Analysis of Lightning-Induced Voltages Effect with SPD Placement for Sustainable Operation in Hybrid Solar PV-Battery Energy Storage System
Abstract
:1. Introduction
2. Insulation Coordination and Overvoltage Protection for Equipment in Hybrid Solar PV-Battery Energy Storage System
3. Simulation Modelling in Electro-Magnetic Transient Program-Restructured Version (EMTP-RV) Software
3.1. Modelling of Hybrid Solar PV-Battery Energy Storage System
3.2. Modelling of Lightning Return Stroke Current and Lightning-Induced Voltage
3.2.1. Modelling of Lightning Return Stroke Current
3.2.2. Modelling of Lightning-Induced Voltage
3.3. Modelling of Surge Protective Device (SPD)
4. Case Studies
4.1. Placement of Surge Protection Device (SPD) on DC and AC Sides of Hybrid Solar PV-Battery Energy Storage System
4.2. Location of Lightning-Induced Voltage on Hybrid Solar PV-Battery Energy Storage System
5. Results and Discussion
5.1. Effect of Different Lightning Strike Distance
5.2. Effect of Different Lightning Currents Amplitude
5.3. Effect of Different Cable Length
- The closer the lightning strike distance, the higher the induced voltage on the system.
- The higher the lightning current amplitude, the higher the induced voltage generated.
- The longer the cable, the higher the induced voltage produced to the system.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ab Kadir, M.Z.A.; Rafeeu, Y.; Adam, N.M. Prospective scenarios for the full solar energy development in Malaysia. Renew. Sustain. Energy Rev. 2010, 14, 3023–3031. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Mukund, R.P. Wind and Solar Power Systems-Design, Analysis and Operation; CRC Press: Boca Raton, FL, USA, 2006; pp. 143–148. [Google Scholar]
- Mekhilef, S.; Safari, A.; Mustaffa, W.; Saidur, R.; Omar, R.; Younis, M. Solar energy in Malaysia: Current state and prospects. Renew. Sustain. Energy Rev. 2012, 16, 386–396. [Google Scholar] [CrossRef]
- Ho, S.M.; Lomi, A.; Okoroigwe, E.C.; Urrego, L.R. Investigation of solar energy: The case study in Malaysia, Indonesia, Colombia and Nigeria. Int. J. Renew. Energy Res. 2019, 9, 1–10. [Google Scholar]
- Sustainable Energy Development Authority Malaysia (SEDA). Available online: http://www.seda.gov.my/reportal/re-incentive/ (accessed on 13 November 2020).
- National Survey Report of PV Power Applications in Malaysia 2019. Available online: https://iea-pvps.org/wp-content/uploads/2020/08/NSR_Malaysia_2019.pdf (accessed on 15 March 2021).
- Vaka, M.; Walvekar, R.; Rasheed, A.K.; Khalid, M. A review on Malaysia’s solar energy pathway towards carbon-neutral Malaysia beyond Covid’19 pandemic. J. Clean. Prod. 2020, 273, 122834. [Google Scholar] [CrossRef] [PubMed]
- Shirowzhan, S.; Tan, W.; Sepasgozar, S.M. Digital twin and CyberGIS for improving connectivity and measuring the impact of infrastructure construction planning in smart cities. Int. J. Geo. Inf. 2020, 9, 240. [Google Scholar] [CrossRef]
- Desdemoustier, J.; Crutzen, N.; Giffinger, R. Municipalities’ understanding of the Smart City concept: An exploratory analysis in Belgium. Technol. Forecast. Soc. Chang. 2019, 142, 129–141. [Google Scholar] [CrossRef]
- Subramani, G.; Ramachandaramurthy, V.K.; Padmanaban, S.; Mihet-Popa, L.; Blaabjerg, F.; Guerrero, J.M. Grid-tied photovoltaic and battery storage systems with Malaysian electricity tariff—A review on maximum demand shaving. Energies 2017, 10, 1884. [Google Scholar] [CrossRef] [Green Version]
- Izadi, M.; Ab Kadir, M.Z.A.; Hajikhani, M. On the lightning induced voltage along overhead power distribution line. J. Electr. Eng. Technol. 2014, 9, 1694–1703. [Google Scholar] [CrossRef] [Green Version]
- Ab-Kadir, M.Z.A. Lightning severity in Malaysia and some parameters of interest for engineering applications. Therm. Sci. 2016, 20, 437–450. [Google Scholar] [CrossRef]
- Ab Kadir, M.; Misbah, N.R.; Gomes, C.; Jasni, J.; Ahmad, W.W.; Hassan, M. Recent statistics on lightning fatalities in Malaysia. In Proceedings of the International Conference on Lightning Protection (ICLP), Vienna, Austria, 2–7 September 2012; pp. 1–5. [Google Scholar]
- Lightning and Surge Protection of SSEG Installations. Available online: https://www.ee.co.za/wp-content/uploads/2018/10/Hano-Oelofse-DEHN-africa-presentation.pdf (accessed on 1 December 2019).
