Genetic Diversity among Some Walnut (Juglans regia L.) Genotypes by SSR Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. DNA Extraction
2.3. SSR-PCR Reactions
2.4. Molecular Data Analysis
2.4.1. Genetic Diversity
2.4.2. Population Relationship
3. Results
3.1. Polymorphism Levels of SSR Loci
3.2. Genetic Relationships among Walnut Accessions
4. Discussion
4.1. SSR Polymorphism
4.2. Genetic Relationships among Walnut Accessions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manning, W.E. The classification within the Juglandaceae. Ann. Mo. Bot. Gard. 1978, 65, 1058–1087. [Google Scholar] [CrossRef]
- Woodworth, R.H. Meiosis of microsporogenesis in the Juglandaceae. Am. J. Bot. 1930, 17, 863–869. [Google Scholar] [CrossRef]
- Simsek, M.; Gulsoy, E.; Beyhan, O.; Osmanoglu, A.; Turgut, Y. Determintion of some botanical, phenological, physical, and chemical characteristics of walnut (Juglans regia L.) genotypes grown in Turkey. Appl. Ecol. Environ. Res. 2017, 15, 1279–1291. [Google Scholar] [CrossRef]
- Kafkas, E.; Attar, S.H.; Gundesli, M.A.; Ozcan, A.; Ergun, M. Phenolic and fatty acid profile, and protein content of different walnut cultivars and genotypes (Juglans regia L.) grown in the USA. Int. J. Fruit Sci. 2020, 20, S1711–S1720. [Google Scholar] [CrossRef]
- Rahimipanah, M.; Hamedi, M.; Mirzapour, M. Antioxidant activity and phenolic contents of Persian walnut (Juglans regia L.) green husk extract. Afr. J. Food Sci. Technol. 2010, 1, 105–111. [Google Scholar]
- Ros, E.; Mataix, J. Fatty acid composition of nuts–implications for cardiovascular health. Br. J. Nutr. 2006, 96, S29–S35. [Google Scholar] [CrossRef] [Green Version]
- Faostat. FAO Web Page. Available online: http://www.fao.org/faostat (accessed on 7 September 2019).
- Francesca, P.I.; Doru, P.; Raica, P.; Petricele, V.I.; Sisea, C.; Vas, E.; Botos, B.; Bodea, M.; Botu, M. Assessment of the genetic variability among some Juglans cultivars from the Romanian National Collection at SCDP Vâlcea using RAPD markers. Rom. Biotechnol. Lett. 2010, 15, 41–49. [Google Scholar]
- Tie, L.; Feng, M.; Huang, C.; Peñuelas, J.; Sardans, J.; Bai, W.; Han, D.; Wu, T.; Li, W. Soil cover improves soil quality in a young walnut forest in the Sichuan Basin, China. Forests 2021, 12, 236. [Google Scholar] [CrossRef]
- Orman, E.; Ates, D.; Ozkuru, E.; Hepaksoy, S.; Kafkas, S.; Tanyolac, M.B. Association mapping of several nut characters in walnut (Juglans regia L.). Turk. J. Agric. For. 2020, 44, 208–227. [Google Scholar] [CrossRef]
- Guney, M.; Kafkas, S.; Keles, H.; Aras, S.; Ercisli, S. Characterization of hawthorn (Crataegus spp.) genotypes by SSR markers. Physiol. Mol. Biol. Plants 2018, 24, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- Kafkas, S. Advances in Breeding of Pistachio; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 389–430. [Google Scholar]
- Guney, M.; Kafkas, S.; Koc, A.; Aras, S.; Keles, H. Characterization of quince (Cydonia oblonga Mill.) accessions by simple sequence repeat markers. Turk. J. Agric. For. 2019, 43, 69–79. [Google Scholar] [CrossRef]
- Guney, M.; Kafkas, S.; Zarifikhosroshahi, M.; Gundesli, M.A.; Ercisli, S.; Holubec, V. Genetic diversity and relationships of terebinth (Pistacia terebinthus L.) genotypes growing wild in Turkey. Agronomy 2021, 11, 671. [Google Scholar] [CrossRef]
