.uk/files/teaching/stephenj/ec968/pdfs/ec968lnotesv6.pdf (accessed on 19 April 2021).
- Commission E. European Commission. Commission recommendation of 6 May 2003 on the definition of micro, small and medium-sized enterprises. Off. J. Eur. Communities 2003, L124, 36–41. [Google Scholar]
- Reddy, P.N.; Appannaiah, H.R.; Sathyaprasad, B.G. Business Management-II: Marketing and Finance; Global Media: Mumbai, India, 2009; ISBN 9789350431603. [Google Scholar]
- Wilson, N.; Altanlar, A. Director Characteristics, Gender Balance and Insolvency Risk: An Empirical Study. Unpublished 2011. [Google Scholar] [CrossRef]
- Lahtinen, K.D. Motivating gender use in financial research: A survey of recent literature. Rev. Behav. Financ. 2019, 12, 242–258. [Google Scholar] [CrossRef]
- Fang, L.H.; Huang, S. Gender and connections among wall street analysts. Rev. Financ. Stud. 2017, 30, 3305–3335. [Google Scholar] [CrossRef]
- Moro, A.; Wisniewski, T.P.; Mantovani, G.M. Does a manager’s gender matter when accessing credit? Evidence from European data. J. Bank. Financ. 2017, 80, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Wilson, N.; Wright, M.; Altanlar, A. The survival of newly-incorporated companies and founding director characteristics. Int. Small Bus. J. Res. Entrep. 2014, 32, 733–758. [Google Scholar] [CrossRef]
- Beck, T.; Behr, P.; Guettler, A. Gender and banking: Are women better loan officers? Rev. Financ. 2013, 17, 1279–1321. [Google Scholar] [CrossRef]
- Felton, J.; Gibson, B.; Sanbonmatsu, D.M. Preference for Risk in Investing as a Function of Trait Optimism and Gender. J. Behav. Financ. 2003, 4, 33–40. [Google Scholar] [CrossRef]
- Martin, A.; Nishikawa, T.; Williams, M. CEO gender: Effects on valuation and risk. Q. J. Financ. Account. 2009, 48, 23–41. [Google Scholar]
- Gul, F.A.; Hutchinson, M.; Lai, K.M.Y. Gender-Diverse Boards and Properties of Analyst Earnings Forecasts. Account. Horizons 2013, 27, 511–538. [Google Scholar] [CrossRef]
- Schwartz-Ziv, M. Gender and Board Activeness: The Role of a Critical Mass. J. Financ. Quant. Anal. 2017, 52, 751–780. [Google Scholar] [CrossRef] [Green Version]
- Fernando, J.M.R.; Li, L.; Hou, Y. (Greg) Corporate governance and default prediction: A reality test. Appl. Econ. 2019, 51, 2669–2686. [Google Scholar] [CrossRef]
Variable | Mean | Standard Deviation | Minimum | Maximum | Observations | |
---|---|---|---|---|---|---|
Ln Sales | Overall | 7.77 | 1.31 | −4.12 | 13.33 | n = 29,655 |
(ln(sales €)) | Between | 1.27 | −0.69 | 13.14 | n = 2589 | |
Within | 0.62 | −2.49 | 12.65 | t-bar = 11.45 | ||
Cash Flows | Overall | 0.01 | 6.64 | −667.57 | 377.21 | n = 29,657 |
(thousands €) | Between | 3.81 | −131.75 | 43.18 | n = 2590 | |
Within | 6.18 | −616.10 | 345.33 | t-bar = 11.45 | ||
Experience | Overall | 16.46 | 14.22 | −12 | 106 | n = 29,657 |
(years) | Between | 14.98 | −12 | 105 | n = 2590 | |
Within | 0.80 | −19.08 | 57.92 | t-bar = 11.4506 | ||
Performance | Overall | 0.31 | 26.98 | 0 | 3,343,581 | n = 29,657 |
Rotation | Between | 8.66 | 0.00 | 358.39 | n = 2590 | |
Within | 25.69 | −358.07 | 3,086,658 | t-bar = 11.45 | ||
Working Cap. | Overall | 0.01 | 0.31 | −48.07 | 1 | n = 29,657 |
/T.Assets | Between | 0.12 | −6.15 | 0.08 | n = 2590 | |
Within | 0.29 | −41.91 | 6.18 | t-bar = 11.45 | ||
Good Practic. | Overall | 514.42 | 3,604,957 | −123,949 | 191,641 | n = 29,657 |
Between | 2,328,923 | −14,457.57 | 81,389.35 | n = 2590 | ||
Within | 2690.7 | −115,854.8 | 171,050.3 | t-bar = 11.45 |
Variable | Coefficient | Hazard Rate | p-Value |
---|---|---|---|
Ln_Sales | −0.290 | 0.748 | 0.000 *** |
Cash Flows | 0.001 | 1.001 | 0.388 |
Experience | −0.033 | 0.967 | 0.043 ** |
CEO Gender | −1.475 | 0.229 | 0.003 *** |
Performance Rotation | −0.001 | 0.999 | 0.021 ** |
Ratio Working Capital/Total Assets | 1.436 | 1731771 | 0.030 ** |
Good Practices/Earnings before Interest and Taxes | 0.00000782 | 1.000 | 0.854 |
_ Cons | −3444529 | 0.032 | 0.000 *** |
/lnsig2u | −9.614 | ||
sigma_u | 0.008 | ||
rho | 0.000041 |
Hypothesis | Accepted/Rejected | Expected Sign |
---|---|---|
H1: Companies’ age is related to survival | Accepted (+) | Yes |
H2: Companies’ size is related to survival | Accepted (+) | Yes |
H3: Companies’ cash flows are related to survival | Rejected | No |
H4: Performance rotation ratio is related to survival | Accepted (+) | Yes |
H5: Working capital / Total Asssets ratio is related to survival | Accepted (-) | No |
H6: Good management practices are related to survival | Rejected | No |
H7: Hotel CEOs’ gender (female) are related to survival | Accepted (+) | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escribano-Navas, M.; Gemar, G. Gender and Bankruptcy: A Hotel Survival Econometric Analysis. Sustainability 2021, 13, 6782. https://doi.org/10.3390/su13126782
Escribano-Navas M, Gemar G. Gender and Bankruptcy: A Hotel Survival Econometric Analysis. Sustainability. 2021; 13(12):6782. https://doi.org/10.3390/su13126782
Chicago/Turabian StyleEscribano-Navas, María, and German Gemar. 2021. "Gender and Bankruptcy: A Hotel Survival Econometric Analysis" Sustainability 13, no. 12: 6782. https://doi.org/10.3390/su13126782
APA StyleEscribano-Navas, M., & Gemar, G. (2021). Gender and Bankruptcy: A Hotel Survival Econometric Analysis. Sustainability, 13(12), 6782. https://doi.org/10.3390/su13126782