- Malaysia’s Lightning Strikes: A Spectacular If Dangerous Show. Available online: https://www.freemalaysiatoday.com/category/leisure/2020/03/29/malaysias-lightning-strikes-a-spectacular-if-dangerous-show/ (accessed on 10 March 2021).
- Malaysians Unprepared for Lightning Strikes. Available online: https://www.thestar.com.my/news/nation/2018/11/10/msians-unprepared-for-lightning-strikes-expert-many-lack-awareness-and-safety-measures/ (accessed on 10 March 2021).
- Zaini, N.H.; Ab-Kadir, M.Z.A.; Radzi, M.A.M.; Izadi, M.; Azis, N.; Ahmad, N.; Nasir, M.S.M. Lightning surge analysis on a large scale grid-connected solar photovoltaic system. Energies 2017, 10, 2149. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.; Zhang, C.; Hu, J.; Wang, S.; Sun, W.; Li, H. Research on lightning overvoltages of solar arrays in a rooftop photovoltaic power system. Electr. Power Syst. Res. 2013, 94, 10–15. [Google Scholar] [CrossRef]
- Formisano, A.; Hernández, J.C.; Petrarca, C.; Sanchez-Sutil, F. Modeling of PV Module and DC/DC Converter Assembly for the Analysis of Induced Transient Response Due to Nearby Lightning Strike. Electronics 2021, 10, 120. [Google Scholar] [CrossRef]
- Formisano, A.; Petrarca, C.; Hernández, J.C.; Muñoz-Rodríguez, F.J. Assessment of induced voltages in common and differential-mode for a PV module due to nearby lightning strikes. IET Renew. Power Gener. 2019, 13, 1369–1378. [Google Scholar] [CrossRef]
- Sun, Q.; Zhong, X.; Liu, J.; Wang, F.; Chen, S.; Zhong, L.; Bian, X. Three-dimensional modeling on lightning induced overvoltage for photovoltaic arrays installed on mountain. J. Clean. Prod. 2021, 288, 125084. [Google Scholar] [CrossRef]
- Mohammed, Z.; Hizam, H.; Gomes, C. Lightning-induced transient effects in a hybrid PV-wind system and mitigation strategies. Electr. Power Syst. Res. 2019, 174, 105882. [Google Scholar] [CrossRef]
- Nasir, M.; Ab-Kadir, M.; Radzi, M.; Izadi, M.; Ahmad, N.; Zaini, N. Lightning performance analysis of a rooftop grid-connected solar photovoltaic without external lightning protection system. PLoS ONE 2019, 14, 0219326. [Google Scholar] [CrossRef] [Green Version]
- Bian, X.; Zhang, Y.; Zhou, Q.; Cao, T.; Wei, B. Numerical and Experimental Study of Lightning Stroke to BIPV Modules. Energies 2021, 14, 748. [Google Scholar] [CrossRef]
- Wadhwa, C.L. High Voltage Engineering; New Age International: New Delhi, India, 2006; pp. 237–241. [Google Scholar]
- Cooray, G.V. The Lightning Flash; IET: London, UK, 2003; pp. 281–352. [Google Scholar]
- Zaini, N.H. Lightning Performance Analysis of a Grid-Connected Solar Photovoltaic System. Ph.D. Thesis, Universiti Putra Malaysia, Selangor, Malaysia, January 2019. [Google Scholar]
- Ahmad, N.; Ab-Kadir, M.; Izadi, M.; Azis, N.; Radzi, M.; Zaini, N.; Nasir, M. Lightning protection on photovoltaic systems: A review on current and recommended practices. Renew. Sustain. Energy Rev. 2018, 82, 1611–1619. [Google Scholar] [CrossRef]