- Hormaza, J. Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor. Appl. Genet. 2002, 104, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.M.; Han, Y.; Khan, M.A.; Kushad, M.M.; Rayburn, A.L.; Korban, S.S. Genetic diversity and characterization of a core collection of malus germplasm using Simple Sequence Repeats (SSRs). Plant Mol. Biol. Rep. 2012, 30, 827–837. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, M.-Y.; Liu, Q.-Z.; Li, L.T.; Song, Y.; Wang, L.-F.; Zhang, S.-L.; Wu, J. Transferability of newly developed pear SSR markers to other rosaceae species. Plant Mol. Biol. Rep. 2013, 31, 1271–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaloglu, S.; Kafkas, S.; Dogan, Y.; Guney, M. Development and characterization of SSR markers from pistachio (Pistacia vera L.) and their transferability to eight Pistacia species. Sci. Hortic. 2015, 189, 94–103. [Google Scholar] [CrossRef]
- Woeste, K.; Burns, R.; Rhodes, O.; Michler, C. Thirty polymorphic nuclear microsatellite loci from black walnut. J. Hered. 2002, 93, 58–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Victory, E.R.; Glaubitz, J.C.; Rhodes, O.E., Jr.; Woeste, K.E. Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Am. J. Bot. 2006, 93, 118–126. [Google Scholar] [CrossRef]
- Hoban, S.; Anderson, R.; McCleary, T.; Schlarbaum, S.; Romero-Severson, J. Thirteen nuclear microsatellite loci for butternut (Juglans cinerea L.). Mol. Ecol. Resour. 2008, 8, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhu, A.; Wang, X.; Yu, J.; Zhang, H.; Gao, J.; Cheng, Y.; Deng, X. Development of Juglans regia SSR markers by data mining of the EST database. Plant Mol. Biol. Rep. 2010, 28, 646–653. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Z.; Zhang, S.; Luo, S. Development of walnut EST-SSR markers and primer design. Agric. Sci. Technol. Hunan 2011, 12, 1810–1813. [Google Scholar]
- Zhang, Z.Y.; Han, J.W.; Jin, Q.; Wang, Y.; Pang, X.M.; Li, Y.Y. Development and characterization of new microsatellites for walnut (Juglans regia). Genet. Mol. Res. 2013, 12, 4723–4734. [Google Scholar] [CrossRef]
- Najafi, F.; Mardi, M.; Fakheri, B.; Pirseyedi, S.M.; Mehdinejad, N.; Farsi, M. Isolation and characterization of novel microsatellite markers in walnut (Juglans regia L.). Am. J. Plant Sci. 2014, 5, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Topcu, H.; Coban, N.; Woeste, K.; Sutyemez, M.; Kafkas, S. Developing new microsatellite markers in walnut (Juglans regia L.) from Juglans nigra genomic GA enriched library. Ekin J. Crop. Breed. Genetic. 2015, 1, 93–99. [Google Scholar]
- Topcu, H.; Ikhsan, A.S.; Sutyemez, M.; Çoban, N.; Guney, M.; Kafkas, S. Development of 185 polymorphic simple sequence repeat (SSR) markers from walnut (Juglans regia L.). Sci. Hortic. 2015, 194, 160–167. [Google Scholar] [CrossRef]
- Ikhsan, A.S.; Topcu, H.; Sutyemez, M.; Kafkas, S. Novel 307 polymorphic SSR markers from BAC-end sequences in walnut (Juglans regia L.): Effects of motif types and repeat lengths on polymorphism and genetic diversity. Sci. Hortic. 2016, 213, 1–4. [Google Scholar] [CrossRef]
- Dang, M.; Zhang, T.; Hu, Y.; Zhou, H.; Woeste, K.E.; Zhao, P. De novo assembly and characterization of bud.; leaf and flowers transcriptome from Juglans regia L. for the identification and characterization of new EST-SSRs. Forests 2016, 7, 247. [Google Scholar] [CrossRef] [Green Version]
- Eser, E.; Topcu, H.; Kefayati, S.; Sutyemez, M.; Islam, M.R.; Kafkas, S. Highly polymorphic novel simple sequence repeat markers from Class I repeats in walnut (Juglans regia L.). Turk. J. Agric. For. 2019, 43, 174–183. [Google Scholar] [CrossRef]
- Groover, A.T. Will genomics guide a greener forest biotech? Trends Plant. Sci. 2007, 12, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J.; Doyle, J.L. A Rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 2000, 18, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. Genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Liu, K.; Muse, S.V. PowerMarker: Integrated Analysis Environment for Genetic Marker Data. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Dangl, G.S.; Woeste, K.; Aradhya, M.K.; Koehmstedt, A.; Simon, C.; Potter, D.; Leslie, C.A.; McGranahan, G. Characterization of 14 microsatellite markers for genetic analysis and cultivar identification of walnut. J. Am. Soc. Hortic. Sci. 2005, 130, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Karimi, R.; Ershadi, A.; Vahdati, K.; Woeste, K. Molecular characterization of Persian walnut populations in Iran with microsatellite markers. HortScience 2010, 45, 1403–1406. [Google Scholar] [CrossRef] [Green Version]
- Pollegioni, P.; Woeste, K.; Olimpieri, I.; Marandola, D.; Cannata, F.; Malvolti, M.E. Long-term human impacts on genetic structure of Italian walnut inferred by SSR markers. Tree Genet. Genomes 2011, 7, 707–723. [Google Scholar] [CrossRef]
- Ruiz-Garcia, L.; López-Ortega, G.; Denia, A.; Tomas, D.F. Identification of a walnut (Juglans regia L.) germplasm collection and evaluation of their genetic variability by microsatellite markers. Span. J. Agric. Res. 2011, 9, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.B.; Jeon, J.H.; Han, A.R.; Lee, Y.; Jun, S.S.; Kim, T.H.; Park, P.B. Genetic evaluation of domestic walnut cultivars trading on Korean tree markets using microsatellite markers. Afr. J. Biotechnol. 2012, 11, 7366–7374. [Google Scholar] [CrossRef]
- Mahmoodi, R.; Rahmani, F.; Rezaee, R. Genetic diversity among Juglans regia L. genotypes assessed by morphological traits and microsatellite markers. Span. J. Agric. Res. 2013, 11, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Pop, I.F.; Vicol, A.C.; Botu, M.; Raica, P.A.; Vahdati, K.; Pamfil, D. Relationships of walnut cultivars in a germplasm collection: Comparative analysis of phenotypic and molecular data. Sci. Hortic. 2013, 153, 124–135. [Google Scholar] [CrossRef]
- Vahdati, K.; Pourtaklu, S.M.; Karimi, R.; Barzehkar, R.; Amiri, R.; Mozaffari, M.; Woeste, K. Genetic diversity and gene flow of some Persian walnut populations in southeast of Iran revealed by SSR markers. Plant Syst. Evol. 2015, 301, 691–699. [Google Scholar] [CrossRef]
- Bernard, A.; Barreneche, T.; Lheureux, F.; Dirlewanger, E. Analysis of genetic diversity and structure in a worldwide walnut (Juglans regia L.) germplasm using SSR markers. PLoS ONE 2018, 13, e0208021. [Google Scholar] [CrossRef] [Green Version]
- Khokhlov, S.; Panyushkina, E.; Balapanov, I.; Suprun, I.; Tokmakov, S. Identification of walnut cultivars from Nikita Botanical Gardens using SSR-markers. Acta Hortic. 2018, 1208, 47–52. [Google Scholar] [CrossRef]
- Balapanov, I.; Suprun, I.; Stepanov, I.; Tokmakov, S.; Lugovskoy, A. Comparative analysis Crimean.; Moldavian and Kuban Persian walnut collections genetic variability by SSR-markers. Sci. Hortic. 2019, 253, 322–326. [Google Scholar] [CrossRef]
- Orhan, E.; Eyduran, S.P.; Poljuha, D.; Akin, M.; Weber, T.; Ercisli, S. Genetic diversity detection of seed-propagated walnut (Juglans regia L.) germplasm from Eastern Anatolia using SSR markers. Folia Hortic. 2020, 32, 37–46. [Google Scholar] [CrossRef]
- Pollegioni, P.; Woeste, K.E.; Chiocchini, F.; Del Lungo, S.; Olimpieri, I.; Tortolano, V.; Clark, J.; Hemery, G.E.; Mapelli, S.; Malvolti, M.E. Ancient humans influenced the current spatial genetic structure of common walnut populations in Asia. PLoS ONE 2015, 10, e0135980. [Google Scholar] [CrossRef] [Green Version]