- Department of Standards Malaysia. Insulation Coordination for Equipment within Low-Voltage Systems—Part 1: Principles, Requirements and Tests; MS IEC 60664-1; Department of Standards Malaysia: Cyberjaya, Selangor, Malaysia, 2014. [Google Scholar]
- The British Standards Institution (BSI). Low-Voltage Surge Protective Devices. Surge Protective Devices for Specific Application Including D.C.-Part 12: Selection and Application Principles—SPDs Connected to Photovoltaic Installations; PD CLC/TS 50539-12; BSI: London, UK, 2013. [Google Scholar]
- Department of Standards Malaysia. Safety of Power Converters for Use in Photovoltaic Power System; MS IEC 62109-1; Department of Standards Malaysia: Cyberjaya, Selangor, Malaysia, 2011. [Google Scholar]
- International Electrotechnical Commission (IEC). Lightning and Surge Voltage Protection for Photovoltaic (PV) Power Supply Systems; IEC TR 63227; IEC: Geneva, Switzerland, 2020. [Google Scholar]
- The British Standards Institution (BSI). Low-Voltage Surge Protective Devices—Part 11: Surge Protective Devices Connected to Low-Voltage Power Systems-Requirements and Test Methods; BS EN 61643-11: 2012+A11; BSI: London, UK, 2018. [Google Scholar]
- The British Standards Institution (BSI). Low-Voltage Surge Protective Devices—Part 31: Requirements and Test Methods for SPDs for Photovoltaic Installations; BS EN 61643-31; BSI: London, UK, 2019. [Google Scholar]
- The British Standards Institution (BSI). Lightning Protection System Components (LPSC)—Part 1: Requirements for Connection Components; EN 62561-1; BSI: London, UK, 2012. [Google Scholar]
- Zaini, N.H.; Ab-Kadir, M.Z.A.; Radzi, M.A.M.; Izadi, M.; Azis, N.; Ahmad, N.; Nasir, M.S.M. Lightning Surge on the DC and AC Side of Solar PV System. In Proceedings of the Asia-Pacific International Conference on Lightning (APL), Hong Kong, China, 12–14 June 2019; pp. 1–5. [Google Scholar]
- Sabiha, N.A. Lightning-Induced Overvoltages in Medium Voltage Distribution Systems. Ph.D. Thesis, Aalto University, Espoo, Finland, 18 March 2010. [Google Scholar]
- Kannu, P.D.; Thomas, M.J. Influence of Lightning Strike Location on The Induced Voltage on a Nearby Overhead Line. In Proceedings of the Conference on National Power Systems, Kharagpur, India, 27–29 December 2002; pp. 1–6. [Google Scholar]
- Paolone, M. Modeling of Lightning-Induced Voltages on Distribution Networks for the Solution of Power Quality Problem. Ph.D. Thesis, University of Bologna, Bologna, Italy, 1998–2001. [Google Scholar]
- The British Standards Institution (BSI). Protection against lightning-Part 1: General Principles; BS EN 62305–1; BSI: London, UK, 2011. [Google Scholar]
- Ahmad, N.I.; Ali, Z.; Ab-Kadir, M.Z.K.; Osman, M.; Zaini, N.; Roslan, M.H. Impacts of Lightning-Induced Overvoltage on a Hybrid Solar PV–Battery Energy Storage System. Appl. Sci. 2021, 11, 3633. [Google Scholar] [CrossRef]
- The British Standards Institution (BSI). Protection Against Lightning—Part 4: Electrical and Electronic Systems within Structures; BS EN 62305-4; BSI: London, UK, 2011. [Google Scholar]
- The ABC’s of Lightning. Available online: http://www.dehn-usa.com (accessed on 22 March 2021).
- Rakov, V.A.; Borghetti, A.; Bouquegneau, C.; Chisholm, W.A.; Cooray, V.; Cummins, K. CIGRE Lightning Parameters for Engineering Applications; CIGRE Working Group C4.407; CIGRE: Paris, France, 2013; pp. 1–118. [Google Scholar]
- Rakov, V.A.; Uman, M.A. Lightning: Physics and Effects; Cambridge University Press: Cambridge, UK, 2003; pp. 617–618. [Google Scholar]
- Cooray, V. Lightning Protection; The Institution of Engineering and Technology: London, UK, 2009; pp. 573–574. [Google Scholar]
- Institute of Electrical and Electronics Engineers (IEEE). IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines; IEEE 1410-2004; IEEE: New York, NY, USA, 2010. [Google Scholar]
- Lightning and Surge Protection Basics. Available online: https://www.phoenixcontact.com/assets/downloads_ed/global/web_dwl_promotion/5131327_TT_Basics_EN.pdf (accessed on 9 April 2021).
- Data Assessment for Electrical Surge Protection Devices. Available online: https://www.nfpa.org/-/media/Files/News-and-Research/Fire-statistics-and-reports/Electrical/RFDataAssessmentforElectricalSurgeProtectionDevices.ashx (accessed on 9 April 2021).
- Type 2 Surge Protection Plug-VAL-MS 1000DC-PV-ST-2800624 Datasheet. Available online: https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2800624&library=usen&tab=1 (accessed on 12 April 2021).
- Product Data Sheet: DEHNguard® Modular (DG M TNS 275 FM (952 405). Available online: https://docs.rs-online.com/c94b/0900766b8138a9c1.pdf (accessed on 20 April 2021).
- Liu, C.H.; Muna, Y.B.; Chen, Y.T.; Kuo, C.C.; Chang, H.Y. Risk analysis of lightning and surge protection devices for power energy structures. Energies 2019, 11, 1999. [Google Scholar] [CrossRef] [Green Version]
- Guide to Surge Protection Devices. Available online: https://www.hager.co.uk/files/download/0/4540_1/0/Surge_Protection_Guide.pdf (accessed on 22 May 2021).
- BEAMA Guide to Surge Protection Devices (SPDs): Selection, Application and Theory. Available online: https://www.beama.org.uk/asset/1FE338CE-4969-4B56-9637F3DEA6C683C6/ (accessed on 22 May 2021).
- Hossain, M.A.; Ahmed, M.R. Analysis of indirect lightning phenomena on solar power system. Int. J. Electr. Eng. 2014, 21, 127–133. [Google Scholar]
Year | Off-Grid (MW) | Grid-Connected (MW) | Total (MW) | |
---|---|---|---|---|
Decentralized (Residential, Commercial and Industrial) | Centralized (Ground-Mounted, Floating and Agricultural) | |||
2012 | 1.00 | 10.46 | 15.83 | 27.29 |
2013 | 1.00 | 56.47 | 59.00 | 116.47 |
2014 | 1.00 | 90.75 | 79.00 | 170.75 |
2015 | 1.00 | 139.36 | 80.67 | 221.03 |
2016 | 1.00 | 197.98 | 86.92 | 285.90 |
2017 | 8.90 | 230.19 | 88.92 | 328.01 |
2018 | 35.64 | 302.68 | 399.42 | 737.74 |
2019 | 41.53 | 371.12 | 715.59 | 1128.25 |
Category | Description | Examples |
---|---|---|