- Budak, H.; Shearman, R.C.; Parmaksiz, I.; Dweikat, I. Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs.; SSRs.; RAPDs.; and SRAPs. Theor. Appl. Genet. 2004, 109, 280–288. [Google Scholar] [CrossRef]
- Pollegioni, P.; Woeste, K.E.; Chiocchini, F.; Del Lungo, S.; Ciolfi, M.; Olimpieri, I.; Tortolano, V.; Clark, J.; Hemery, G.E.; Mapelli, S.; et al. Rethinking the history of common walnut (Juglans regia L.) in Europe: Its origins and human interactions. PLoS ONE 2017, 12, e0172541. [Google Scholar] [CrossRef]
- Aradhya, M.; Velasco, D.; Ibrahimov, Z.; Toktoraliev, B.; Maghradze, D.; Musayev, M.; Bobokashvili, Z.; Preece, J.E. Genetic and ecological insights into glacial refugia of walnut (Juglans regia L.). PLoS ONE 2017, 12, e0185974. [Google Scholar] [CrossRef] [Green Version]
- Pollegioni, P.; Lungo, S.D.; Müller, R.; Woeste, K.E.; Chiocchini, F.; Clark, J.; Hemery, G.E.; Mapelli, S.; Villani, F.; Malvolti, M.E.; et al. Biocultural diversity of common walnut (Juglans regia L.) and sweet chestnut (Castanea sativa Mill.) across Eurasia. Ecol. Evol. 2020, 10, 11192–11216. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S.; Esitken, A.; Cangi, R.; Sahin, F. Adventitious root formation of kiwifruit in relation to sampling date, IBA and Agrobacterium rubi inoculation. Plant Growth Regul. 2003, 41, 133–137. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Ahmad, S.; Qayum, M.; Ercisli, S. Compositional studies and antioxidant potential of Albizia lebbeck (L.) Benth. Pods and seeds. Turk. J. Biol. 2013, 37, 25–32. [Google Scholar]
- Dogan, H.; Ercisli, S.; Temim, E.; Hadziabulic, A.; Tosun, M.; Yilmaz, S.O.; Zia-Ul-Haq, M. Diversity of chemical content and biological activity in flower buds of a wide number of wild grown caper (Capparis ovate Desf.) genotypes from Turkey. C. R. Acad. Bulg. Sci. 2014, 67, 1593–1600. [Google Scholar]
- Gundogdu, M.; Ozrenk, K.; Ercisli, S.; Kan, T.; Kodad, O.; Hegedus, A. Organic acids, sugars, vitamin C content and some pomological characteristics of eleven hawthorn species (Crataegus spp.) from Turkey. Biol. Res. 2014, 47, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ergun, Z.; Zarifikhosroshahi, M. A comparative analysis of oil content and fatty acid in different varieties of Arachis hypogaea L. from Turkey. Int. J. Agric. For. Life Sci. 2020, 4, 42–47. [Google Scholar]
- Ergun, Z.; Bozkurt, T. Determination of fatty acid composition and antioxidant activity of fig seed oil. Int. J. Agric. Nat. Sci. 2020, 13, 101–107. [Google Scholar]
- Gecer, M.K.; Kan, T.; Gundogdu, M.; Ercisli, S.; Ilhan, G.; Sagbas, H.I. Physicochemical characteristics of wild and cultivated apricots (Prunus armeniaca L.) from Aras valley in Turkey. Genet. Resour. Crop Evol. 2020, 67, 935–945. [Google Scholar] [CrossRef]
- Kupe, M. Some ampelographic and biochemical characteristics of local grape accessions from Turkey. Genet. Belgrade 2020, 52, 513–525. [Google Scholar] [CrossRef]
- Ozkan, G.; Ercisli, S.; Sagbas, H.I.; Ilhan, G. Diversity on fruits of wild grown european cranberrybush from Coruh valley in Turkey. Erwerbs Obstbau 2020, 62, 275–279. [Google Scholar] [CrossRef]
- Tabasi, M.; Sheidai, M.; Hassani, D.; Koohdar, F. DNA fingerprinting and genetic diversity analysis with SCoT markers of Persian walnut populations (Juglans regia L.) in Iran. Genet. Resour. Crop Evol. 2020, 67, 1437–1447. [Google Scholar] [CrossRef]
No | Location | Sample Code | Accessions | Country of Origin | Latitude | Longitude | Altitude (m) | Tree Age (year) |
---|---|---|---|---|---|---|---|---|