I | Applies to equipment connected to a circuit where transient voltages have been reduced to a low level. | Equipment that containing electronic circuits protected to this level. |
II | Applies to non-permanently connected equipment, including energy-consuming equipment supplied by the fixed installation. | Appliances, portable tools, and plug-connected equipment. |
III | Applies to fixed installations equipment including the main distribution board. | Switchgear and equipment in an industrial installation. |
IV | Applies to permanently connected equipment at the origin of the installation. | Meters, primary overcurrent protection equipment, and equipment directly connected to outdoor open lines. |
Column 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
System Voltage (V) (7.3.7.2) | Impulse Withstand Voltage (V) | Main Circuits Temporary Overvoltage (peak/rms) (See NOTE 5) | |||
Overvoltage Category | |||||
I | II | III | IV | ||
50 Vrms or 71 Vdc | 330 | 500 | 800 | 1500 | 1770/1250 |
100 Vrms or 141 Vdc | 500 | 800 | 1500 | 2500 | 1840/1300 |
150 Vrms or 213 Vdc | 800 | 1500 | 2500 | 4000 | 1910/1350 |
300 Vrms or 424 Vdc | 1500 | 2500 | 4000 | 6000 | 2120/1500 |
600 Vrms or 849 Vdc | 2500 | 4000 | 6000 | 8000 | 2550/1800 |
1000 Vrms or 1500 Vdc | 4000 | 6000 | 8000 | 12,000 | 3110/2200 |
NOTE 1 Interpolation is not permitted in main circuits but is permitted in other circuits. NOTE 2 The last rows only apply to single-phase systems, or to the phase-to-phase voltage in three-phase systems NOTE 3 Column 6, temporary overvoltage, only applies to main circuits. NOTE 4 PV circuits are in general OVCII with a minimum impulse voltage of 2500 V-see 7.3.7.1.2b. NOTE 5 Three values are derived using the formula (1200 V + system voltage) from IEC 60664-1. |
Maximum Open Circuit Voltage, Voc max (V) | Impulse Withstand Voltage (V) | ||
---|---|---|---|
PV Generator a | Inverter b | Other Equipment c | |
100 | 800 | 2500 (minimum requirement) | 800 |
150 | 1500 | 1500 | |
300 | 2500 | 2500 | |
424 | 4000 | 4000 | |
600 | 4000 | 4000 | 4000 |
800 | 5000 | 5000 | |
849 | 6000 | 6000 | |
1000 | 6000 | 6000 | 6000 |
1500 | 8000 | 8000 | 8000 |
Equipment | Specifications | |
---|---|---|
Solar PV | Power | 1 MW |
Voltage | 715.2 V | |
Current | 1398.2 A | |
Battery Energy Storage | Battery nominal capacity | 5.26 MWh |
Inverter | Nominal AC Power per inverter | 20 kW |
Transformer | Rating | 1.5 MVA |
Type | Step-up transformer (433 V/11 kV) | |
Grid | 11 kV |
Parameters | Value |
---|---|
Lightning waveshape | 8/20 µs |
Rise time, τ1 (µs) | 4.4 |
Fall time, τ2 (µs) | 14 |
n | 3 |
Key Characteristics | Value | |
---|---|---|
DC SPD Class II | AC SPD Class II | |
Maximum Discharge Current, Imax (kA) | 40 | 40 |
Maximum Continuous Voltage, Uc (kV) | 1.17 | 0.275 |
Voltage Protection Level, Up (kV) | ≤1.9 | ≤1.5 |
Nominal Discharge Current, In (8/20 µs) (kA) | 15 | 20 |
DC SPD Class II | Current (kA) | 0.01 | 0.10 | 1 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
Residual Voltage, Ures (kV) | 1.10 | 1.20 | 1.30 | 1.50 | 1.70 | 1.85 | 2.00 | 2.15 | 2.30 | 2.40 | 2.50 | |
AC SPD Class II | Current (kA) | 0.01 | 0.1 | 1 | 2 | 3 | 4 | 5 | 10 | 15 | 20 | 30 |
Residual Voltage, Ures (kV) | 0.94 | 0.97 | 1.00 | 1.03 | 1.06 | 1.10 | 1.20 | 1.30 | 1.40 | 1.50 | 1.70 |
Lightning Current, I0 (kA) | Height (m) | Velocity (m/s) | Lightning Strike Distance, d (m) | The Voltage Induced at the Point Nearest the Lightning Strike, x | Cable Length (m) |
---|---|---|---|---|---|
3 | 2.8 | 1.2 × 10−8 | 20 | 0 | 5 |
8 | |||||
13 | |||||
19 | 50 | 10 | |||
25 | |||||
50 | |||||
90 | 100 | 20 | |||
120 | |||||
169 |
Lightning Current, I0 (kA) | The Point Nearest the Lightning Strike, x | Lightning Strike Distance, d (m) | Lightning-Induced Voltage (kV) | |||||
---|---|---|---|---|---|---|---|---|
DC SPD Class II | ||||||||
Point A (Near the Solar PV-Battery) | Point B (Near the Inverter) | |||||||
5 m | 10 m | 20 m | 5 m | 10 m | 20 m | |||
3 | 0 | 20 | 1.01 | 1.03 | 1.13 | 1.01 | 1.01 | 1.03 |
50 | 1.01 | 1.02 | 1.13 | 1.01 | 1.01 | 1.03 | ||
100 | 0.98 | 1.00 | 1.11 | 0.98 | 0.98 | 1.02 | ||
8 | 20 | 2.26 | 2.26 | 2.42 | 1.35 | 1.29 | 1.26 | |
50 | 2.24 | 2.24 | 2.41 | 1.35 | 1.29 | 1.26 | ||
100 | 2.20 | 2.20 | 2.37 | 1.34 | 1.29 | 1.26 | ||
13 | 20 | 3.40 | 3.42 | 3.65 | 1.47 | 1.39 | 1.31 | |
50 | 3.38 | 3.41 | 3.63 | 1.47 | 1.39 | 1.31 | ||
100 | 3.31 | 3.34 | 3.57 | 1.46 | 1.38 | 1.30 | ||
19 | 20 | 4.77 | 4.81 | 5.07 | 1.61 | 1.46 | 1.38 | |
50 | 4.74 | 4.78 | 5.06 | 1.61 | 1.46 | 1.38 | ||
100 | 4.64 | 4.68 | 4.96 | 1.60 | 1.46 | 1.37 | ||
25 | 20 | 6.14 | 6.18 | 6.48 | 1.73 | 1.53 | 1.43 | |
50 | 6.10 | 6.14 | 6.46 | 1.73 | 1.53 | 1.43 | ||
100 | 5.96 | 6.01 | 6.33 | 1.72 | 1.52 | 1.42 | ||
50 | 20 | 11.84 | 11.81 | 12.26 | 2.18 | 1.81 | 1.59 | |
50 | 11.76 | 11.76 | 12.23 | 2.18 | 1.80 | 1.59 | ||
100 | 11.48 | 11.49 | 11.98 | 2.16 | 1.79 | 1.59 | ||
90 | 20 | 20.94 | 20.84 | 21.44 | 2.71 | 2.20 | 1.81 | |
50 | 20.80 | 20.71 | 21.39 | 2.66 | 2.19 | 1.81 | ||
100 | 20.29 | 20.24 | 20.94 | 2.68 | 2.18 | 1.80 | ||
120 | 20 | 27.75 | 27.65 | 28.28 | 2.99 | 2.43 | 1.97 | |
50 | 27.56 | 27.42 | 28.24 | 2.99 | 2.42 | 2.00 | ||
100 | 26.91 | 26.80 | 27.65 | 2.96 | 2.40 | 1.95 | ||
169 | 20 | 38.91 | 38.75 | 39.50 | 3.37 | 2.73 | 2.21 | |
50 | 38.63 | 38.43 | 39.44 | 3.36 | 2.72 | 2.21 | ||
100 | 37.68 | 37.51 | 38.60 | 3.33 | 2.70 | 2.19 |
Lightning Current, I0 (kA) | The Point Nearest the Lightning Strike, x | Lightning Strike Distance, d (m) | Lightning-Induced Voltage (kV) | |||||
---|---|---|---|---|---|---|---|---|
AC SPD Class II | ||||||||
Point C (Near the Inverter) | Point D (Near the Transformer) | |||||||
5 m | 10 m | 20 m | 5 m | 10 m | 20 m | |||