1 | SEKAMER Turkey | *Chandler | *Chandler | USA | - | - | - | - |
2 | *Fernor | *Fernor | French | - | - | - | - | |
3 | *Franquette | *Franquette | French | - | - | - | - | |
4 | *Fernette | *Fernette | French | - | - | - | - | |
5 | *Midland | *Midland | USA | - | - | - | - | |
6 | *Pedro | *Pedro | USA | - | - | - | - | |
7 | *Serr-1 | *Serr-1 | USA | - | - | - | - | |
8 | *Amigo | *Amigo | USA | - | - | - | - | |
9 | *Back | *Back | Unknown | - | - | - | - | |
10 | *Kaplan-86 | *Kaplan-86 | Turkey | - | - | - | - | |
11 | *Maraş-18 | *Maraş-18 | Turkey | - | - | - | - | |
12 | *Sütyemez-1 | *Sütyemez-1 | Turkey | - | - | - | - | |
13 | *Şebin-1 | *Şebin-1 | Turkey | - | - | - | - | |
14 | *Bilecik-2 | *Bilecik-2 | Turkey | - | - | - | - | |
15 | *Yalova-1 | *Yalova-1 | Turkey | - | - | - | - | |
16 | *Bursa-95 | *Bursa-95 | Turkey | - | - | - | - | |
17 | *Kaman-1 | *Kaman-1 | Turkey | - | - | - | - | |
18 | Sefaatli Yozgat Turkey | Yozgat-1 | Ekinciusagi-1 | Turkey | 39°35′40.34″ | 34°42′24.56″ | 1155 | 80–100 |
19 | Yozgat-2 | Ekinciusagi-2 | Turkey | 39°35′45.25″ | 34°42′21.20″ | 1157 | 100–120 | |
20 | Yozgat-3 | Ekinciusagi-3 | Turkey | 39°35′36.69″ | 34°42′20.78″ | 1153 | 100–120 | |
27 | Yozgat-10 | Seydiyar-10 | Turkey | 39°35′27.74″ | 34°47′58.16″ | 1091 | 50–60 | |
28 | Yozgat-11 | Seydiyar-11 | Turkey | 39°35′27.84″ | 34°47′58.24″ | 1091 | 50–60 | |
29 | Yozgat-12 | Seydiyar-12 | Turkey | 39°35′22.96″ | 34°48′5.45″ | 1097 | 50–60 | |
30 | Yozgat-13 | Seydiyar-13 | Turkey | 39°35′21.43″ | 34°48′6.08″ | 1114 | 50–60 | |
21 | Yerkoy Yozgat Turkey | Yozgat-4 | Koycu-4 | Turkey | 39°35′30.11″ | 34°41′14.01″ | 1095 | 150–200 |
22 | Yozgat-5 | Koycu-5 | Turkey | 39°35′34.66″ | 34°40′59.95″ | 1083 | 80–100 | |
23 | Yozgat-6 | Koycu-6 | Turkey | 39°35′35.19″ | 34°40′57.15″ | 1077 | 150–200 | |
24 | Yozgat-7 | Koycu-7 | Turkey | 39°35′34.92″ | 34°40′55.63″ | 1072 | 100–120 | |
25 | Yozgat-8 | Kahyakoyu-8 | Turkey | 39°36′3.25″ | 34°33′39.93″ | 802 | 40–50 | |
26 | Yozgat-9 | Kahyakoyu-9 | Turkey | 39°36′4.29″ | 34°33′37.48″ | 804 | 40–50 | |
42 | Sarikaya Yozgat Turkey | Yozgat-26 | Hisarbey-26 | Turkey | 39°34′4.65″ | 35°38′39.85″ | 1247 | 150–200 |
43 | Yozgat-27 | Hisarbey-27 | Turkey | 39°34′4.77″ | 35°38′40.19″ | 1247 | 150–200 | |
44 | Yozgat-28 | Hisarbey-28 | Turkey | 39°34′4.36″ | 35°38′39.67″ | 1247 | 150–200 | |
45 | Yozgat-29 | Hisarbey-29 | Turkey | 39°34′4.22″ | 35°38′40.05″ | 1247 | 150–200 | |
46 | Yozgat-30 | Hisarbey-30 | Turkey | 39°34′3.68″ | 35°38′44.09″ | 1252 | 150–200 | |
47 | Yozgat-31 | Hisarbey-31 | Turkey | 39°34′4.48″ | 35°38′41.44″ | 1249 | 150–200 | |
48 | Yozgat-32 | Hisarbey-32 | Turkey | 39°33′58.49″ | 35°38′44.14″ | 1256 | 150–200 | |
49 | Yozgat-33 | Hisarbey-33 | Turkey | 39°34′13.17″ | 35°38′47.30″ | 1257 | 150–200 | |
50 | Yozgat-34 | Hisarbey-34 | Turkey | 39°34′15.82″ | 35°38′45.05″ | 1254 | 150–200 | |
51 | Yozgat-35 | Hisarbey-35 | Turkey | 39°34′15.47″ | 35°38′38.96″ | 1250 | 150–200 | |
52 | Yozgat-36 | Hisarbey-36 | Turkey | 39°34′15.04″ | 35°38′35.01″ | 1248 | 150–200 | |
53 | Yozgat-37 | Hisarbey-37 | Turkey | 39°34′14.75″ | 35°38′32.07″ | 1248 | 150–200 | |
54 | Yozgat-38 | Hisarbey-38 | Turkey | 39°34′11.14″ | 35°38′32.64″ | 1243 | 150–200 | |
38 | Sorgun Yozgat Turkey | Yozgat-21 | Karaveli-21 | Turkey | 39°38′5.64″ | 35°14′4.31″ | 1107 | 80–100 |
39 | Yozgat-23 | Karaveli-23 | Turkey | 39°38′22.36″ | 35°13′24.83″ | 1081 | 60–80 | |
40 | Yozgat-24 | Karaveli-24 | Turkey | 39°38′5.43″ | 35°13′11.08″ | 1098 | 150–200 | |
41 | Yozgat-25 | Tuzlacik-25 | Turkey | 39°35′23.10″ | 35°17′20.46″ | 1142 | 150–200 | |
55 | Yozgat-39 | Bahadin-39 | Turkey | 39°40′40.69″ | 35°18′14.05″ | 1097 | 40–50 | |
56 | Yozgat-40 | Bahadin-40 | Turkey | 39°40′38.77″ | 35°18′12.72″ | 1104 | 60–80 | |
57 | Yozgat-41 | Bahadin-41 | Turkey | 39°41′8.46″ | 35°18′5.23″ | 1087 | 80–100 | |
58 | Yozgat-42 | Bahadin-42 | Turkey | 39°40′34.83″ | 35°18′2.02″ | 1135 | 50–60 | |
59 | Yozgat-43 | Bahadin-43 | Turkey | 39°40′28.61″ | 35°18′3.36″ | 1131 | 60–80 | |
60 | Yozgat-44 | Bahadin-44 | Turkey | 39°40′29.52″ | 35°18′1.42″ | 1132 | 50–60 | |
61 | Yozgat-45 | Karabali-45 | Turkey | 39°52′9.67″ | 35°12′30.51″ | 1220 | 80–100 | |
62 | Yozgat-46 | Karabali-46 | Turkey | 39°52′9.36″ | 35°12′31.34″ | 1218 | 70–80 | |
63 | Yozgat-47 | Karabali-47 | Turkey | 39°52′9.16″ | 35°12′43.50″ | 1219 | 60–80 | |
64 | Yozgat-48 | Karabali-48 | Turkey | 39°52′6.63″ | 35°12′47.33″ | 1219 | 60–80 | |
65 | Yozgat-49 | Karabali-49 | Turkey | 39°52′13.67″ | 35°12′55.47″ | 1229 | 50–60 | |
66 | Yozgat-50 | Karabali-50 | Turkey | 39°52′8.50″ | 35°12′42.51″ | 1221 | 70–80 | |
67 | Yozgat-51 | Karabali-51 | Turkey | 39°52′12.95″ | 35°12′52.46″ | 1218 | 100–120 | |
31 | Yozgat Turkey | Yozgat-14 | Erkeklikoyu-14 | Turkey | 39°37′21.06″ | 34°47′29.47″ | 1177 | 60–80 |
32 | Yozgat-15 | Basinayayla-15 | Turkey | 39°41′56.84″ | 34°47′9.05″ | 1280 | 50–60 | |
33 | Yozgat-16 | Basinayayla-16 | Turkey | 39°41′55.45″ | 34°46′53.90″ | 1296 | 50–60 | |
34 | Yozgat-17 | Basinayayla-17 | Turkey | 39°42′1.50″ | 34°46′52.59″ | 1286 | 50–60 | |
35 | Yozgat-18 | Basinayayla-18 | Turkey | 39°42′7.78″ | 34°46′51.57″ | 1280 | 50–60 | |
36 | Yozgat-19 | Basinayayla-19 | Turkey | 39°42′5.53″ | 34°47′1.00″ | 1280 | 50–60 | |
37 | Yozgat-20 | Basinayayla-20 | Turkey | 39°42′1.66″ | 34°47′10.10″ | 1282 | 50–60 | |
68 | Yozgat-52 | Catak-52 | Turkey | 39°50′21.28″ | 34°47′48.74″ | 1470 | 80–100 | |
69 | Yozgat-53 | SeyhOsman-53 | Turkey | 39°50′26.08″ | 34°47′55.05″ | 1485 | 150–200 | |
70 | Yozgat-54 | Bascavus-54 | Turkey | 39°49′23.90″ | 34°48′8.40″ | 1319 | 150–200 | |
71 | Yozgat-55 | Eskipazar-55 | Turkey | 39°49′51.95″ | 34°47′59.87″ | 1304 | 150–200 | |
72 | Yozgat-56 | Eskipazar-56 | Turkey | 39°48′52.68″ | 34°48′5.06″ | 1306 | 80–100 | |
73 | Yozgat-57 | Tekke-57 | Turkey | 39°48′57.74″ | 34°48′15.28″ | 1298 | 150–200 | |
74 | Yozgat-59 | Tayyipkoyu-59 | Turkey | 39°47′18.66″ | 34°44′34.84″ | 1216 | 80–100 | |
75 | Yozgat-60 | Tayyipkoyu-60 | Turkey | 39°50′14.83″ | 34°43′36.64″ | 1206 | 40–50 | |
76 | Yozgat-61 | Tayyipkoyu-61 | Turkey | 39°50′14.83″ | 34°43′36.64″ | 1209 | 80–100 | |
77 | Yozgat-62 | Tayyipkoyu-62 | Turkey | 39°50′15.99″ | 34°43′37.09″ | 1206 | 70–80 | |
78 | Yozgat-63 | Tayyipkoyu-63 | Turkey | 39°50′17.12″ | 34°43′35.69″ | 1208 | 70–80 | |
79 | Yozgat-64 | Tayyipkoyu-64 | Turkey | 39°50′17.58″ | 34°43′34.90″ | 1208 | 80–100 | |
80 | Yozgat-65 | Kalekoyu-65 | Turkey | 39°52′23.27″ | 34°40′19.33″ | 1204 | 40–50 | |
81 | Yozgat-66 | Kalekoyu-66 | Turkey | 39°52′19.51″ | 34°40′7.92″ | 1173 | 40–50 | |
82 | Yozgat-68 | Kalekoyu-68 | Turkey | 39°52′20.03″ | 34°40′1.15″ | 1166 | 100–120 | |
83 | Yozgat-69 | Kalekoyu-69 | Turkey | 39°52′19.82″ | 34°39′55.93″ | 1151 | 80–100 | |
84 | Yozgat-70 | Kalekoyu-70 | Turkey | 39°52′19.21″ | 34°39′54.99″ | 1141 | 100–120 | |
85 | Yozgat-71 | Kalekoyu-71 | Turkey | 39°52′18.87″ | 34°39′47.53″ | 1139 | 40–50 | |
86 | Yozgat-73 | Musabeyli-73 | Turkey | 39°52′7.29″ | 34°39′18.04″ | 1027 | 80–100 | |
87 | Yozgat-74 | Musabeyli-74 | Turkey | 39°51′56.90″ | 34°39′18.46″ | 1056 | 60–80 | |
88 | Yozgat-75 | Musabeyli-75 | Turkey | 39°51′56.80″ | 34°39′18.46″ | 1057 | 40–50 | |