3 | 0 | 20 | 1.08 | 1.05 | 1.14 | 0.95 | 0.95 | 0.93 |
50 | 1.07 | 1.04 | 1.13 | 0.95 | 0.94 | 0.93 | ||
100 | 1.04 | 1.02 | 1.10 | 0.94 | 0.94 | 0.93 | ||
8 | 20 | 2.90 | 2.84 | 3.15 | 1.03 | 1.00 | 0.99 | |
50 | 2.87 | 2.81 | 3.13 | 1.03 | 1.00 | 0.99 | ||
100 | 2.80 | 2.74 | 3.06 | 1.03 | 1.00 | 0.99 | ||
13 | 20 | 4.71 | 4.77 | 5.55 | 1.18 | 1.05 | 1.01 | |
50 | 4.66 | 4.71 | 5.52 | 1.17 | 1.05 | 1.01 | ||
100 | 4.55 | 4.62 | 5.35 | 1.16 | 1.04 | 1.01 | ||
19 | 20 | 6.82 | 7.15 | 8.77 | 1.27 | 1.13 | 1.04 | |
50 | 6.76 | 7.11 | 8.72 | 1.27 | 1.13 | 1.04 | ||
100 | 6.59 | 6.96 | 8.51 | 1.27 | 1.12 | 1.03 | ||
25 | 20 | 8.90 | 9.75 | 12.03 | 1.35 | 1.23 | 1.07 | |
50 | 8.83 | 9.71 | 11.97 | 1.34 | 1.23 | 1.07 | ||
100 | 8.59 | 9.51 | 11.69 | 1.34 | 1.22 | 1.06 | ||
50 | 20 | 17.64 | 20.18 | 25.46 | 1.67 | 1.40 | 1.25 | |
50 | 17.54 | 20.15 | 25.38 | 1.66 | 1.39 | 1.25 | ||
100 | 17.14 | 19.87 | 24.87 | 1.65 | 1.39 | 1.25 | ||
90 | 20 | 31.48 | 36.29 | 46.22 | 2.04 | 1.66 | 1.39 | |
50 | 31.17 | 36.25 | 46.09 | 2.04 | 1.66 | 1.39 | ||
100 | 30.63 | 35.71 | 45.37 | 2.02 | 1.64 | 1.39 | ||
120 | 20 | 41.79 | 48.28 | 61.58 | 2.25 | 1.83 | 1.49 | |
50 | 41.63 | 48.25 | 61.52 | 2.25 | 1.83 | 1.49 | ||
100 | 40.81 | 47.54 | 60.44 | 2.23 | 1.81 | 1.48 | ||
169 | 20 | 58.98 | 67.89 | 86.59 | 2.53 | 2.05 | 1.67 | |
50 | 58.65 | 67.85 | 86.50 | 2.52 | 2.05 | 1.66 | ||
100 | 57.50 | 66.87 | 85.13 | 2.50 | 2.03 | 1.65 |
Lightning Current, I0 (kA) | Lightning Strike Distance, d (m) | Lightning-Induced Voltage (kV) | Percentage Difference of Clamped Induced Voltage between Without and With SPD (%) | ||||
---|---|---|---|---|---|---|---|
Without DC SPD Class II | With DC SPD Class II | ||||||
Point A | Point B | Point A | Point B | Point A | Point B | ||
19 | 20 | 6.42 | 6.42 | 4.81 | 1.46 | 25.08 | 77.26 |
50 | 6.37 | 6.37 | 4.78 | 1.46 | 24.96 | 77.08 | |
100 | 6.21 | 6.21 | 4.68 | 1.46 | 24.64 | 76.49 |
Lightning Current, I0 (kA) | Lightning Strike Distance, d (m) | Lightning-Induced Voltage (kV) | Percentage Difference of Clamped Induced Voltage between Without and With SPD (%) | ||||
---|---|---|---|---|---|---|---|
Without AC SPD Class II | With AC SPD Class II | ||||||
Point C | Point D | Point C | Point D | Point C | Point D | ||
19 | 20 | 6.94 | 6.88 | 7.15 | 1.13 | 3.03 | 83.58 |
50 | 6.85 | 6.81 | 7.11 | 1.13 | 3.80 | 83.41 | |
100 | 6.68 | 6.65 | 6.96 | 1.12 | 4.19 | 83.16 |
Lightning Current, I0 (kA) | Lightning Strike Distance, d (m) | Lightning-Induced Voltage (kV) | Percentage Difference of Clamped Induced Voltage between Without and With SPD (%) | ||||
---|---|---|---|---|---|---|---|
Without DC SPD Class II | With DC SPD Class II | ||||||
Point A | Point B | Point A | Point B | Point A | Point B | ||
3 | 50 | 1.02 | 1.01 | 1.02 | 1.01 | 0 | 0 |
19 | 6.37 | 6.37 | 4.78 | 1.46 | 24.96 | 77.08 | |