89 | Yozgat-76 | Musabeyli-76 | Turkey | 39°51′49.47″ | 34°39′7.82″ | 1008 | 50–60 | |
90 | Yozgat-77 | Musabeyli-77 | Turkey | 39°51′49.21″ | 34°39′2.96″ | 1004 | 70–80 | |
91 | Yozgat-78 | Musabeyli-78 | Turkey | 39°51′20.03″ | 34°39′2.26″ | 1091 | 80–100 |
No | Origin and Reference | Acronyms | No. of Tested Loci | No. of Non-Amplified Loci | Monomorphic | Polymorphic | Polymorphic Rate (%) |
---|---|---|---|---|---|---|---|
1 | Chen et al. (2013) | JMP | 1 | - | - | 1 | 100 |
2 | Zhang et al. (2010) | WEST | 1 | - | - | 1 | 100 |
3 | Zhang et al. (2013) | BFUJR | 1 | - | - | 1 | 100 |
4 | Topcu et al. (2015) | CUJRA, CUJRB, CUJRD | 15 | 2 | - | 13 | 86.66 |
5 | Ikhsan et al. (2016) | JRHR | 15 | - | - | 15 | 100 |
6 | Eser et al. (2018) | JRHR | 15 | 1 | - | 14 | 93.33 |
Total | 48 | 3 | - | 45 |
No | Locus Name | Sequence (5′–3′) | Sequence (5′–3′) | Allele Range | Na | Ne | Ho | He | PIC |
---|---|---|---|---|---|---|---|---|---|
1 | JRHR214458 | TTTCCTTAATAGCAGGTGTGTC | TATGTCCACCAAATGTATCCAC | 205–223 | 9 | 4.03 | 0.69 | 0.75 | 0.70 |
2 | CUJRD462 | TGCTCATTTTCATCCACTATC | ACTTCCTCTCCTTCCTCTTTC | 252–269 | 5 | 3.41 | 0.73 | 0.71 | 0.66 |
3 | JRHR215674 | TCTAGAGGATCTCAAACGGACAT | ATTCTCCAACAGACGTAGCAATC | 166–176 | 6 | 3.78 | 0.78 | 0.74 | 0.68 |
4 | CUJRA202 | ACTCCAAAGTTTCTGGTATGG | AATAGTGGCAGTGAAGGATGTA | 180–198 | 7 | 3.13 | 0.66 | 0.68 | 0.64 |
5 | CUJRA218 | GTTTTTCTCTGTTGCCATCTC | GCTTCTTTGTTGAGGCTAATG | 241–269 | 7 | 2.58 | 0.53 | 0.61 | 0.56 |
6 | JRHR227254 | TGTAATTGGGAACTCACCTGAC | GGGGATGTAATGTGAATGGTCT | 187–220 | 10 | 4.38 | 0.96 | 0.77 | 0.75 |
7 | JRHR219728 | TTCTTGAATAACACTCTCTCCATCC | AAGTGCAATGAGTTCTGTCTATGG | 267–283 | 8 | 4.03 | 0.58 | 0.75 | 0.71 |
8 | JRHR226941 | ATGCTATCGGCAACACCTAAA | CAGCAGAATTGCAAAATGACC | 201–227 | 9 | 4.59 | 0.52 | 0.78 | 0.75 |
9 | CUJRA212 | TGTCGCGGTGTTGTTCTAG | CGATTCAAGGAAGCAGCTC | 249–293 | 19 | 7.92 | 0.42 | 0.87 | 0.86 |
10 | JRHR223323 | AGTGTAACGGTGGTTCAATGC | ATCTGGTAAGATGGCCCTTTG | 202–220 | 4 | 3.54 | 0.70 | 0.72 | 0.67 |
11 | JRHR215721 | ACTACAATCACTGGGCTGAAAGA | TTGAGAACGGAGAACTCAGAAA | 207–221 | 8 | 5.11 | 0.79 | 0.80 | 0.78 |
12 | JRHR218769 | CTCCTCAATTCAGTCCCATCC | TTGCTCCCGTACTCTCAACTC | 182–228 | 16 | 4.07 | 0.48 | 0.75 | 0.72 |
13 | CUJRB321 | CGTAGTGGTCGTGTTTTGAC | GTTGGGTAAGTGTGAGAAGATG | 133–156 | 13 | 5.38 | 0.67 | 0.81 | 0.78 |
14 | JRHR231293 | TCTCCGAATTCTCTTCCTCAGT | TAAACTTGCTCTGGCAGGTGA | 184–212 | 10 | 2.82 | 0.60 | 0.64 | 0.61 |
15 | JRHR212270 | CTGACTGACCCTGCACATAAATA | ATTTCCTGCTACATGCATTTCC | 214–219 | 5 | 2.81 | 0.60 | 0.64 | 0.56 |
16 | JMP27 | TTCATAGCACATACCAGTTC | TCCGTAACATCAATCATTC | 308–334 | 9 | 4.00 | 0.62 | 0.75 | 0.70 |
17 | CUJRB453 | ACGAAAACATCATCTCAAACTC | CTCCACCACTCCCTCTTC | 204–251 | 12 | 3.93 | 0.64 | 0.75 | 0.70 |
18 | JRHR230142 | GGGTTGTCGATGACAGAAAAT | GGATTGGGATGAGACACAAAA | 256–285 | 5 | 3.14 | 0.38 | 0.68 | 0.58 |
19 | CUJRA108 | ACCAACACAACCCACTGTAG | GGCATCTCTCTCTTCCATTT | 241–249 | 6 | 2.07 | 0.55 | 0.52 | 0.48 |
20 | JRHR227273 | ATGGTTATCAGCAGCTTACGG | CTGATTTTGATATCCCGTCCTT | 163–187 | 6 | 4.18 | 0.77 | 0.76 | 0.72 |
21 | JRHR222528 | CTGCTAGAGGCTAGGTTGGTTTG | GTCTGTGGCATAATCATCACCAT | 194–213 | 6 | 1.92 | 0.42 | 0.48 | 0.42 |
22 | CUJRA124 | CGTTGCCTGAACAAGTAAGAT | GAAGGAGGCTAACTCCCTATG | 165–186 | 8 | 5.28 | 0.80 | 0.81 | 0.79 |
23 | CUJRB441 | CAATCGGTCCATTTTTGTG | GTTTGCTTTCGTTATTTCTGG | 211–233 | 10 | 6.13 | 0.75 | 0.84 | 0.81 |
24 | JRHR223389 | GGTCGAAATTAAATCACATCCA | CGCAAGTCATGATACTGTCCA | 134–160 | 9 | 4.13 | 0.65 | 0.76 | 0.71 |