169 | 56.65 | 56.65 | 38.43 | 2.72 | 32.16 | 95.20 |
Lightning Current, I0 (kA) | Lightning Strike Distance, d (m) | Lightning-Induced Voltage (kV) | Percentage Difference of Clamped Induced Voltage between Without and With SPD (%) | ||||
---|---|---|---|---|---|---|---|
Without AC SPD Class II | With AC SPD Class II | ||||||
Point C | Point D | Point C | Point D | Point C | Point D | ||
3 | 50 | 1.06 | 1.06 | 1.04 | 0.94 | 1.89 | 11.32 |
19 | 6.85 | 6.81 | 7.11 | 1.13 | 3.80 | 83.41 | |
169 | 61.28 | 60.34 | 67.85 | 2.05 | 10.72 | 96.60 |
Lightning Current, I0 (kA) | Lightning Strike Distance, d (m) | Cable Length, m | Lightning-Induced Voltage (kV) | Percentage Difference of Clamped Induced Voltage between Without and With SPD (%) | ||||
---|---|---|---|---|---|---|---|---|
Without DC SPD Class II | With DC SPD Class II | |||||||
Point A | Point B | Point A | Point B | Point A | Point B | |||
19 | 50 | 5 | 6.38 | 6.37 | 4.74 | 1.61 | 25.71 | 74.73 |
10 | 6.41 | 6.38 | 4.78 | 1.46 | 25.43 | 77.12 | ||
20 | 6.78 | 6.70 | 5.06 | 1.38 | 25.37 | 79.40 |
Lightning Current, I0 (kA) | Lightning Strike Distance, d (m) | Cable Length, m | Lightning-Induced Voltage (kV) | Percentage Difference of Clamped Induced Voltage between Without and With SPD (%) | ||||
---|---|---|---|---|---|---|---|---|
Without AC SPD Class II | With AC SPD Class II | |||||||
Point C | Point D | Point C | Point D | Point C | Point D | |||
19 | 50 | 5 | 6.97 | 6.86 | 6.76 | 1.27 | 3.01 | 81.49 |
10 | 6.88 | 6.83 | 7.11 | 1.13 | 3.34 | 83.46 | ||
20 | 6.72 | 6.57 | 8.72 | 1.04 | 29.76 | 84.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, N.I.; Ali, Z.; Ab. Kadir, M.Z.A.; Osman, M.; Zaini, N.H.; Roslan, M.H. Analysis of Lightning-Induced Voltages Effect with SPD Placement for Sustainable Operation in Hybrid Solar PV-Battery Energy Storage System. Sustainability 2021, 13, 6889. https://doi.org/10.3390/su13126889
Ahmad NI, Ali Z, Ab. Kadir MZA, Osman M, Zaini NH, Roslan MH. Analysis of Lightning-Induced Voltages Effect with SPD Placement for Sustainable Operation in Hybrid Solar PV-Battery Energy Storage System. Sustainability. 2021; 13(12):6889. https://doi.org/10.3390/su13126889
Chicago/Turabian StyleAhmad, Nor Izzati, Zaipatimah Ali, Mohd Zainal Abidin Ab. Kadir, Miszaina Osman, Nur Hazirah Zaini, and Muhammad Hakirin Roslan. 2021. "Analysis of Lightning-Induced Voltages Effect with SPD Placement for Sustainable Operation in Hybrid Solar PV-Battery Energy Storage System" Sustainability 13, no. 12: 6889. https://doi.org/10.3390/su13126889
APA StyleAhmad, N. I., Ali, Z., Ab. Kadir, M. Z. A., Osman, M., Zaini, N. H., & Roslan, M. H. (2021). Analysis of Lightning-Induced Voltages Effect with SPD Placement for Sustainable Operation in Hybrid Solar PV-Battery Energy Storage System. Sustainability, 13(12), 6889. https://doi.org/10.3390/su13126889