25 | JRHR229981 | CCGTCAATGGAGAGAGAGAGA | TTAAGTACGCGGGTAGGAAGG | 195–215 | 6 | 2.26 | 0.45 | 0.56 | 0.50 |
26 | JRHR223139 | AGATGAGCAAAACACGACACC | GCAACTCGATCCTCTTGCTTA | 225–243 | 10 | 6.47 | 0.69 | 0.85 | 0.83 |
27 | JRHR213115 | CGAGCAACAAGAGTACTACAGAAA | GACTGTGCATGTGATGATGAGTA | 215–239 | 9 | 4.26 | 0.69 | 0.77 | 0.73 |
28 | JRHR209244 | ATGGTCTCGCGCGTTTATATT | ACAAGGACACGACCAATTATCAC | 150–186 | 12 | 7.55 | 0.88 | 0.87 | 0.85 |
29 | JRHR220176 | TGGTTACCTATCTTGATCATCTTCG | CGGATACCTCTGATTTTCGACTA | 222–248 | 11 | 3.82 | 0.67 | 0.74 | 0.71 |
30 | CUJRB220 | AGCATGTATAGGCCAATGATG | TCGTTCTATCTACAAGCACTCG | 147–196 | 7 | 3.67 | 0.70 | 0.73 | 0.68 |
31 | JRHR213218 | AATCTGTCTGTAACGTGGTTGGT | AACAGCCTTAGGAACTCGAAGAA | 177–217 | 10 | 4.81 | 0.80 | 0.79 | 0.77 |
32 | JRHR223620 | GGAAAAGCTGAGGAGACGGTA | AAACTGAGCTGCCCTTATTCC | 164–189 | 9 | 4.09 | 0.76 | 0.76 | 0.72 |
33 | CUJRB412 | ATCAAAATCCCCATCTCTTTC | GGGTGCTTTCCTCCTTGT | 144–159 | 6 | 3.42 | 0.71 | 0.71 | 0.65 |
34 | JRHR225388 | CATGTTAATCCATCCCTCTCAA | TCCGAATACCTCAGGAAGTTACA | 187–225 | 13 | 5.50 | 0.34 | 0.82 | 0.78 |
35 | BFUJR276 | TCGTGTGATTCTGGGTGTGT | GCCTCATTGGTTGAATTGCT | 163–201 | 10 | 4.45 | 0.78 | 0.78 | 0.73 |
36 | JRHR223518 | TACGTGAAGCTCCAATCATCC | CTTCCTATGACCGACCAGTGA | 180–198 | 9 | 5.09 | 0.68 | 0.80 | 0.78 |
37 | WEST1552 | GGGGAAGGGCAAGGAGTGCTCT | GCTATAAGCGAACCAATGCCCAG | 164–194 | 5 | 3.30 | 0.66 | 0.70 | 0.64 |
38 | JRHR229800 | CATGAGGGTCATTGGTTCAAG | TGCAAAGTCCATGTTTCTCTG | 184–195 | 6 | 3.49 | 0.64 | 0.71 | 0.67 |
39 | CUJRB111 | TAGGCATGTTCATCAAGGTC | GAGGAAGAAGTGCCAGTAGG | 191–330 | 11 | 4.66 | 0.74 | 0.79 | 0.75 |
40 | JRHR224485 | GGAGCTACTGGAGCGAGAAAC | CTTAAAGGTGTGGCTGTCGAG | 175–184 | 3 | 1.89 | 0.52 | 0.47 | 0.42 |
41 | JRHR227284 | CTGACCTGGGAGCAGAGAATA | CCGACAAGGAGTGCCTAGAAT | 194–208 | 7 | 3.99 | 0.69 | 0.75 | 0.72 |
42 | JRHR218727 | ATTCTTCAAATCCCACCATCC | TCCTTTAACGATAGATGAAGAGACC | 158–220 | 13 | 1.96 | 0.53 | 0.79 | 0.47 |
43 | CUJRD104 | GAGCCGATACTGCTGAACAG | ACGCGCATATCATAAACCTG | 217–226 | 3 | 2.87 | 0.66 | 0.65 | 0.58 |
44 | JRHR204109 | CAATTTGTGGCTGTATCACTCATC | ATGTACCACTAATCGCATTGCTC | 182–195 | 10 | 4.91 | 0.63 | 0.80 | 0.77 |
45 | JRHR229005 | CCATTCCAGTCCATCTTCCTA | CCAAAGCAACAAGAATGGCTA | 215–275 | 13 | 3.77 | 0.71 | 0.73 | 0.69 |
Total | - | - | - | 390 | - | - | - | - | |
Min | - | - | - | 3 | 1.89 | 0.34 | 0.47 | 0.42 | |
Mean | - | - | - | 9 | 4.06 | 0.65 | 0.73 | 0.68 | |
Max | - | - | - | 19 | 7.92 | 0.96 | 0.87 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guney, M.; Kafkas, S.; Keles, H.; Zarifikhosroshahi, M.; Gundesli, M.A.; Ercisli, S.; Necas, T.; Bujdoso, G. Genetic Diversity among Some Walnut (Juglans regia L.) Genotypes by SSR Markers. Sustainability 2021, 13, 6830. https://doi.org/10.3390/su13126830
Guney M, Kafkas S, Keles H, Zarifikhosroshahi M, Gundesli MA, Ercisli S, Necas T, Bujdoso G. Genetic Diversity among Some Walnut (Juglans regia L.) Genotypes by SSR Markers. Sustainability. 2021; 13(12):6830. https://doi.org/10.3390/su13126830
Chicago/Turabian StyleGuney, Murat, Salih Kafkas, Hakan Keles, Mozhgan Zarifikhosroshahi, Muhammet Ali Gundesli, Sezai Ercisli, Tomas Necas, and Geza Bujdoso. 2021. "Genetic Diversity among Some Walnut (Juglans regia L.) Genotypes by SSR Markers" Sustainability 13, no. 12: 6830. https://doi.org/10.3390/su13126830
APA StyleGuney, M., Kafkas, S., Keles, H., Zarifikhosroshahi, M., Gundesli, M. A., Ercisli, S., Necas, T., & Bujdoso, G. (2021). Genetic Diversity among Some Walnut (Juglans regia L.) Genotypes by SSR Markers. Sustainability, 13(12), 6830. https://doi.org/10.3390/su13126830